Skip to main content
Log in

Alpha-Synuclein Suppresses Retinoic Acid-Induced Neuronal Differentiation by Targeting the Glycogen Synthase Kinase-3β/β-Catenin Signaling Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alpha-synuclein (α-SYN) is expressed during neuronal development and is mainly involved in the modulation of synaptic transmission. Missense mutations and amplifications of this gene have been associated with the pathogenesis of Parkinson’s disease. Here, we evaluate whether α-SYN plays a detrimental role in the phenotypic and morphological regulation of neurons. We also identify the underlying mechanisms of this process in all-trans-retinoic acid (RA)-induced differentiated SH-SY5Y cells, which represents dopaminergic (DAergic) phenotype. Our results indicate that overexpression of wild-type or mutant A53T α-SYN attenuated the RA-induced upregulation of tyrosine hydroxylase and dopamine transporter as well as neurite outgrowth in SH-SY5Y cells. In addition, GSK-3β inactivation and downstream β-catenin stabilization were associated with RA-induced differentiation, which was attenuated by α-SYN. Moreover, protein phosphatase 2A was positively regulated by α-SYN and was implicated in the α-SYN-mediated interference with RA signaling. The results obtained from SH-SY5Y cells were verified in primary cultures of mesencephalic DAergic neurons from A53T α-SYN transgenic mice, which represent high levels of α-SYN and protein phosphatase 2A in the midbrain. The number and length of neurites in tyrosine hydroxylase-positive as well as Tau-positive cells from A53T α-SYN transgenic mice were significantly lower than those in littermate controls. The current results provide novel insight into the role of α-SYN in the regulation of neuronal differentiation, including DAergic neurons. Identifying the signaling pathway involved in the α-SYN-mediated dysregulation of neuronal differentiation could lead to a better understanding of the developmental processes underlying α-SYN-related pathologies and facilitate the discovery of specifically targeted therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

α-SYN:

α-Synuclein

DAergic:

Dopaminergic

DAT:

Dopamine transporter

GSK-3:

Glycogen synthase kinase-3

PP2A:

Protein phosphatase 2A

RA:

All-trans-retinoic acid

TH:

Tyrosine hydroxylase

References

  1. Nakata Y, Yasuda T, Fukaya M, Yamamori S, Itakura M, Nihira T, Hayakawa H, Kawanami A et al (2012) Accumulation of alpha-synuclein triggered by presynaptic dysfunction. J Neurosci 32(48):17186–17196

    Article  CAS  PubMed  Google Scholar 

  2. Tozzi A, Costa C, Siliquini S, Tantucci M, Picconi B, Kurz A, Gispert S, Auburger G et al (2012) Mechanisms underlying altered striatal synaptic plasticity in old A53T-alpha synuclein overexpressing mice. Neurobiol Aging 33(8):1792–1799

    Article  CAS  PubMed  Google Scholar 

  3. Spillantini M, Schmidt M, Lee V, Trojanowski J, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    Article  CAS  PubMed  Google Scholar 

  4. Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B (1999) Alpha-synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci 19(14):5782–5791

    CAS  PubMed  Google Scholar 

  5. Polymeropoulos M, Lavedan C, Leroy E, Ide S, Dehejia A, Dutra A, Pike B, Root H et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    Article  CAS  PubMed  Google Scholar 

  6. Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen J et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108

    Article  PubMed  Google Scholar 

  7. Chu Y, Kordower JH (2007) Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson’s disease? Neurobiol Dis 25(1):134–149

    Article  CAS  PubMed  Google Scholar 

  8. Maurin H, Chong SA, Kraev I, Davies H, Kremer A, Seymour CM, Lechat B, Jaworski T et al (2014) Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopathy. PLoS One 9(2):e87605

    Article  PubMed  PubMed Central  Google Scholar 

  9. Purro SA, Galli S, Salinas PC (2014) Dysfunction of Wnt signaling and synaptic disassembly in neurodegenerative diseases. J Mol Cell Biol 6(1):75–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  11. Langston JW (2006) The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol 59(4):591–596

    Article  PubMed  Google Scholar 

  12. Kim S, Park JM, Moon J, Choi HJ (2014) Alpha-synuclein interferes with cAMP/PKA-dependent upregulation of dopamine beta-hydroxylase and is associated with abnormal adaptive responses to immobilization stress. Exp Neurol 252:63–74

    Article  CAS  PubMed  Google Scholar 

  13. Kim SS, Moon KR, Choi HJ (2011) Interference of alpha-synuclein with cAMP/PKA-dependent CREB signaling for tyrosine hydroxylase gene expression in SK-N-BE(2)C cells. Arch Pharm Res 34(5):837–845

    Article  CAS  PubMed  Google Scholar 

  14. Lee HJ, Lee K, Im H (2012) Alpha-synuclein modulates neurite outgrowth by interacting with SPTBN1. Biochem Biophys Res Commun 424(3):497–502

    Article  CAS  PubMed  Google Scholar 

  15. Liu G, Wang P, Li X, Li Y, Xu S, Ueda K, Chan P, Yu S (2013) Alpha-synuclein promotes early neurite outgrowth in cultured primary neurons. J Neural Transm 120(9):1331–1343

    Article  CAS  PubMed  Google Scholar 

  16. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ et al (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72(1):57–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castaño Z, Gordon-Weeks PR, Kypta RM (2010) The neuron-specific isoform of glycogen synthase kinase-3beta is required for axon growth. J Neurochem 113(1):117–130

    Article  PubMed  Google Scholar 

  18. Castelo-Branco G, Rawal N, Arenas E (2004) GSK-3beta inhibition/beta-catenin stabilization in ventral midbrain precursors increases differentiation into dopamine neurons. J Cell Sci 117(Pt 24):5731–5737

    Article  CAS  PubMed  Google Scholar 

  19. Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11(8):539–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuan Y, Sun J, Zhao M, Hu J, Wang X, Du G, Chen NH (2010) Overexpression of alpha-synuclein down-regulates BDNF expression. Cell Mol Neurobiol 30(6):939–946

    Article  CAS  PubMed  Google Scholar 

  21. Joshi S, Guleria R, Pan J, DiPette D, Singh US (2006) Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells. Oncogene 25(2):240–247

    Article  CAS  PubMed  Google Scholar 

  22. Korecka JA, van Kesteren RE, Blaas E, Spitzer SO, Kamstra JH, Smit AB, Swaab DF, Verhaagen J et al (2013) Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One 8(5):e63862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lim J, Choi HS, Choi HJ (2015) Estrogen-related receptor gamma regulates dopaminergic neuronal phenotype by activating GSK3beta/NFAT signaling in SH-SY5Y cells. J Neurochem 133(4):544–557

    Article  CAS  PubMed  Google Scholar 

  24. Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38(11 Pt 1):3751–3757

    CAS  PubMed  Google Scholar 

  25. Berling B, Wille H, Röll B, Mandelkow EM, Garner C, Mandelkow E (1994) Phosphorylation of microtubule-associated proteins MAP2a,b and MAP2c at Ser136 by proline-directed kinases in vivo and in vitro. Eur J Cell Biol 64(1):120–130

    CAS  PubMed  Google Scholar 

  26. Galderisi U, Jori FP, Giordano A (2003) Cell cycle regulation and neural differentiation. Oncogene 22(33):5208–5219

    Article  CAS  PubMed  Google Scholar 

  27. Lee MH, Nikolic M, Baptista CA, Lai E, Tsai LH, Massague J (1996) The brain-specific activator p35 allows Cdk5 to escape inhibition by p27Kip1 in neurons. Proc Natl Acad Sci U S A 93(8):3259–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baldassarre G, Boccia A, Bruni P, Sandomenico C, Barone MV, Pepe S, Angrisano T, Belletti B et al (2000) Retinoic acid induces neuronal differentiation of embryonal carcinoma cells by reducing proteasome-dependent proteolysis of the cyclin-dependent inhibitor p27. Cell Growth Differ 11(10):517–526

    CAS  PubMed  Google Scholar 

  29. Joksimovic M, Awatramani R (2014) Wnt/beta-catenin signaling in midbrain dopaminergic neuron specification and neurogenesis. J Mol Cell Biol 6(1):27–33

    Article  CAS  PubMed  Google Scholar 

  30. Peng X, Tehranian R, Dietrich P, Stefanis L, Perez RG (2005) Alpha-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J Cell Sci 118(Pt 15):3523–3530

    Article  CAS  PubMed  Google Scholar 

  31. Lee YI, Seo M, Kim Y, Kim SY, Kang UG, Kim YS, Juhnn YS (2005) Membrane depolarization induces the undulating phosphorylation/dephosphorylation of glycogen synthase kinase 3beta, and this dephosphorylation involves protein phosphatases 2A and 2B in SH-SY5Y human neuroblastoma cells. J Biol Chem 280(23):22044–22052

    Article  CAS  PubMed  Google Scholar 

  32. Zhou XW, Winblad B, Guan Z, Pei JJ (2009) Interactions between glycogen synthase kinase 3beta, protein kinase B, and protein phosphatase 2A in tau phosphorylation in mouse N2a neuroblastoma cells. J Alzheimers Dis 17(4):929–937

    Article  CAS  PubMed  Google Scholar 

  33. Stefanis L (2012) Alpha-synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009399

    Article  PubMed  PubMed Central  Google Scholar 

  34. Winner B, Lie DC, Rockenstein E, Aigner R, Aigner L, Masliah E, Kuhn HG, Winkler J (2004) Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 63(11):1155–1166

    Article  CAS  PubMed  Google Scholar 

  35. Winner B, Rockenstein E, Lie DC, Aigner R, Mante M, Bogdahn U, Couillard-Despres S, Masliah E et al (2008) Mutant alpha-synuclein exacerbates age-related decrease of neurogenesis. Neurobiol Aging 29(6):913–925

    Article  CAS  PubMed  Google Scholar 

  36. Crews L, Mizuno H, Desplats P, Rockenstein E, Adame A, Patrick C, Winner B, Winkler J et al (2008) Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci 28(16):4250–4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lotharius J, Brundin P (2002) Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Hum Mol Genet 11(20):2395–2407

    Article  CAS  PubMed  Google Scholar 

  38. Lee F, Liu F, Pristupa Z, Niznik H (2001) Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 15(6):916–926

    Article  CAS  PubMed  Google Scholar 

  39. Perez R, Waymire J, Lin E, Liu J, Guo F, Zigmond M (2002) A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci 22(8):3090–3099

    CAS  PubMed  Google Scholar 

  40. Zaja-Milatovic S, Milatovic D, Schantz AM, Zhang J, Montine KS, Samii A, Deutch AY, Montine TJ (2005) Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. Neurology 64(3):545–547

    Article  CAS  PubMed  Google Scholar 

  41. Patt S, Gertz HJ, Gerhard L, Cervos-Navarro J (1991) Pathological changes in dendrites of substantia nigra neurons in Parkinson’s disease: a Golgi study. Histol Histopathol 6(3):373–380

    CAS  PubMed  Google Scholar 

  42. Takenouchi T, Hashimoto M, Hsu LJ, Mackowski B, Rockenstein E, Mallory M, Masliah E (2001) Reduced neuritic outgrowth and cell adhesion in neuronal cells transfected with human alpha-synuclein. Mol Cell Neurosci 17(1):141–150

    Article  CAS  PubMed  Google Scholar 

  43. Li W, Lesuisse C, Xu Y, Troncoso JC, Price DL, Lee MK (2004) Stabilization of alpha-synuclein protein with aging and familial Parkinson’s disease-linked A53T mutation. J Neurosci 24(33):7400–7409

    Article  CAS  PubMed  Google Scholar 

  44. Hegarty SV, Sullivan AM, O’Keeffe GW (2013) BMP2 and GDF5 induce neuronal differentiation through a Smad dependant pathway in a model of human midbrain dopaminergic neurons. Mol Cell Neurosci 56:263–271

    Article  CAS  PubMed  Google Scholar 

  45. Trzaska KA, King CC, Li KY, Kuzhikandathil EV, Nowycky MC, Ye JH, Rameshwar P (2009) Brain-derived neurotrophic factor facilitates maturation of mesenchymal stem cell-derived dopamine progenitors to functional neurons. J Neurochem 110(3):1058–1069

    Article  CAS  PubMed  Google Scholar 

  46. Jiang H, Guo W, Liang X, Rao Y (2005) Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell 120(1):123–135

    CAS  PubMed  Google Scholar 

  47. Yoshimura T, Arimura N, Kaibuchi K (2006) Molecular mechanisms of axon specification and neuronal disorders. Ann N Y Acad Sci 1086:116–125. doi:10.1196/annals.1377.013

    Article  CAS  PubMed  Google Scholar 

  48. Miller JR, Moon RT (1996) Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes Dev 10(20):2527–2539

    Article  CAS  PubMed  Google Scholar 

  49. Otero JJ, Fu W, Kan L, Cuadra AE, Kessler JA (2004) Beta-catenin signaling is required for neural differentiation of embryonic stem cells. Development 131(15):3545–3557

    Article  CAS  PubMed  Google Scholar 

  50. Petit-Paitel A (2010) GSK-3beta: a central kinase for neurodegenerative diseases? Med Sci (Paris) 26(5):516–521

    Article  Google Scholar 

  51. Lange C, Mix E, Frahm J, Glass A, Muller J, Schmitt O, Schmole AC, Klemm K et al (2011) Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells. Neurosci Lett 488(1):36–40

    Article  CAS  PubMed  Google Scholar 

  52. Haavik J, Schelling DL, Campbell DG, Andersson KK, Flatmark T, Cohen P (1989) Identification of protein phosphatase 2A as the major tyrosine hydroxylase phosphatase in adrenal medulla and corpus striatum: evidence from the effects of okadaic acid. FEBS Lett 251(1–2):36–42

    Article  CAS  PubMed  Google Scholar 

  53. Lou H, Montoya SE, Alerte TN, Wang J, Wu J, Peng X, Hong CS, Friedrich EE et al (2010) Serine 129 phosphorylation reduces the ability of alpha-synuclein to regulate tyrosine hydroxylase and protein phosphatase 2A in vitro and in vivo. J Biol Chem 285(23):17648–17661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Farrell KF, Krishnamachari S, Villanueva E, Lou H, Alerte TN, Peet E, Drolet RE, Perez RG (2014) Non-motor parkinsonian pathology in aging A53T alpha-synuclein mice is associated with progressive synucleinopathy and altered enzymatic function. J Neurochem 128(4):536–546

    Article  CAS  PubMed  Google Scholar 

  55. Hernandez F, Langa E, Cuadros R, Avila J, Villanueva N (2010) Regulation of GSK3 isoforms by phosphatases PP1 and PP2A. Mol Cell Biochem 344(1–2):211–215

    Article  CAS  PubMed  Google Scholar 

  56. Chen J, Martin BL, Brautigan DL (1992) Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science 257(5074):1261–1264

    Article  CAS  PubMed  Google Scholar 

  57. Li W, Xie L, Chen Z, Zhu Y, Sun Y, Miao Y, Xu Z, Han X (2010) Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell-cycle arrest and apoptosis. Cancer Sci 101(5):1226–1233

    Article  CAS  PubMed  Google Scholar 

  58. Chen BS, Ho SJ (2014) The stochastic evolutionary game for a population of biological networks under natural selection. Evol Bioinform Online 10:17–38

    PubMed  PubMed Central  Google Scholar 

  59. Luo D, Fan X, Ma C, Fan T, Wang X, Chang N, Li L, Zhang Y et al (2014) A study on the effect of neurogenesis and regulation of GSK3beta/PP2A expression in acupuncture treatment of neural functional damage caused by focal ischemia in MCAO rats. Evid Based Complement Alternat Med 2014:962343

    PubMed  PubMed Central  Google Scholar 

  60. Ahn KH, Kim YS, Kim SY, Huh Y, Park C, Jeong JW (2009) Okadaic acid protects human neuroblastoma SH-SY5Y cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis. Neurosci Lett 449(2):93–97

    Article  CAS  PubMed  Google Scholar 

  61. Atkinson T, Whitfield J, Chakravarthy B (2009) The phosphatase inhibitor, okadaic acid, strongly protects primary rat cortical neurons from lethal oxygen-glucose deprivation. Biochem Biophys Res Commun 378(3):394–398

    Article  CAS  PubMed  Google Scholar 

  62. Yi KD, Chung J, Pang P, Simpkins JW (2005) Role of protein phosphatases in estrogen-mediated neuroprotection. J Neurosci 25(31):7191–7198

    Article  CAS  PubMed  Google Scholar 

  63. Dwivedi S, Rajasekar N, Hanif K, Nath C, Shukla R (2016) Sulforaphane ameliorates okadaic acid-induced memory impairment in rats by activating the Nrf2/HO-1 antioxidant pathway. Mol Neurobiol 53(8):5310–5323

    Article  CAS  PubMed  Google Scholar 

  64. Knight RA, Verkhratsky A (2010) Neurodegenerative diseases: failures in brain connectivity? Cell Death Differ 17(7):1069–1070

    Article  CAS  PubMed  Google Scholar 

  65. Le Grand JN, Gonzalez-Cano L, Pavlou MA, Schwamborn JC (2015) Neural stem cells in Parkinson’s disease: a role for neurogenesis defects in onset and progression. Cell Mol Life Sci 72(4):773–797

    Article  CAS  PubMed  Google Scholar 

  66. Oliveira LM, Falomir-Lockhart LJ, Botelho MG, Lin KH, Wales P, Koch JC, Gerhardt E, Taschenberger H et al (2015) Elevated alpha-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson’s patient-derived induced pluripotent stem cells. Cell Death Dis 6:e1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zharikov AD, Cannon JR, Tapias V, Bai Q, Horowitz MP, Shah V, El Ayadi A, Hastings TG et al (2015) shRNA targeting alpha-synuclein prevents neurodegeneration in a Parkinson’s disease model. J Clin Invest 125(7):2721–2735

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (2012R1A1A3011420, 2015R1D1A1A01059598, and 2015M3A9E1028326 to H.J. Choi and 2011-0030928, 2011-0030049, and 2012-003338 to H. Seo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Jin Choi.

Additional information

S Kim and J Lim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Lim, J., Bang, Y. et al. Alpha-Synuclein Suppresses Retinoic Acid-Induced Neuronal Differentiation by Targeting the Glycogen Synthase Kinase-3β/β-Catenin Signaling Pathway. Mol Neurobiol 55, 1607–1619 (2018). https://doi.org/10.1007/s12035-016-0370-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0370-9

Keywords

Navigation