Skip to main content
Log in

Docosahexaenoic Acid Reduces Cerebral Damage and Ameliorates Long-Term Cognitive Impairments Caused by Neonatal Hypoxia–Ischemia in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

As the interest in the neuroprotective possibilities of docosahexaenoic acid (DHA) for brain injury has grown in the recent years, we aimed to investigate the long-term effects of this fatty acid in an experimental model of perinatal hypoxia–ischemia in rats. To this end, motor activity, aspects of learning, and memory function and anxiety, as well as corticofugal connections visualized by using tracer injections, were evaluated at adulthood. We found that in the hours immediately following the insult, DHA maintained mitochondrial inner membrane integrity and transmembrane potential, as well as the integrity of synaptic processes. Seven days later, morphological damage at the level of the middle hippocampus was reduced, since neurons and myelin were preserved and the astroglial reactive response and microglial activation were seen to be diminished. At adulthood, the behavioral tests revealed that treated animals presented better long-term working memory and less anxiety than non-treated hypoxic–ischemic animals, while no difference was found in the spontaneous locomotor activity. Interestingly, hypoxic–ischemic injury caused alterations in the anterograde corticofugal neuronal connections which were not so evident in rats treated with DHA. Thus, our results indicate that DHA treatment can lead to long-lasting neuroprotective effects in this experimental model of neonatal hypoxia–ischemic brain injury, not only by mitigating axonal changes but also by enhancing cognitive performance at adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. de Haan M, Wyatt JS, Roth S, Vargha-Khadem F, Gadian D, Mishkin M (2006) Brain and cognitive-behavioural development after asphyxia at term birth. Dev Sci 9:350–358

    Article  PubMed  Google Scholar 

  2. du Plessis AJ, Volpe JJ (2002) Perinatal brain injury in the preterm and term newborn. Curr Opin Neurol 15:151–157

    Article  PubMed  Google Scholar 

  3. Hamrick SE, Ferriero DM (2003) The injury response in the term newborn brain: can we neuroprotect? Curr Opin Neurol 16:147–154

    Article  CAS  PubMed  Google Scholar 

  4. Edwards AD, Brocklehurst P, Gunn AJ, Halliday H, Juszczak E, Levene M, Strohm B, Thoresen M, et al (2010) Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 340:c363

  5. Damodaran T, Hassan Z, Navaratnam V, Muzaimi M, Ng G, Muller CP, Liao P, Dringenberg HC (2014) Time course of motor and cognitive functions after chronic cerebral ischemia in rats. Behav Brain Res 275:252–258

    Article  PubMed  Google Scholar 

  6. Green P, Yavin E (1998) Mechanisms of docosahexaenoic acid accretion in the fetal brain. J Neurosci Res 52:129–136

    Article  CAS  PubMed  Google Scholar 

  7. Salem N Jr, Litman B, Kim HY, Gawrisch K (2001) Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36:945–959

    Article  CAS  PubMed  Google Scholar 

  8. Lukiw WJ, Bazan NG (2010) Inflammatory, apoptotic, and survival gene signaling in Alzheimer’s disease a review on the bioactivity of neuroprotectin D1 and apoptosis. Mol Neurobiol 42:10–16

    Article  CAS  PubMed  Google Scholar 

  9. Carlson SE (2009) Docosahexaenoic acid supplementation in pregnancy and lactation. Am J Clin Nutr 89:678S–684S

    Article  CAS  PubMed  Google Scholar 

  10. Orr SK, Palumbo S, Bosetti F, Mount HT, Kang JX, Greenwood CE, Ma DW, Serhan CN et al (2013) Unesterified docosahexaenoic acid is protective in neuroinflammation. J Neurochem 127:378–393

  11. Gomez-Pinilla F (2008) Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 9:568–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wurtman RJ (2008) Synapse formation and cognitive brain development: effect of docosahexaenoic acid and other dietary constituents. Metabolism 57(Suppl 2):S6–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davis-Bruno K, Tassinari MS (2011) Essential fatty acid supplementation of DHA and ARA and effects on neurodevelopment across animal species: a review of the literature. Birth Defects Res B Dev Reprod Toxicol 92:240–250

    Article  CAS  PubMed  Google Scholar 

  14. McLean C, Ferriero D (2004) Mechanisms of hypoxic-ischemic injury in the term infant. Semin Perinatol 28:425–432

    Article  PubMed  Google Scholar 

  15. McQuillen PS, Ferriero DM (2004) Selective vulnerability in the developing central nervous system. Pediatr Neurol 30:227–235

    Article  PubMed  Google Scholar 

  16. Sheldon RA, Jiang X, Francisco C, Christen S, Vexler ZS, Tauber MG, Ferriero DM (2004) Manipulation of antioxidant pathways in neonatal murine brain. Pediatr Res 56:656–662

    Article  CAS  PubMed  Google Scholar 

  17. Chan RH, Song D, Goonawardena AV, Bough S, Sesay J, Hampson RE, Deadwyler SA, Berger TW (2010) Changes of hippocampal CA3-CA1 population nonlinear dynamics across different training sessions in rats performing a memory-dependent task. Conf Proc IEEE Eng Med Biol Soc 2010:5464–5467

    PubMed  Google Scholar 

  18. Morris AM, Churchwell JC, Kesner RP, Gilbert PE (2012) Selective lesions of the dentate gyrus produce disruptions in place learning for adjacent spatial locations. Neurobiol Learn Mem 97:326–331

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lai Z, Zhang L, Su J, Cai D, Xu Q (2016) Sevoflurane postconditioning improves long-term learning and memory of neonatal hypoxia-ischemia brain damage rats via the PI3K/Akt-mPTP pathway. Brain Res 1630:25–37

    Article  CAS  PubMed  Google Scholar 

  20. Hajjar T, Goh YM, Rajion MA, Vidyadaran S, Li TA, Ebrahimi M (2013) Alterations in neuronal morphology and synaptophysin expression in the rat brain as a result of changes in dietary n-6: n-3 fatty acid ratios. Lipids Health Dis 12:113-511X-12-113

  21. Arteni NS, Salgueiro J, Torres I, Achaval M, Netto CA (2003) Neonatal cerebral hypoxia-ischemia causes lateralized memory impairments in the adult rat. Brain Res 973:171–178

    Article  CAS  PubMed  Google Scholar 

  22. Almli CR, Levy TJ, Han BH, Shah AR, Gidday JM, Holtzman DM (2000) BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia. Exp Neurol 166:99–114

    Article  CAS  PubMed  Google Scholar 

  23. Rice JE 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131–141

    Article  PubMed  Google Scholar 

  24. Berman DR, Mozurkewich E, Liu Y, Barks J (2009) Docosahexaenoic acid pretreatment confers neuroprotection in a rat model of perinatal cerebral hypoxia-ischemia. Am J Obstet Gynecol 200:305e1–305e6

    Article  Google Scholar 

  25. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, Sidney

    Google Scholar 

  26. Arteaga O, Revuelta M, Uriguen L, Alvarez A, Montalvo H, Hilario E (2015) Pretreatment with resveratrol prevents neuronal injury and cognitive deficits induced by perinatal hypoxia-ischemia in rats. PLoS One 10:e0142424

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, Silverstein FS, Skoff R, Barks JD (2002) Hypoxic-ischemic oligodendroglial injury in neonatal rat brain. Pediatr Res 51:25–33

    Article  PubMed  Google Scholar 

  28. Hedtjärn M, Leverin AL, Eriksson K, Blomgren K, Mallard C, Hagberg H (2002) Interleukin-18 involvement in hypoxic-ischemic brain injury. J Neurosci 22:5910–5919

    PubMed  Google Scholar 

  29. Williams JJ, Mayurasakorn K, Vannucci SJ, Mastropietro C, Bazan NG, Ten VS, Deckelbaum RJ (2013) N-3 fatty acid rich triglyceride emulsions are neuroprotective after cerebral hypoxic-ischemic injury in neonatal mice. PLoS One 8(2):e562z33. doi:10.1371/journal.pone.0056233

    Article  Google Scholar 

  30. Zhang W, Liu J, Hu X, Li P, Leak RK, Gao Y, Chen J (2015) N-3 polyunsaturated fatty acids reduce neonatal hypoxic/ischemic brain injury by promoting phosphatidylserine formation and Akt signaling. Stroke 46:2943–2950

    Article  CAS  PubMed  Google Scholar 

  31. Rothstein RP, Levison SW (2005) Gray matter oligodendrocyte progenitors and neurons die caspase-3 mediated deaths subsequent to mild perinatal hypoxic/ischemic insults. Dev Neurosci 27:149–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Butt AM, Fern RF, Matute C (2014) Neurotransmitter signaling in white matter. Glia 62:1762–1779

    Article  PubMed  Google Scholar 

  33. Wang X, Hagberg H, Zhu C, Jacobsson B, Mallard C (2007) Effects of intrauterine inflammation on the developing mouse brain. Brain Res 1144:180–185

    Article  CAS  PubMed  Google Scholar 

  34. Inder TE, Volpe JJ (2000) Mechanisms of perinatal brain injury. Semin Neonatol 5:3–16

    Article  CAS  PubMed  Google Scholar 

  35. Revuelta M, Arteaga O, Alvarez A, Martinez-Ibarguen A, Hilario E (2016) Characterization of gene expression in the rat brainstem after neonatal hypoxic-ischemic injury and antioxidant treatment. Mol Neurobiol. doi:10.1007/s12035-016-9724-6

    Google Scholar 

  36. Belayev L, Khoutorova L, Atkins KD, Eady TN, Hong S, Lu Y, Obenaus A, Bazan NG (2011) Docosahexaenoic acid therapy of experimental ischemic stroke. Transl Stroke Res 2:33–41

    Article  CAS  PubMed  Google Scholar 

  37. Eady TN, Khoutorova L, Atkins KD, Bazan NG, Belayev L (2012) Docosahexaenoic acid complexed to human albumin in experimental stroke: neuroprotective efficacy with a wide therapeutic window. Exp Transl Stroke Med 4(1):19. doi:10.1186/2040-7378-4-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ennen CS, Huisman TA, Savage WJ, Northington FJ, Jennings JM, Everett AD, Graham EM (2011) Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathy treated with whole-body cooling. Am J Obstet Gynecol 205:251e1–251e7

    Article  Google Scholar 

  39. Qiu L, Zhu C, Wang X, Xu F, Eriksson PS, Nilsson M, Cooper-Kuhn CM, Kuhn HG et al (2007) Less neurogenesis and inflammation in the immature than in the juvenile brain after cerebral hypoxia-ischemia. J Cereb Blood Flow Metab 27:785–794

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Stridh L, Li W, Dean J, Elmgren A, Gan L, Eriksson K, Hagberg H et al (2009) Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J Immunol 183:7471–7477

    Article  CAS  PubMed  Google Scholar 

  41. Doverhag C, Hedtjarn M, Poirier F, Mallard C, Hagberg H, Karlsson A, Savman K (2010) Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol Dis 38:36–46

    Article  CAS  PubMed  Google Scholar 

  42. Biran V, Joly LM, Heron A, Vernet A, Vega C, Mariani J, Renolleau S, Charriaut-Marlangue C (2006) Glial activation in white matter following ischemia in the neonatal P7 rat brain. Exp Neurol 199:103–112

    Article  PubMed  Google Scholar 

  43. Zhang W, Hu X, Yang W, Gao Y, Chen J (2010) Omega-3 polyunsaturated fatty acid supplementation confers long-term neuroprotection against neonatal hypoxic-ischemic brain injury through anti-inflammatory actions. Stroke 41:2341–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu C, Huang Z, Gao J, Zhang Y, Wang X, Karlsson N, Li Q, Lannering B et al (2009) Irradiation to the immature brain attenuates neurogenesis and exacerbates subsequent hypoxic-ischemic brain injury in the adult. J Neurochem 111:1447–1456

    Article  CAS  PubMed  Google Scholar 

  45. Li H, Li Q, Du X, Sun Y, Wang X, Kroemer G, Blomgren K, Zhu C (2011) Lithium-mediated long-term neuroprotection in neonatal rat hypoxia-ischemia is associated with antiinflammatory effects and enhanced proliferation and survival of neural stem/progenitor cells. J Cereb Blood Flow Metab 31:2106–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kann O, Kovacs R, Njunting M, Behrens CJ, Otahal J, Lehmann TN, Gabriel S, Heinemann U (2005) Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans. Brain 128:2396–2407

    Article  PubMed  Google Scholar 

  47. Mancuso C, Scapagini G, Curro D, Giuffrida Stella AM, De Marco C, Butterfield DA, Calabrese V (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123

  48. Thornton C, Hagberg H (2015) Role of mitochondria in apoptotic and necroptotic cell death in the developing brain. Clin Chim Acta 451:35–38

  49. Mayurasakorn K, Niatsetskaya ZV, Sosunov SA, Williams JJ, Zirpoli H, Vlasakov I, Deckelbaum RJ, Ten VS (2016) DHA but Not EPA emulsions preserve neurological and mitochondrial function after brain hypoxia-ischemia in neonatal mice. PLoS One 11(8):e0160870. doi:10.1371/journal.pone.0160870. eCollection 2016

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhao YD, Cheng SY, Ou S, Chen PH, Ruan HZ (2012) Functional response of hippocampal CA1 pyramidal cells to neonatal hypoxic-ischemic brain damage. Neurosci Lett 516:5–8

    Article  CAS  PubMed  Google Scholar 

  51. Rau TF, Lu Q, Sharma S, Sun X, Leary G, Beckman ML, Hou Y, Wainwright MS et al (2012) Oxygen glucose deprivation in rat hippocampal slice cultures results in alterations in carnitine homeostasis and mitochondrial dysfunction. PLoS One 7:e40881

  52. Tarsa L, Goda Y (2002) Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci U S A 99:1012–1016

  53. Feng J, Yan Z, Ferreira A, Tomizawa K, Liauw J A, Zhuo M, Allen PB, Ouimet CC et al (2000) Spinophilin regulates the formation and function of dendritic spines. Proc Natl Acad Sci U S A 97:9287–9292

  54. Muhammad K, Reddy-Alla S, Driller JH, Schreiner D, Rey U, Bohme MA, Hollmann C, Ramesh N et al (2015) Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function. Nat Commun 6:8362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nyakas C, Buwalda B, Luiten PG (1996) Hypoxia and brain development. Prog Neurobiol 49:1–51

    Article  CAS  PubMed  Google Scholar 

  56. Bona E, Johansson BB, Hagberg H (1997) Sensorimotor function and neuropathology five to six weeks after hypoxia-ischemia in seven-day-old rats. Pediatr Res 42:678–683

  57. Tam EW, Chau V, Barkovich AJ, Ferriero DM, Miller SP, Rogers EE, Grunau RE, Synnes AR et al (2016) Early postnatal docosahexaenoic acid levels and improved preterm brain development. Pediatr Res 79:723–730

  58. Innis SM (2008) Dietary omega 3 fatty acids and the developing brain. Brain Res 1237:35–43

  59. Novak EM, Dyer RA, Innis SM (2008) High dietary omega-6 fatty acids contribute to reduced docosahexaenoic acid in the developing brain and inhibit secondary neurite growth. Brain Res 1237:136–145

  60. Guesnet P, Alessandri JM (2011) Docosahexaenoic acid (DHA) and the developing central nervous system (CNS)—implications for dietary recommendations. Biochimie 93:7–12

    Article  CAS  PubMed  Google Scholar 

  61. Pazos MR, Cinquina V, Gomez A, Layunta R, Santos M, Fernandez-Ruiz J, Martinez-Orgado J (2012) Cannabidiol administration after hypoxia-ischemia to newborn rats reduces long-term brain injury and restores neurobehavioral function. Neuropharmacology 63:776–783

  62. Balduini W, De Angelis V, Mazzoni E, Cimino M (2000) Long-lasting behavioral alterations following a hypoxic/ischemic brain injury in neonatal rats. Brain Res 859:318–325

    Article  CAS  PubMed  Google Scholar 

  63. Lubics A, Reglodi D, Tamas A, Kiss P, Szalai M, Szalontay L, Lengvari I (2005) Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury. Behav Brain Res 157:157–165

    Article  PubMed  Google Scholar 

  64. Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, Glaser R (2011) Omega-3 supplementation lowers inflammation and anxiety in medical students: a randomized controlled trial. Brain Behav Immun 25:1725–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pifferi F, Dorieux O, Castellano CA, Croteau E, Masson M, Guillermier M, Van Camp N, Guesnet P et al (2015) Long-chain n-3 PUFAs from fish oil enhance resting state brain glucose utilization and reduce anxiety in an adult nonhuman primate, the grey mouse lemur. J Lipid Res 56:1511–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pusceddu MM, Kelly P, Ariffin N, Cryan JF, Clarke G, Dinan TG (2015) n-3 PUFAs have beneficial effects on anxiety and cognition in female rats: effects of early life stress. Psychoneuroendocrinology 58:79–90

    Article  CAS  PubMed  Google Scholar 

  67. Messamore E, McNamara RK (2016) Detection and treatment of omega-3 fatty acid deficiency in psychiatric practice: rationale and implementation. Lipids Health Dis 15:25-016-0196-5

  68. Arteni NS, Pereira LO, Rodrigues AL, Lavinsky D, Achaval ME, Netto CA (2010) Lateralized and sex-dependent behavioral and morphological effects of unilateral neonatal cerebral hypoxia-ischemia in the rat. Behav Brain Res 210:92–98

    Article  CAS  PubMed  Google Scholar 

  69. Pereira LO, Arteni NS, Petersen RC, da Rocha AP, Achaval M, Netto CA (2007) Effects of daily environmental enrichment on memory deficits and brain injury following neonatal hypoxia-ischemia in the rat. Neurobiol Learn Mem 87:101–108

    Article  PubMed  Google Scholar 

  70. Matchett GA, Calinisan JB, Matchett GC, Martin RD, Zhang JH (2007) The effect of granulocyte-colony stimulating factor in global cerebral ischemia in rats. Brain Res 1136:200–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Simola N, Bustamante D, Pinna A, Pontis S, Morales P, Morelli M, Herrera-Marschitz M (2008) Acute perinatal asphyxia impairs non-spatial memory and alters motor coordination in adult male rats. Exp Brain Res 185:595–601

    Article  PubMed  Google Scholar 

  72. Huang Z, Liu J, Cheung PY, Chen C (2009) Long-term cognitive impairment and myelination deficiency in a rat model of perinatal hypoxic-ischemic brain injury. Brain Res 1301:100–109

    Article  CAS  PubMed  Google Scholar 

  73. Kadam SD, Mulholland JD, Smith DR, Johnston MV, Comi AM (2009) Chronic brain injury and behavioral impairments in a mouse model of term neonatal strokes. Behav Brain Res 197:77–83

    Article  PubMed  Google Scholar 

  74. Carloni S, Alonso-Alconada D, Girelli S, Duranti A, Tontini A, Piomelli D, Hilario E, Alvarez A et al (2012) Pretreatment with the monoacylglycerol lipase inhibitor URB602 protects from the long-term consequences of neonatal hypoxic-ischemic brain injury in rats. Pediatr Res 72:400–406

    Article  CAS  PubMed  Google Scholar 

  75. Mucci Dde B, Fernandes FS, Souza Ados S, Sardinha FL, Soares-Mota M, Tavares do Carmo M (2015) Flaxseed mitigates brain mass loss, improving motor hyperactivity and spatial memory, in a rodent model of neonatal hypoxic-ischemic encephalopathy. Prostaglandins Leukot Essent Fatty Acids 97:13–19

    Article  PubMed  Google Scholar 

  76. Dere E, Huston JP, De Souza Silva MA (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 31:673–704

    Article  CAS  PubMed  Google Scholar 

  77. Broadbent NJ, Gaskin S, Squire LR, Clark RE (2009) Object recognition memory and the rodent hippocampus. Learn Mem 17:5–11

    Article  PubMed  Google Scholar 

  78. Brockmann MD, Kukovic M, Schonfeld M, Sedlacik J, Hanganu-Opatz IL (2013) Hypoxia-ischemia disrupts directed interactions within neonatal prefrontal-hippocampal networks. PLoS One 8:e83074

    Article  PubMed  PubMed Central  Google Scholar 

  79. Calderon F, Kim HY (2004) Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem 90:979–988

    Article  CAS  PubMed  Google Scholar 

  80. Krageloh-Mann I (2004) Imaging of early brain injury and cortical plasticity. Exp Neurol 190:84–90

    Article  Google Scholar 

  81. Crupi R, Marino A, Cuzzocrea S (2013) n-3 fatty acids: role in neurogenesis and neuroplasticity. Curr Med Chem 20:2953–2963

    Article  CAS  PubMed  Google Scholar 

  82. Blondeau N, Nguemeni C, Debruyne DN, Piens M, Wu X, Pan H, Hu X, Gandin C et al (2009) Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: a versatile potential therapy for stroke. Neuropsychopharmacology 34(12):2548–2559. doi:10.1038/npp.2009.84

Download references

Acknowledgments

Funding was provided by the Basque Government (IT 773/13 and BFI-2011-129) and by the University of the Basque Country (UPV/EHU, recruitment of recent doctors). The authors wish to thank the SGIker of the University of the Basque Country for providing technical and human support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olatz Arteaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arteaga, O., Revuelta, M., Urigüen, L. et al. Docosahexaenoic Acid Reduces Cerebral Damage and Ameliorates Long-Term Cognitive Impairments Caused by Neonatal Hypoxia–Ischemia in Rats. Mol Neurobiol 54, 7137–7155 (2017). https://doi.org/10.1007/s12035-016-0221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0221-8

Keywords

Navigation