Skip to main content

Advertisement

Log in

Hyperglycemia-Induced Oxidative-Nitrosative Stress Induces Inflammation and Neurodegeneration via Augmented Tuberous Sclerosis Complex-2 (TSC-2) Activation in Neuronal Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Diabetes is a systemic disease mainly characterized by chronic hyperglycemia and with extensive and long-lasting spiteful complications in central nervous systems (CNS). Astrocytes play an important role in the defense mechanism of CNS, with great ability of withstanding accumulation of toxic substances. Apart from functional disorders, hyperglycemia leads to slow progressive structural abnormalities in the CNS through oxidative stress pathways. However, the molecular mechanism by which neurons die under oxidative stress induced by high glucose (HG) remains largely unclear. Here, we report that HG-induced inflammation and neurodegeneration in brain tissues, brain astrocytes (C6), and pheochromocytoma (PC-12) cells are cultured in HG conditions. Our results show that the increases in phosphorylation of Akt and ERK1/2MAPK are associated with increased accumulations of reactive oxygen species (ROS) in neuronal cells, which simultaneously enhanced phosphorylations of tuberous sclerosis complex-2 (TSC-2) and mammalian target of rapamycin (mTOR) in the diabetic brain and in HG-exposed neuronal cells. Pharmacologic inhibition of Akt or ERK1/2 or siRNA-mediated gene silencing of TSC-2 suppressed the strong downregulation of TSC-2-mTOR activation. Findings of this study also demonstrate that HG resulted in phosphorylation of NF-κB, coinciding with the increased production of inflammatory mediators and activation of neurodegenerative markers. Pretreatment of cells with antioxidants, phosphoinositide3-kinase (PI3-K)/Akt, and ERK1/2 inhibitors significantly reduced HG-induced TSC-2 phosphorylation and restored NF-κB protein expression leading to decreased production of inflammatory mediators and neurodegenerative markers. These results illustrate that ROS functions as a key signaling component in the regulatory pathway induced by elevated glucose in neuronal cell activation leading to inflammation and neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 3
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huizinga MM, Peltier A (2007) Painful diabetic neuropathy: a management-centered review. Clinical Diabetes 25:6–15

    Article  Google Scholar 

  2. Perkins BA, Bril V (2002) Diagnosis and management of diabetic neuropathy. Curr Diab Rep 2:495–500

    Article  PubMed  Google Scholar 

  3. Selvarajah D, Wilkinson ID, Maxwell M, Davies J, Sankar A, Boland E, Gandhi R, Tracey I, Tesfaye S (2014) Magnetic resonance neuroimaging study of brain structural differences in diabetic peripheral neuropathy. Diabetes Care 37:1681–8

    Article  PubMed  Google Scholar 

  4. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  5. Wong DP, Chu JM, Hung VK, Lee DK, Cheng CH, Yung KK, Yue KK (2013) Modulation of endoplasmic reticulum chaperone GRP78 by high glucose in hippocampus of streptozotocin-induced diabetic mice and C6 astrocytic cells. Neurochem Int 63:551–60

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Li G, Wang Z, Zhang X, Yao L, Wang F, Liu S, Yin J, Ling EA, Wang L, Hao A (2012) High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience 202:58–68

    Article  CAS  PubMed  Google Scholar 

  7. Kumar P, Rao GN, Pal BB, Pal A (2014) Hyperglycemia-induced oxidative stress induces apoptosis by inhibiting PI3-kinase/Akt and ERK1/2 MAPK mediated signaling pathway causing downregulation of 8-oxoG-DNA glycosylase levels in glial cells. Int J Biochem Cell Biol 53:302–19

    Article  CAS  PubMed  Google Scholar 

  8. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–58

    Article  CAS  PubMed  Google Scholar 

  9. Chrissobolis S, Faraci FM (2008) The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med 14:495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shanmugam N, Gaw Gonzalo IT, Natarajan R (2004) Molecular mechanisms of high glucose-induced cyclooxygenase-2 expression in monocytes. Diabetes 53:795–802

    Article  CAS  PubMed  Google Scholar 

  11. Wei D, Li J, Shen M, Jia W, Chen N, Chen T, Su D, Tian H, Zheng S, Dai Y, Zhao A (2010) Cellular production of n-3 PUFAs and reduction of n-6-to-n-3 ratios in the pancreatic beta-cells and islets enhance insulin secretion and confer protection against cytokine-induced cell death. Diabetes 59:471–8

    Article  CAS  PubMed  Google Scholar 

  12. Afanas’ev I (2010) Signaling of reactive oxygen and nitrogen species in diabetes mellitus. Oxid Med Cell Longev 3:361–73

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nishikawa T, Araki E (2007) Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 9:343–53

    Article  CAS  PubMed  Google Scholar 

  14. Habib SL, Riley DJ, Mahimainathan L, Bhandari B, Choudhury GG, Abboud HE (2008) Tuberin regulates the DNA repair enzyme OGG1. Am J Physiol Renal Physiol 294:281–90

    Article  Google Scholar 

  15. Simone S, Gorin Y, Velagapudi C, Abboud HE, Habib SL (2008) Mechanism of oxidative DNA damage in diabetes: tuberin inactivation and downregulation of DNA repair enzyme 8-oxo-7,8-dihydro-2′-deoxyguanosine-DNA glycosylase. Diabetes 57:2626–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J (2003) Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13:1259–68

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5:578–81

    Article  CAS  PubMed  Google Scholar 

  18. Freilinger A, Rosner M, Krupitza G, Nishino M, Lubec G, Korsmeyer SJ, Hengstschläger M (2006) Tuberin activates the proapoptotic molecule BAD. Oncogene 25:6467–79

    Article  CAS  PubMed  Google Scholar 

  19. Hassa PO, Haenni SS, Buerki C, Meier NI, Lane WS, Owen H, Gersbach M, Imhof R, Hottiger MO (2005) Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription. J Biol Chem 280:40450–64

    Article  CAS  PubMed  Google Scholar 

  20. Kassan M, Choi SK, Galán M, Bishop A, Umezawa K, Trebak M, Belmadani S, Matrougui K (2013) Enhanced NF-κB activity impairs vascular function through PARP-1-, SP-1-, and COX-2-dependent mechanisms in type 2 diabetes. Diabetes 62:2078–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lopez-Rivera E, Jayaraman P, Parikh F, Davies MA, Ekmekcioglu S, Izadmehr S, Milton DR, Chipuk JE, Grimm EA, Estrada Y, Aguirre-Ghiso J, Sikora AG (2014) Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2. Cancer Res 74:1067–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–11

    Article  CAS  PubMed  Google Scholar 

  23. Sombers LA, Colliver TL, Ewing AG (2002) Differentiated PC12 cells: a better model system for the study of the VMAT’s effects on neuronal communication. Ann N Y Acad Sci 971:86–8

    Article  CAS  PubMed  Google Scholar 

  24. Tie L, Xu Y, Lin YH, Yao XH, Wu HL, Li YH, Shen ZF, Yu HM, Li XJ (2008) Down-regulation of brain-pancreas relative protein in diabetic rats and by high glucose in PC12 cells: prevention by calpain inhibitors. J Pharmacol Sci 106:28–37

    Article  CAS  PubMed  Google Scholar 

  25. Sharifi AM, Eslami H, Larijani B, Davoodi J (2009) Involvement of caspase-8, -9, and -3 in high glucose-induced apoptosis in PC12 cells. Neurosci Lett 459:47–51

    Article  CAS  PubMed  Google Scholar 

  26. Zhao WC, Zhang B, Liao MJ, Zhang WX, He WY, Wang HB, Yang CX (2014) Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord. Neurosci Lett 560:81–5

    Article  CAS  PubMed  Google Scholar 

  27. Allen CL, Bayraktutan U (2009) Antioxidants attenuate hyperglycaemia-mediated brain endothelial cell dysfunction and blood–brain barrier hyperpermeability. Diabetes Obes Metab 11:480–90

    Article  CAS  PubMed  Google Scholar 

  28. Cury-Boaventura MF, Curi R (2005) Regulation of reactive oxygen species (ROS) production by C18 fatty acids in Jurkat and Raji cells. Clin Sci (Lond) 108:245–53

    Article  CAS  Google Scholar 

  29. Manikandan R, Thiagarajan R, Beulaja S, Sudhandiran G, Arumugam M (2010) Curcumin prevents free radical-mediated cataractogenesis through modulations in lens calcium. Free Radic Biol Med 48:483–92

    Article  CAS  PubMed  Google Scholar 

  30. Yoo BK, Choi JW, Han BH, Kim WK, Kim HC, Ko KH (2005) Role of MAPK/ERK1/2 in the glucose deprivation-induced death in immunostimulated astroglia. Neurosci Lett 376:171–6

    Article  CAS  PubMed  Google Scholar 

  31. Pal A, Tewari-Singh N, Gu M, Agarwal C, Huang J, Day BJ, White CW, Agarwal R (2009) Sulfur mustard analog induces oxidative stress and activates signaling cascades in the skin of SKH-1 hairless mice. Free Radic Biol Med 47:1640–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim YH, Heo JS, Han HJ (2006) High glucose increase cell cycle regulatory proteins level of mouse embryonic stem cells via PI3-K/Akt and MAPKs signal pathways. J Cell Physiol 209:94–102

    Article  CAS  PubMed  Google Scholar 

  33. Nakai K, Fujii S, Yamamoto A, Igarashi J, Kubota Y, Kosaka H (2003) Effects of high glucose on NO synthesis in human keratinocyte cell line (HaCaT). J Dermatol Sci 31:211–8

    Article  CAS  PubMed  Google Scholar 

  34. Fortini P, Pascucci B, Parlanti E, D’Errico M, Simonelli V, Dogliotti E (2003) 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways. Mutat Res 531:127–39

    Article  CAS  PubMed  Google Scholar 

  35. Radicella JP, Dherin C, Desmaze C, Fox MS, Boiteux S (1997) Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94:8010–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signalling for suicide and survival. J Cell Physiol 192:1–15

    Article  CAS  PubMed  Google Scholar 

  37. Kishida KT, Klann E (2007) Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid Redox Signal 9:233–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quan Y, Jiang CT, Xue B, Zhu SG, Wang X (2011) High glucose stimulates TNFα and MCP-1 expression in rat microglia via ROS and NF-κB pathways. Acta Pharmacol Sin 32:188–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Samanta A, Kumar P, Machhua S, Rao GN, Pal A (2014) Incidence of cystoid macular oedema in diabetic patients after phacoemulsification and free radical link to its pathogenesis. Br J Ophthalmol 98:1266–72

    Article  PubMed  Google Scholar 

  40. Tiligada E (2006) Nuclear translocation during the cross-talk between cellular stress, cell cycle and anticancer agents. Curr Med Chem 13:1317–20

    Article  CAS  PubMed  Google Scholar 

  41. Agrawal S, Gollapudi S, Su H, Gupta S (2011) Leptin activates human B cells to secrete TNF-α, IL-6, and IL-10 via JAK2/STAT3 and p38MAPK/ERK1/2 signaling pathway. J Clin Immunol 31:472–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–26

    Article  CAS  PubMed  Google Scholar 

  43. Tsuruya K, Furuichi M, Tominaga Y, Shinozaki M, Tokumoto M, Yoshimitsu T, Fukuda K, Kanai H, Hirakata H, Iida M, Nakabeppu Y (2003) Accumulation of 8-oxoguanine in the cellular DNA and the alteration of the OGG1 expression during ischemia-reperfusion injury in the rat kidney. DNA Repair (Amst) 2:211–29

    Article  CAS  Google Scholar 

  44. Walsh S, Pontén A, Fleischmann BK, Jovinge S (2010) Cardiomyocyte cell cycle control and growth estimation in vivo—an analysis based on cardiomyocyte nuclei. Cardiovasc Res 86:365–73

    Article  CAS  PubMed  Google Scholar 

  45. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10:18–25

    Article  Google Scholar 

  46. Low PA, Nickander KK, Tritschler HJ (1997) The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes 46:38–42

    Article  Google Scholar 

  47. Stevens MJ, Feldman EL, Greene DA (1995) The aetiology of diabetic neuropathy: the combined roles of metabolic and vascular defects. Diabet Med 12:566–79

    Article  CAS  PubMed  Google Scholar 

  48. Lanaspa MA, Ishimoto T, Cicerchi C, Tamura Y, Roncal-Jimenez CA, Chen W, Tanabe K, Andres-Hernando A, Orlicky DJ, Finol E, Inaba S, Li N, Rivard CJ, Kosugi T, Sanchez-Lozada LG, Petrash JM, Sautin YY, Ejaz AA, Kitagawa W, Garcia GE, Bonthron DT, Asipu A, Diggle CP, Rodriguez-Iturbe B, Nakagawa T, Johnson RJ (2014) Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy. J Am Soc Nephrol 25:2526–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koya D, King GL (1998) Protein kinase C activation and the development of diabetic complications. Diabetes 47:859–66

    Article  CAS  PubMed  Google Scholar 

  50. Ward NE, Pierce DS, Chung SE, Gravitt KR, O’Brian CA (1998) Irreversible inactivation of protein kinase C by glutathione. J Biol Chem 273:12558–66

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Biotechnology, Government of India, grant no.:BT/PR14241/MED/30/423/2010. We would like to thank Satish Sagar for his assistance with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arttatrana Pal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

Supplementary Table 1. Sequences of the primer pairs used in qRT-PCR (DOC 58 kb)

ESM 2

Supplementary Fig. 1. Hyperglycemia induces DNA damage in PC-12 cells. a Comet assay showing the DNA damage in PC-12 cells cultured in a medium containing without or with HG (25 mM) for 24 h. b Agarose gel electrophoresis analysis shows an increased DNA fragmentation of PC-12 cells cultured in a medium containing in HG for 24 h (PPT 278 kb)

ESM 3

Supplementary Fig. 2. Hyperglycemia decreases the levels of antioxidant enzymes in PC-12 cells. a Antioxidants (catalase [CAT], superoxide dismutase [SOD], and glutathione [GSH]) were significantly decreased in diabetic brain compared with control rats. Spectrophotometric assay shows a significant decrease in the activities of antioxidants (CAT, SOD, and GSH) in PC-12 cells in a dose- (b) and (c) time-dependent manner of glucose. d A representative immunoblot analysis of CAT and SOD in PC-12 cells exposed to different concentrations of glucose. e Exogenous NAC restores the antioxidants activity (*p < 0.05 and **p < 0.01) (PPT 308 kb)

ESM 4

Supplementary Fig. 3. Hyperglycemia induces lipid peroxidation (LPO) and protein carbonylation (PC) in neuronal cells. a Exposure of PC-12 cells to different concentrations of additional glucose significantly increases the level of LPO and PC in concentration-dependent manner for 24 h and b HG (25 mM) glucose for 3–48 h. c Pretreatment of NAC to PC-12 cells decreases the HG-induced LPO and PC production (*p < 0.05 and **p < 0.01) (PPT 211 kb)

ESM 5

Supplementary Fig. 4. Hyperglycemia induces iNOS expression in diabetic brain. Immunohistochemistry analysis shows a significant increase in iNOS expression in diabetic brain compared with control rats (PPT 808 kb)

ESM 6

Supplementary Fig. 5. Hyperglycemia induces chromosomal aberration in PC-12 cells. a Karyotyping images depicted a representative mitotic metaphase chromosomes spread in HG-treated cells. b G-bending assay in PC-12 cells treated with HG (PPT 335 kb)

ESM 7

Supplementary Fig. 6. Hyperglycemia induces MMP-2/9 expression in PC-12 cells. PC-12 cells were treated with different concentration glucose for 24 h, and then, the samples were prepared for zymogram. The zymography analysis was carried out for MMP-2/9 molecules (PPT 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Raman, T., Swain, M.M. et al. Hyperglycemia-Induced Oxidative-Nitrosative Stress Induces Inflammation and Neurodegeneration via Augmented Tuberous Sclerosis Complex-2 (TSC-2) Activation in Neuronal Cells. Mol Neurobiol 54, 238–254 (2017). https://doi.org/10.1007/s12035-015-9667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9667-3

Keywords

Navigation