Skip to main content

Advertisement

Log in

Anti-proliferative effect of the gastrin-release peptide receptor antagonist RC-3095 plus temozolomide in experimental glioblastoma models

  • Laboratory Investigation - Human/animal tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

An Erratum to this article was published on 14 March 2009

Abstract

Malignant gliomas have a dismal prognosis despite multi-modality treatments like neurosurgical resection, radiation therapy and chemotherapy. Evidence has indicated that gastrin-releasing peptide (GRP) and its receptor (GRPR) play a role in the development of a variety of cancers including gliomas. In the present study, we investigated the effects of RC-3095, a selective GRPR antagonist, alone or in combination with temozolomide (TMZ), a DNA alkylating agent, in in vitro and in vivo experimental rat C6 glioma models. Cellular proliferation was significantly reduced by all treatments with the combined administration of TMZ and RC-3095 being the most effective treatment. In in vivo experiments, the control group displayed the largest tumors (52 ± 15.5 mm3), whereas RC-3095 reduced the tumor size, with the most significant effect at the dose of 0.3 mg/kg (21 ± 9.7 mm3). The combined therapy produced further reduction in tumor size (10 ± 7.5 mm3). Our results show that the combination of RC-3095 with TMZ produced an important reduction in in vitro and in vivo glioma growth therefore making RC-3095 a candidate drug to potentiate the effects of the DNA alkylating agent TMZ in the treatment of glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kleihues P, Burger PC, Collins VP, Newcomb EW, Oghaki H, Cavanee WK (2000) Glioblastoma tumours of the nervous system: pathology and genetics. Inter Agency Res Cancer Press 1:29–98

    Google Scholar 

  2. Stupp R, Mason WP, Van den Bent MJ, Weller M, Fischer B, Taphoom MJ, Belanger AA, Marosi C, Bogdalun U, Curshmann J, Janzer RC, Ludwig SK, Gorlia T, Lacombe D, Eisenhauser E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi:10.1056/NEJMoa043330

    Article  PubMed  CAS  Google Scholar 

  3. John PF, Henry B, Steven B, Andrew L, Geoffrey B, Weidong H, Ricardo P (2006) In vitro drug response and molecular markers associated with drug resistence in malignant gliomas. Clin Cancer Res 12:4523–4532

    Google Scholar 

  4. Rich Jn, Bigner DD (2004) Development of novel targeted therapies in the treatment of malignant gliomas. Nat Rev Drug Discov 3:430–446. doi:10.1038/nrd1380

    Article  PubMed  CAS  Google Scholar 

  5. Danson SJ, Middleton MR (2001) Temozolomide: a novel oral alkylating agent. Expert Rev Anticancer Ther 1:13–19. doi:10.1586/14737140.1.1.13

    Article  PubMed  CAS  Google Scholar 

  6. Payne MJ, Pratap SE, Middleton MR (2005) Temozolamide in the treatment of solid tumours: current results and rationale for dosing/scheduling. Crit Rev Oncol Hematol 53:241–252. doi:10.1016/j.critrevonc.2004.10.004

    Article  PubMed  CAS  Google Scholar 

  7. Tentori L, Leonetti C, Aquino A (1995) Temozolomide reduces the metastatic potential of Lewis lung carcinoma (3LL) in mice: role of alpha-6 integrin phosphorylation. Eur J Cancer 31A:746–754. doi:10.1016/0959-8049(94)00521-6

    Article  PubMed  CAS  Google Scholar 

  8. Plowman J, Waud WR, Koutsoukos AD, Rubinstein LV, Moore TD, Grever MR (1994) Preclinical antitumor activity of temozolomide in mice: efficacy againsthuman brain tumor xenografts and synergism with 1, 3-bis (2-chloroethyl)-1-nitrosourea. Cancer Res 54:3793–3799

    PubMed  CAS  Google Scholar 

  9. Yung WK, Albright RE, Olson J, Fredericks R, Fink K, Prados MD (2000) A phase II study of temozolomide vs. Procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer 83:588–593. doi:10.1054/bjoc.2000.1316

    Article  PubMed  CAS  Google Scholar 

  10. Mulholland PJ, Thirlwell C, Brock CS, Newlands ES (2005) Emerging targeted treatments for malignant glioma. Expert Opin Emerg Drugs 10:845–854. doi:10.1517/14728214.10.4.845

    Article  PubMed  CAS  Google Scholar 

  11. Sanson M, Thillet J, Hoang-Xuan K (2004) Molecular changes in gliomas. Curr Opin Oncol 16:607–613. doi:10.1097/01.cco.0000142485.81849.cc

    Article  PubMed  CAS  Google Scholar 

  12. Patel O, Shulkes A, Baldwin GS (2006) Gastrin-releasing peptide and cancer. Biochim Biophys Acta 1766:23–41

    PubMed  CAS  Google Scholar 

  13. Cornelio D, Roesler R, Schwartsmann G (2007) Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann Oncol 18:1457–1466. doi:10.1093/annonc/mdm058

    Article  PubMed  CAS  Google Scholar 

  14. Moody TW, Mahmoud S, Staley J, Naldini L, Cirillo D, South V, Felder S, Kris R (1989) Human glioblastoma cell lines have neuropeptide receptors for bombesin/gastrin-releasing peptide. J Mol Neurosci 1:235–242

    PubMed  CAS  Google Scholar 

  15. Staley J, Coy DH, Jensen RT, Moody TW (1993) Solubilization and purification of bombesin/gastrin releasing peptide receptors from human cell lines. J Mol Neurosci 4:29–40. doi:10.1007/BF02736688

    Article  PubMed  CAS  Google Scholar 

  16. Pinski J, Schally AV, Halmos G, Szepeshazi K, Groot K (1994) Somatostatin analogues and bombesin/gastrin-releasing peptide antagonist RC-3095 inhibit the growth of human glioblastomas in vitro and in vivo. Cancer Res 54:5895–5901

    PubMed  CAS  Google Scholar 

  17. Zhou J, Chen J, Mokotoff M, Ball ED (2004) Targeting gastrin-releasing peptide receptors for cancer treatment. Anticancer Drugs 15:921–927. doi:10.1097/00001813-200411000-00001

    Article  PubMed  CAS  Google Scholar 

  18. Radulovic S, Cai RZ, Serfozo P, Groot K, Redding TW, Pinski J, Schally AV (1991) Biological effects and receptor binding affinities of new pseudononapeptide bombesin/GRP receptor antagonists with N-terminal D-Trp or D-Tpi. Int J Pept Protein Res 38:593–600

    PubMed  CAS  Google Scholar 

  19. Szepeshazi K, Schally AV, Halmos G, Lamharzi N, Groot K, Horvath JE (1997) A single in vivo administration of bombesin antagonist RC-3095 reduces the levels and mRNA expression of epidermal growth factor receptors in MXT mouse mammary cancers. Proc Natl Acad Sci USA 94:10913–10918. doi:10.1073/pnas.94.20.10913

    Article  PubMed  CAS  Google Scholar 

  20. Ural AU, Yilmaz MI, Avcu F, Pekel A, Zerman M, Nevruz O, Sengul A, Yalcin A (2003) The bisphosphonate zoledronic acid induces cytotoxicity in human myeloma cell lines with enhancing effects of dexamethasone and thalidomide. Int J Hematol 78:443–449. doi:10.1007/BF02983818

    Article  PubMed  CAS  Google Scholar 

  21. Peluso JJ, Pappalardo A, Fernandez G (2001) Basic fibroblast growth factor maintains calcium homeostasis and granulose cell viability by stimulating calcium efflux via a PKC d-dependent pathway. Endocrinology 142:4203–4211. doi:10.1210/en.142.10.4203

    Article  PubMed  CAS  Google Scholar 

  22. Petersen C, Petersen S, Milas L, Lang FF, Tofilon PJ (2000) Enhancement of intrinsic tumor cell radiosensitivity induced by a selective cyclooxygenase-2 inhibitor. Clin Cancer Res 6:2513–2520

    PubMed  CAS  Google Scholar 

  23. Takano T, Lin JHC, Arcuino G, Gao Q, Yang J, Nedergaard M (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7:1010–1015. doi:10.1038/nm0901-1010

    Article  PubMed  CAS  Google Scholar 

  24. Patel VJ, Elion GB, Houghton PJ, Keir S, Pegg AE, Johnson SP, Dolan ME, Bigner DD, Friedman HS (2000) Schedule-dependent activity of temozolomide plus CPT-11 against a human central nervous system tumor-derived xenograft. Clin Cancer Res 6:4154–4157

    PubMed  CAS  Google Scholar 

  25. Bouwknecht JA, Spiga F, Staub DR, Hale MW, Shekhar A, Lowry C (2007) Differential effects of exposure to low-light or high-light open-field on anxiety-related behavior; relationship to c-FOS expression on serotonergic and non-serotonergic neurons in the dorsal raphe nucleus. Brain Res Bull 72:32–43. doi:10.1016/j.brainresbull.2006.12.009

    Article  PubMed  CAS  Google Scholar 

  26. Kiaris H, Schally AV, Sun B, Armatis P, Groot K (1999) Inhibition of growth of human malignant glioblastoma in nude mice by antagonists of bombesin/gastrin-releasing peptide. Oncogene 18:7168–7173. doi:10.1038/sj.onc.1203213

    Article  PubMed  CAS  Google Scholar 

  27. Flores DG, Leites J, Farias CB, Oliveira MS, Lima RC, Tamajusuku ASK, DiLeone LP, Meurer L, Brunetto AL, Schwartsmann G, Lenz G, Roesler R (2008) Gastrin-releasing peptide receptors regulate proliferation of C6 glioma cells through a phosphatidylinositol 3-kinase-dependent mechanism. Curr Neurovasc Res 5:99–105. doi:10.2174/156720208784310240

    Article  PubMed  CAS  Google Scholar 

  28. Angela AV, Rushika MP, Achim AJ, Elisabeth S, Lloyd JO, Terrance GJ, Rodney BL, Carmel M, Francesca W, Janet W, Edouard CN, Antony WB, Andrew MS (2003) Antitumor efficacy of cytotoxic drugs and the monoclonal antibody 806 is enhanced by the EGF receptor inhibitor AG1478. Proc Natl Acad Sci USA 100:15871–15876. doi:10.1073/pnas.2036503100

    Article  Google Scholar 

  29. Qing Z, Sufi MT, WaiYanLui Vivian, Sichuan X, Jill MS, Huizhou F, Thomas ES, Gordon BM, Jennifer RG (2006) Phosphorylation of TNF-α converting enzyme by gastrin-releasing peptide induces amphiregulin release and EGF receptor activation. Proc Natl Acad Sci USA 103:6901–6906. doi:10.1073/pnas.0509719103

    Article  Google Scholar 

  30. Lefranc F, Mijatovic T, Mathieu V, Rorive S, Decaesthercke C, Debeir O, Brothji J, Van Ham P, Salmon I, Kiss R (2004) Characterization of Gastrin-Induced proangiogenic effects in vivo in orthotopic U373 experimental human glioblastomas and in vitro in human umbilical vein endothelial cells. Clin Cancer Res 10:8250–8265. doi:10.1158/1078-0432.CCR-04-0343

    Article  PubMed  CAS  Google Scholar 

  31. Kanashiro CA, Schally AV, Cai RZ, Halmos G (2005) Antagonists of bombesin/gastrin-releasing peptide decrease the expression of angiogenic and anti-apoptotic factors in human glioblastoma. Anticancer Drugs 16:159–165. doi:10.1097/00001813-200502000-00007

    Article  PubMed  CAS  Google Scholar 

  32. Schwartsmann G, DiLeone LP, Horowitz M, Schunemann D, Cancella A, Pereira AS, Richter M, Souza F, da Rocha AB, Souza FH, Pohlmann P, De Nucci G (2006) A phase I trial of the bombesin/gastrin-releasing peptide (BN/GRP) antagonist RC3095 in patients with advanced solid malignancies. Invest New Drugs 24:403–412. doi:10.1007/s10637-006-6886-5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by CNPq grants 400839/2005-9; the South American Office for Anticancer Drug Development (SOAD, Porto Alegre, Brazil); and the Childrens Cancer Institute (ICI-RS, Porto Alegre, Brazil). Authors thank Caroline B. Farias, Débora G. Flores and Gustavo K. Reolon for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Roesler.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11060-009-9851-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, M.S., Cechim, G., Braganhol, E. et al. Anti-proliferative effect of the gastrin-release peptide receptor antagonist RC-3095 plus temozolomide in experimental glioblastoma models. J Neurooncol 93, 191–201 (2009). https://doi.org/10.1007/s11060-008-9775-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-008-9775-2

Keywords

Navigation