Skip to main content

Advertisement

Log in

Alpha-synuclein promotes early neurite outgrowth in cultured primary neurons

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

We previously showed that alpha-synuclein (α-Syn), a protein implicated in the pathogenesis of several neurodegenerative diseases, is a microtubule-associated protein (MAP), facilitating the polymerization of tubulin into microtubules. Therefore, we hypothesized that α-Syn might promote neurite outgrowth, a process that requires microtubule assembly. To test this hypothesis, recombinant human wild type (WT) and mutant (A30P and A53T) α-Syn proteins were added to cultured primary rat cortical neurons, and their effects on early neurite outgrowth were observed. The WT and mutant α-Syn proteins entered the neurons after 1–4 h of incubation. However, a significant increase in neurite outgrowth was observed only in neurons treated with WT α-Syn. MES23.5 dopaminergic neuronal cells overexpressing WT α-Syn also exhibited enhanced neurite outgrowth, indicating that the ability of α-Syn to promote neurite outgrowth was not due to a direct action on the cell membrane or by the membrane translocation process. Co-immunoprecipitation demonstrated that the recombinant human α-Syn was bound to tubulin. In addition, the α-Syn-treated neurons displayed increased levels of polymerized tubulin. Because α-Syn’s MAP functionality is mediated by specific domains, we generated N-terminal (a.a. 1–65), non-amyloid-β (non-Aβ) component (NAC) (a.a. 61–95) and C-terminal (a.a. 96–140) fragments and added them to the primary neurons. After 1–4 h of incubation, the various α-Syn fragments had entered the neurons. However, only the NAC and C-terminal fragments, which have been previously shown to mediate MAP functionality, promoted neurite outgrowth. These results suggest that α-Syn promotes neurite outgrowth by facilitating the polymerization of tubulin into microtubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn KJ, Paik SR, Chung KC, Kim J (2006) Amino acid sequence motifs and mechanistic features of the membrane translocation of alpha-synuclein. J Neurochem 97:265–279

    Article  PubMed  CAS  Google Scholar 

  • Alim MA, Ma QL, Takeda K, Aizawa T, Matsubara M, Nakamura M, Asada A, Saito T, Kaji H, Yoshii M, Hisanaga S, Uéda K (2004) Demonstration of a role for alpha-synuclein as a functional microtubule-associated protein. J Alzheimers Dis 6:435–442

    PubMed  Google Scholar 

  • Arima K, Uéda K, Sunohara N, Hirai S, Izumiyama Y, Tonozuka-Uehara H, Kawai M (1998) Immunoelectron-microscopic demonstration of NACP/alpha-synuclein-epitopes on the filamentous component of Lewy bodies in Parkinson’s disease and in dementia with Lewy bodies. Brain Res 808:93–100

    Article  PubMed  CAS  Google Scholar 

  • Bayer TA, Jäkälä P, Hartmann T, Egensperger R, Buslei R, Falkai P, Beyreuther K (1999) Neural expression profile of alpha-synuclein in developing human cortex. NeuroReport 10:799–803

    Article  Google Scholar 

  • Bellani S, Sousa VL, Ronzitti G, Valtorta F, Meldolesi J, Chieregatti E (2010) The regulation of synaptic function by alpha-synuclein. Commun Integr Biol 3:106–109

    Article  PubMed  Google Scholar 

  • Black MM, Greene LA (1982) Changes in the colchicine susceptibility of microtubules associated with neurite outgrowth: studies with nerve growth factor-responsive PC12 pheochromocytoma cells. J Cell Biol 95:379–386

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Jin J, Davis J, Zhou Y, Wang Y, Liu J, Lockhart PJ, Zhang J (2007) Oligomeric alpha-synuclein inhibits tubulin polymerization. Biochem Biophys Res Commun 356:548–553

    Article  PubMed  CAS  Google Scholar 

  • Cheng F, Vivacqua G, Yu S (2011) The role of alpha-synuclein in neurotransmission and synaptic plasticity. J Chem Neuroanat 42:242–248

    Article  PubMed  CAS  Google Scholar 

  • Crawford GDJr, Le WD, Smith RG, Xie WJ, Stefani E, Appel SH (1992) A novel N18TG2 × mesencephalon cell hybrid expresses properties that suggest a dopaminergic cell line of substantia nigra origin. J Neurosci 12:3392–3398

  • Crews L, Mizuno H, Desplats P, Rockenstein E, Adame A, Patrick C, Winner B, Winkler J, Masliah E (2008) Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci 28:4250–4260

    Article  PubMed  CAS  Google Scholar 

  • Galvin JE, Schuck TM, Lee VM, Trojanowski JQ (2001) Differential expression and distribution of alpha-, beta-, and gamma-synuclein in the developing human substantia nigra. Exp Neurol 168:347–355

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Weeks PR (1991) Control of microtubule assembly in growth cones. J Cell Sci Suppl 15:45–49

    Article  PubMed  CAS  Google Scholar 

  • Hall A, Lalli G (2010) Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2:a001818

    Article  PubMed  Google Scholar 

  • Hossain S, Alim A, Takeda K, Kaji H, Shinoda T, Uéda K (2001) Limited proteolysis of NACP/alpha-synuclein. J Alzheimers Dis 3:577–584

    PubMed  CAS  Google Scholar 

  • Kim TD, Paik SR, Yang CH (2002) Structural and functional implications of C-terminal regions of alpha-synuclein. Biochemistry 41:13782–13790

    Article  PubMed  CAS  Google Scholar 

  • Kramer ML, Schulz-Schaeffer WJ (2007) Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci 27:1405–1410

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Suk JE, Bae EJ, Lee JH, Paik SR, Lee SJ (2008) Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein. Int J Biochem Cell Biol 40:1835–1849

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Lim HS, Masliah E, Lee HJ (2011) Protein aggregate spreading in neurodegenerative diseases: problems and perspectives. Neurosci Res 70:339–348

    Article  PubMed  CAS  Google Scholar 

  • Ltic S, Perovic M, Mladenovic A, Raicevic N, Ruzdijic S, Rakic L, Kanazir S (2004) Alpha-synuclein is expressed in different tissues during human fetal development. J Mol Neurosci 22:199–204

    Article  PubMed  Google Scholar 

  • Ma QL, Chan P, Yoshii M, Uéda K (2003) Alpha-synuclein aggregation and neurodegenerative diseases. J Alzheimers Dis 5:139–148

    PubMed  CAS  Google Scholar 

  • Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85

    Article  PubMed  Google Scholar 

  • Paleologou KE, Kragh CL, Mann DM, Salem SA, Al-Shami R, Allsop D, Hassan AH, Jensen PH, El-Agnaf OM (2009) Detection of elevated levels of soluble alpha-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies. Brain 132:1093–1101

    Article  PubMed  Google Scholar 

  • Peng J, Andersen JK (2011) Mutant α-synuclein and aging reduce neurogenesis in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Aging Cell 10:255–262

    Article  PubMed  CAS  Google Scholar 

  • Perrin RJ, Woods WS, Clayton DF, George JM (2000) Interaction of human alpha-Synuclein and Parkinson’s disease variants with phospholipids. Structural analysis using site-directed mutagenesis. J Biol Chem 275:34393–34398

    Article  PubMed  CAS  Google Scholar 

  • Pignatelli A, Belluzzi O (2010) Neurogenesis in the Adult Olfactory Bulb. In: Menini A, editor. The Neurobiology of Olfaction, Boca Raton (FL): CRC Press, Chapter 11

  • Raghavan R, Kruijff L, Sterrenburg MD, Rogers BB, Hladik CL, White CL 3rd (2004) Alpha-synuclein expression in the developing human brain. Pediatr Dev Pathol 7:506–516

    Article  PubMed  Google Scholar 

  • Rekas A, Ahn KJ, Kim J, Carver JA (2012) The chaperone activity of α-synuclein: utilizing deletion mutants to map its interaction with target proteins. Proteins 25:1316–1325

    Article  Google Scholar 

  • Rossi D, Pedrali A, Urbano M, Gaggeri R, Serra M, Fernández L, Fernández M, Caballero J, Ronsisvalle S, Prezzavento O, Schepmann D, Wuensch B, Peviani M, Curti D, Azzolina O, Collina S (2011) Identification of a potent and selective σ1 receptor agonist potentiating NGF-induced neurite outgrowth in PC12 cells. Bioorg Med Chem 19:6210–6224

    Article  PubMed  CAS  Google Scholar 

  • Sousa VL, Bellani S, Giannandrea M, Yousuf M, Valtorta F, Meldolesi J, Chieregatti E (2009) alpha-synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics. Mol Biol Cell 20:3725–3739

    Article  PubMed  CAS  Google Scholar 

  • Specht CG, Tigaret CM, Rast GF, Thalhammer A, Rudhard Y, Schoepfer R (2005) Subcellular localisation of recombinant alpha- and gamma-synuclein. Mol Cell Neurosci 28:326–334

    Article  PubMed  CAS  Google Scholar 

  • Takenouchi T, Hashimoto M, Hsu LJ, Mackowski B, Rockenstein E, Mallory M, Masliah E (2001) Reduced neuritic outgrowth and cell adhesion in neuronal cells transfected with human alpha-synuclein. Mol Cell Neurosci 17:141–150

    Article  PubMed  CAS  Google Scholar 

  • Tsaneva-Atanasova K, Burgo A, Galli T, Holcman D (2009) Quantifying neurite growth mediated by interactions among secretory vesicles, microtubules, and actin networks. Biophys J 96:840–857

    Article  PubMed  CAS  Google Scholar 

  • Uéda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90:11282–11286

    Article  PubMed  Google Scholar 

  • Vivacqua G, Casini A, Vaccaro R, Fornai F, Yu S, D’Este L (2011) Different sub-cellular localization of alpha-synuclein in the C57BL/6 J mouse’s central nervous system by two novel monoclonal antibodies. J Chem Neuroanat 41:97–110

    Article  PubMed  CAS  Google Scholar 

  • Volles MJ, Lansbury PT Jr (2007) Relationships between the sequence of alpha-synuclein and its membrane affinity, fibrillization propensity, and yeast toxicity. J Mol Biol 366:1510–1522

    Article  PubMed  CAS  Google Scholar 

  • Winner B, Lie DC, Rockenstein E, Aigner R, Aigner L, Masliah E, Kuhn HG, Winkler J (2004) Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 63:1155–1166

    PubMed  CAS  Google Scholar 

  • Winner B, Rockenstein E, Lie DC, Aigner R, Mante M, Bogdahn U, Couillard-Despres S, Masliah E, Winkler J (2008) Mutant alpha-synuclein exacerbates age-related decrease of neurogenesis. Neurobiol Aging 29:913–925

    Article  PubMed  CAS  Google Scholar 

  • Winner B, Kohl Z, Gage FH (2011) Neurodegenerative disease and adult neurogenesis. Eur J Neurosci 33:1139–1151

    Article  PubMed  Google Scholar 

  • Yang ML, Hasadsri L, Woods WS, George JM (2010) Dynamic transport and localization of alpha-synuclein in primary hippocampal neurons. Mol Neurodegener 5:9

    Article  PubMed  Google Scholar 

  • Yin J, Han J, Zhang C, Ma QL, Li X, Cheng F, Liu G, Li Y, Uéda K, Chan P, Yu S (2011) C-terminal part of α-synuclein mediates its activity in promoting proliferation of dopaminergic cells. J Neural Transm 118:1155–1164

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Zuo X, Li Y, Zhang C, Zhou M, Zhang YA, Uéda K, Chan P (2004) Inhibition of tyrosine hydroxylase expression in alpha-synuclein-transfected dopaminergic neuronal cells. Neurosci Lett 367:34–39

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Uéda K, Chan P (2005) Alpha-synuclein and dopamine metabolism. Mol Neurobiol 31:243–254

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Li X, Liu G, Han J, Zhang C, Li Y, Xu S, Liu C, Gao Y, Yang H, Uéda K, Chan P (2007) Extensive nuclear localization of alpha-synuclein in normal rat brain neurons revealed by a novel monoclonal antibody. Neuroscience 145:539–555

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Zhao T, Guo M, Fang H, Ma J, Ding A, Wang F, Chan P, Fan M (2008) Hypoxic preconditioning up-regulates glucose transport activity and glucose transporter (GLUT1 and GLUT3) gene expression after acute anoxic exposure in the cultured rat hippocampal neurons and astrocytes. Brain Res 1211:22–29

    Article  PubMed  CAS  Google Scholar 

  • Zhou RM, Huang YX, Li XL, Chen C, Shi Q, Wang GR, Tian C, Wang ZY, Jing YY, Gao C, Dong XP (2010) Molecular interaction of α-synuclein with tubulin influences on the polymerization of microtubule in vitro and structure of microtubule in cells. Mol Bio Rep 37:3183–3192

    Article  CAS  Google Scholar 

  • Zhou Z, Kim J, Insolera R, Peng X, Fink DJ, Mata M (2011) Rho GTPase regulation of α-synuclein and VMAT2: implications for pathogenesis of Parkinson’s disease. Mol Cell Neurosci 48:29–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Basic Research Program (‘‘973” Program) of China (2011CB504101), National High Technology Research and Development Program (‘‘863” Program) of China (2006AA02A408), National Natural Science Foundation of China (30270482, 30271437, 30430280 and 81071014), Natural Science Foundation of Beijing (303-01-003-0039, 7022011, 7122035, and 7102076), Funding Project for Academic Human Resources Development in the Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHR200907113), Japan Society for the Promotion of Science (C23500408), and the “Twelfth Five-Year Plan” Science and Technology Research Projects of Jilin Province Education Department [2012]-137.

Conflict of interest

We declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Yu.

Additional information

G. Liu and P. Wang are co-first authors. K. Uéda is co-principal investigator.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Wang, P., Li, X. et al. Alpha-synuclein promotes early neurite outgrowth in cultured primary neurons. J Neural Transm 120, 1331–1343 (2013). https://doi.org/10.1007/s00702-013-0999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-0999-8

Keywords

Navigation