Skip to main content

Advertisement

Log in

Glycoursodeoxycholic Acid Reduces Matrix Metalloproteinase-9 and Caspase-9 Activation in a Cellular Model of Superoxide Dismutase-1 Neurodegeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects mainly motor neurons (MNs). NSC-34 MN-like cells carrying the G93A mutation in human superoxide dismutase-1 (hSOD1G93A) are a common model to study the molecular mechanisms of neurodegeneration in ALS. Although the underlying pathways of MN failure still remain elusive, increased apoptosis and oxidative stress seem to be implicated. Riluzole, the only approved drug, only slightly delays ALS progression. Ursodeoxycholic acid (UDCA), as well as its glycine (glycoursodeoxycholic acid, GUDCA) and taurine (TUDCA) conjugated species, have shown therapeutic efficacy in neurodegenerative models and diseases. Pilot studies in ALS patients indicate safety and tolerability for UDCA oral administration. We explored the mechanisms associated with superoxide dismutase-1 (SOD1) accumulation and MN degeneration in NSC-34/hSOD1G93A cells differentiated for 4 days in vitro (DIV). We examined GUDCA efficacy in preventing such pathological events and in restoring MN functionality by incubating cells with 50 μM GUDCA at 0 DIV and at 2 DIV, respectively. Increased cytosolic SOD1 inclusions were observed in 4 DIV NSC-34/hSOD1G93A cells together with decreased mitochondria viability (1.2-fold, p < 0.01), caspase-9 activation (1.8-fold, p < 0.05), and apoptosis (2.1-fold, p < 0.01). GUDCA exerted preventive effects (p < 0.05) while also reduced caspase-9 levels when added at 2 DIV (p < 0.05). ATP depletion (2-fold, p < 0.05), increased nitrites (1.6-fold, p < 0.05) and metalloproteinase-9 (MMP-9) activation (1.8-fold, p < 0.05), but no changes in MMP-2, were observed in the extracellular media of 4 DIV NSC-34/hSOD1G93A cells. GUDCA inhibited nitrite production (p < 0.05) while simultaneously prevented and reverted MMP-9 activation (p < 0.05), but not ATP depletion. Data highlight caspase-9 and MMP-9 activation as key pathomechanisms in ALS and GUDCA as a promising therapeutic strategy for slowing disease onset and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

DIV:

Days in vitro

fALS:

Familial amyotrophic lateral sclerosis

FBS:

Fetal bovine serum

G418:

Geneticin sulfate

GUDCA:

Glycoursodeoxycholic acid

MMPs:

Matrix metalloproteinases

MNs:

Motor neurons

mSOD1:

Mutant superoxide dismutase-1

MTS:

3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium

NO:

Nitric oxide

PI:

Propidium iodide

PMS:

Phenazine methosulfate

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

sALS:

Sporadic amyotrophic lateral sclerosis

SC:

Spinal cord

SOD1:

Superoxide dismutase-1

TUDCA:

Tauroursodeoxycholic acid

UDCA:

Ursodeoxycholic acid

wt:

Wild-type

References

  1. Julien JP (2001) Amyotrophic lateral sclerosis. Unfolding the toxicity of the misfolded. Cell 104(4):581–591

    Article  CAS  PubMed  Google Scholar 

  2. Musaro A (2010) State of the art and the dark side of amyotrophic lateral sclerosis. World J Biol Chem 1(5):62–68. doi:10.4331/wjbc.v1.i5.62

    Article  PubMed Central  PubMed  Google Scholar 

  3. Rothstein JD (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65(Suppl 1):S3–S9. doi:10.1002/ana.21543

    Article  CAS  PubMed  Google Scholar 

  4. Brites D, Vaz AR (2014) Microglia centered pathogenesis in ALS: insights in cell interconnectivity. Front Cell Neurosci 8:117. doi:10.3389/fncel.2014.00117

  5. Rotunno MS, Bosco DA (2013) An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis. Front Cell Neurosci 7:253. doi:10.3389/fncel.2013.00253

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, Rothstein JD, Borchelt DR, Price DL, Cleveland DW (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18(2):327–338

    Article  CAS  PubMed  Google Scholar 

  7. Valentine JS, Doucette PA, Zittin Potter S (2005) Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem 74:563–593. doi:10.1146/annurev.biochem.72.121801.161647

    Article  CAS  PubMed  Google Scholar 

  8. Kikuchi H, Almer G, Yamashita S, Guegan C, Nagai M, Xu Z, Sosunov AA, McKhann GM 2nd, Przedborski S (2006) Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc Natl Acad Sci U S A 103(15):6025–6030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Furukawa Y, Kaneko K, Watanabe S, Yamanaka K, Nukina N (2013) Intracellular seeded aggregation of mutant Cu, Zn-superoxide dismutase associated with amyotrophic lateral sclerosis. FEBS Lett 587(16):2500–2505. doi:10.1016/j.febslet.2013.06.046

    Article  CAS  PubMed  Google Scholar 

  10. Munch C, O'Brien J, Bertolotti A (2011) Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci U S A 108(9):3548–3553. doi:10.1073/pnas.1017275108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gomes C, Keller S, Altevogt P, Costa J (2007) Evidence for secretion of Cu, Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis. Neurosci Lett 428(1):43–46

    Article  CAS  PubMed  Google Scholar 

  12. Basso M, Pozzi S, Tortarolo M, Fiordaliso F, Bisighini C, Pasetto L, Spaltro G, Lidonnici D, Gensano F, Battaglia E, Bendotti C, Bonetto V (2013) Mutant copper-zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations and exosome release in astrocytes: implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis. J Biol Chem 288(22):15699–15711. doi:10.1074/jbc.M112.425066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Tripathi VB, Al-Chalabi A (2008) Molecular insights and therapeutic targets in amyotrophic lateral sclerosis. CNS Neurol Disord Drug Targets 7(1):11–19

    Article  CAS  PubMed  Google Scholar 

  14. Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ (2011) Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7(11):616–630

    Article  CAS  PubMed  Google Scholar 

  15. Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7(9):710–723

    Article  CAS  PubMed  Google Scholar 

  16. Matus S, Valenzuela V, Medinas DB, Hetz C (2013) ER dysfunction and protein folding stress in ALS. Int J Cell Biol 2013:674751. doi:10.1155/2013/674751

    Article  PubMed Central  PubMed  Google Scholar 

  17. Shi P, Gal J, Kwinter DM, Liu X, Zhu H (2010) Mitochondrial dysfunction in amyotrophic lateral sclerosis. Biochim Biophys Acta 1802(1):45–51. doi:10.1016/j.bbadis.2009.08.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Lorenzl S, Narr S, Angele B, Krell HW, Gregorio J, Kiaei M, Pfister HW, Beal MF (2006) The matrix metalloproteinases inhibitor Ro 28-2653 [correction of Ro 26-2853] extends survival in transgenic ALS mice. Exp Neurol 200(1):166–171

    Article  CAS  PubMed  Google Scholar 

  19. He X, Zhang L, Yao X, Hu J, Yu L, Jia H, An R, Liu Z, Xu Y (2013) Association studies of MMP-9 in Parkinson's disease and amyotrophic lateral sclerosis. PLoS One 8(9):e73777. doi:10.1371/journal.pone.0073777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kiaei M, Kipiani K, Calingasan NY, Wille E, Chen J, Heissig B, Rafii S, Lorenzl S, Beal MF (2007) Matrix metalloproteinase-9 regulates TNF-alpha and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 205(1):74–81

    Article  CAS  PubMed  Google Scholar 

  21. Riboldi G, Nizzardo M, Simone C, Falcone M, Bresolin N, Comi GP, Corti S (2011) ALS genetic modifiers that increase survival of SOD1 mice and are suitable for therapeutic development. Prog Neurobiol 95(2):133–148. doi:10.1016/j.pneurobio.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  22. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264(5166):1772–1775

    Article  CAS  PubMed  Google Scholar 

  23. Synofzik M, Fernandez-Santiago R, Maetzler W, Schols L, Andersen PM (2010) The human G93A SOD1 phenotype closely resembles sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 81(7):764–767. doi:10.1136/jnnp.2009.181719

    Article  PubMed  Google Scholar 

  24. Andjus PR, Bataveljic D, Vanhoutte G, Mitrecic D, Pizzolante F, Djogo N, Nicaise C, Gankam Kengne F, Gangitano C, Michetti F, van der Linden A, Pochet R, Bacic G (2009) In vivo morphological changes in animal models of amyotrophic lateral sclerosis and Alzheimer's-like disease: MRI approach. Anat Rec (Hoboken) 292(12):1882–1892. doi:10.1002/ar.20995

    Article  Google Scholar 

  25. Tovar YRLB, Santa-Cruz LD, Tapia R (2009) Experimental models for the study of neurodegeneration in amyotrophic lateral sclerosis. Mol Neurodegener 4:31. doi:10.1186/1750-1326-4-31

    Article  Google Scholar 

  26. Cashman NR, Durham HD, Blusztajn JK, Oda K, Tabira T, Shaw IT, Dahrouge S, Antel JP (1992) Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194(3):209–221. doi:10.1002/aja.1001940306

    Article  CAS  PubMed  Google Scholar 

  27. Gomes C, Palma AS, Almeida R, Regalla M, McCluskey LF, Trojanowski JQ, Costa J (2008) Establishment of a cell model of ALS disease: golgi apparatus disruption occurs independently from apoptosis. Biotechnol Lett 30(4):603–610. doi:10.1007/s10529-007-9595-z

    Article  CAS  PubMed  Google Scholar 

  28. Pinto C, Cardenas P, Osses N, Henriquez JP (2013) Characterization of Wnt/beta-catenin and BMP/Smad signaling pathways in an in vitro model of amyotrophic lateral sclerosis. Front Cell Neurosci 7:239. doi:10.3389/fncel.2013.00239

    Article  PubMed Central  PubMed  Google Scholar 

  29. Min JH, Hong YH, Sung JJ, Kim SM, Lee JB, Lee KW (2012) Oral solubilized ursodeoxycholic acid therapy in amyotrophic lateral sclerosis: a randomized cross-over trial. J Korean Med Sci 27(2):200–206. doi:10.3346/jkms.2012.27.2.200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Vadakkadath Meethal S, Atwood CS (2012) Lactate dyscrasia: a novel explanation for amyotrophic lateral sclerosis. Neurobiol Aging 33(3):569–581. doi:10.1016/j.neurobiolaging.2010.04.012

    Article  CAS  PubMed  Google Scholar 

  31. Estevez AG, Spear N, Manuel SM, Radi R, Henderson CE, Barbeito L, Beckman JS (1998) Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J Neurosci 18(3):923–931

    CAS  PubMed  Google Scholar 

  32. Moreno-Lopez B, Sunico CR, Gonzalez-Forero D (2011) NO orchestrates the loss of synaptic boutons from adult "sick" motoneurons: modeling a molecular mechanism. Mol Neurobiol 43(1):41–66. doi:10.1007/s12035-010-8159-8

    Article  CAS  PubMed  Google Scholar 

  33. Lazaridis KN, Gores GJ, Lindor KD (2001) Ursodeoxycholic acid 'mechanisms of action and clinical use in hepatobiliary disorders'. J Hepatol 35(1):134–146

    Article  CAS  PubMed  Google Scholar 

  34. Hirschfield GM, Al-Harthi N, Heathcote EJ (2009) Current status of therapy in autoimmune liver disease. Ther Adv Gastroenterol 2(1):11–28. doi:10.1177/1756283X08098966

    Article  Google Scholar 

  35. Rudolph CD, Link DT (2002) Feeding disorders in infants and children. Pediatr Clin N Am 49(1):97–112, vi

    Article  Google Scholar 

  36. Dosa PI, Ward T, Castro RE, Rodrigues CM, Steer CJ (2013) Synthesis and evaluation of water-soluble prodrugs of ursodeoxycholic acid (UDCA), an anti-apoptotic bile acid. ChemMedChem 8(6):1002–1011. doi:10.1002/cmdc.201300059

    Article  CAS  PubMed  Google Scholar 

  37. Rodrigues CM, Solá S, Nan Z, Castro RE, Ribeiro PS, Low WC, Steer CJ (2003) Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proc Natl Acad Sci U S A 100(10):6087–6092. doi:10.1073/pnas.1031632100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Hua Y, Kandadi MR, Zhu M, Ren J, Sreejayan N (2010) Tauroursodeoxycholic acid attenuates lipid accumulation in endoplasmic reticulum-stressed macrophages. J Cardiovasc Pharmacol 55(1):49–55. doi:10.1097/FJC.0b013e3181c37d86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Woo SJ, Kim JH, Yu HG (2010) Ursodeoxycholic acid and tauroursodeoxycholic acid suppress choroidal neovascularization in a laser-treated rat model. J Ocul Pharmacol Ther 26(3):223–229. doi:10.1089/jop.2010.0012

    Article  CAS  PubMed  Google Scholar 

  40. Fernandes A, Vaz AR, Falcão AS, Silva RF, Brito MA, Brites D (2007) Glycoursodeoxycholic acid and interleukin-10 modulate the reactivity of rat cortical astrocytes to unconjugated bilirubin. J Neuropathol Exp Neurol 66(9):789–798. doi:10.1097/nen.0b013e3181461c74

    Article  CAS  PubMed  Google Scholar 

  41. Brito MA, Lima S, Fernandes A, Falcão AS, Silva RF, Butterfield DA, Brites D (2008) Bilirubin injury to neurons: contribution of oxidative stress and rescue by glycoursodeoxycholic acid. Neurotoxicology 29(2):259–269

    Article  CAS  PubMed  Google Scholar 

  42. Falcão AS, Silva RF, Vaz AR, Gomes C, Fernandes A, Barateiro A, Tiribelli C, Brites D (2013) Cross-Talk Between Neurons and Astrocytes in Response to Bilirubin: Adverse Secondary Impacts. Neurotox Res. doi:10.1007/s12640-013-9427-y

    Google Scholar 

  43. Keene CD, Rodrigues CM, Eich T, Chhabra MS, Steer CJ, Low WC (2002) Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington's disease. Proc Natl Acad Sci U S A 99(16):10671–10676. doi:10.1073/pnas.162362299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Ramalho RM, Nunes AF, Dias RB, Amaral JD, Lo AC, D'Hooge R, Sebastiao AM, Rodrigues CM (2013) Tauroursodeoxycholic acid suppresses amyloid beta-induced synaptic toxicity in vitro and in APP/PS1 mice. Neurobiol Aging 34(2):551–561. doi:10.1016/j.neurobiolaging.2012.04.018

    Article  CAS  PubMed  Google Scholar 

  45. Vaz AR, Delgado-Esteban M, Brito MA, Bolaños JP, Brites D, Almeida A (2010) Bilirubin selectively inhibits cytochrome c oxidase activity and induces apoptosis in immature cortical neurons: assessment of the protective effects of glycoursodeoxycholic acid. J Neurochem 112(1):56–65

    Article  CAS  PubMed  Google Scholar 

  46. Batta AK, Salen G, Mirchandani R, Tint GS, Shefer S, Batta M, Abroon J, O'Brien CB, Senior JR (1993) Effect of long-term treatment with ursodiol on clinical and biochemical features and biliary bile acid metabolism in patients with primary biliary cirrhosis. Am J Gastroenterol 88(5):691–700

    CAS  PubMed  Google Scholar 

  47. Rudolph G, Kloeters-Plachky P, Sauer P, Stiehl A (2002) Intestinal absorption and biliary secretion of ursodeoxycholic acid and its taurine conjugate. Eur J Clin Investig 32(8):575–580

    Article  CAS  Google Scholar 

  48. Silva SL, Vaz AR, Diógenes MJ, van Rooijen N, Sebastião AM, Fernandes A, Silva RF, Brites D (2012) Neuritic growth impairment and cell death by unconjugated bilirubin is mediated by NO and glutamate, modulated by microglia, and prevented by glycoursodeoxycholic acid and interleukin-10. Neuropharmacology 62(7):2398–2408. doi:10.1016/j.neuropharm.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  49. Raimondi A, Mangolini A, Rizzardini M, Tartari S, Massari S, Bendotti C, Francolini M, Borgese N, Cantoni L, Pietrini G (2006) Cell culture models to investigate the selective vulnerability of motoneuronal mitochondria to familial ALS-linked G93ASOD1. Eur J Neurosci 24(2):387–399

    Article  PubMed  Google Scholar 

  50. Jaarsma D, Haasdijk ED, Grashorn JA, Hawkins R, van Duijn W, Verspaget HW, London J, Holstege JC (2000) Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol Dis 7(6 Pt B):623–643. doi:10.1006/nbdi.2000.0299

    Article  CAS  PubMed  Google Scholar 

  51. Gandelman M, Peluffo H, Beckman JS, Cassina P, Barbeito L (2010) Extracellular ATP and the P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis. J Neuroinflammation 7:33. doi:10.1186/1742-2094-7-33

    Article  PubMed Central  PubMed  Google Scholar 

  52. Yao XL, Ye CH, Liu Q, Wan JB, Zhen J, Xiang AP, Li WQ, Wang YT, Su HX, Lu XL (2013) Motoneuron differentiation of induced pluripotent stem cells from SOD1G93A mice. PLoS One 8(5):e64720. doi:10.1371/journal.pone.0064720

  53. Gomes C, Escrevente C, Costa J (2010) Mutant superoxide dismutase 1 overexpression in NSC-34 cells: effect of trehalose on aggregation, TDP-43 localization and levels of co-expressed glycoproteins. Neurosci Lett 475(3):145–149. doi:10.1016/j.neulet.2010.03.065

    Article  CAS  PubMed  Google Scholar 

  54. Lino MM, Schneider C, Caroni P (2002) Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J Neurosci 22(12):4825–4832

    CAS  PubMed  Google Scholar 

  55. Eggett CJ, Crosier S, Manning P, Cookson MR, Menzies FM, McNeil CJ, Shaw PJ (2000) Development and characterisation of a glutamate-sensitive motor neurone cell line. J Neurochem 74(5):1895–1902

    Article  CAS  PubMed  Google Scholar 

  56. Cho GW, Kim GY, Baek S, Kim H, Kim T, Kim HJ, Kim SH (2011) Recombinant human erythropoietin reduces aggregation of mutant Cu/Zn-binding superoxide dismutase (SOD1) in NSC-34 cells. Neurosci Lett 504(2):107–111

    Article  CAS  PubMed  Google Scholar 

  57. Poupon RE, Poupon R, Balkau B (1994) Ursodiol for the long-term treatment of primary biliary cirrhosis. The UDCA-PBC Study Group. N Engl J Med 330(19):1342–1347. doi:10.1056/NEJM199405123301903

    Article  CAS  PubMed  Google Scholar 

  58. Brites D, Rodrigues CM, Oliveira N, Cardoso M, Graca LM (1998) Correction of maternal serum bile acid profile during ursodeoxycholic acid therapy in cholestasis of pregnancy. J Hepatol 28(1):91–98

    Article  CAS  PubMed  Google Scholar 

  59. Podda M, Ghezzi C, Battezzati PM, Crosignani A, Zuin M, Roda A (1990) Effects of ursodeoxycholic acid and taurine on serum liver enzymes and bile acids in chronic hepatitis. Gastroenterology 98(4):1044–1050

    Article  CAS  PubMed  Google Scholar 

  60. Silva RF, Rodrigues CM, Brites D (2001) Bilirubin-induced apoptosis in cultured rat neural cells is aggravated by chenodeoxycholic acid but prevented by ursodeoxycholic acid. J Hepatol 34(3):402–408

    Article  CAS  PubMed  Google Scholar 

  61. Falcão AS, Silva RFM, Pancadas S, Fernandes A, Brito MA, Brites D (2007) Apoptosis and impairment of neurite network by short exposure of immature rat cortical neurons to unconjugated bilirubin increase with cell differentiation and are additionally enhanced by an inflammatory stimulus. J Neurosci Res 85(6):1229–1239. doi:10.1002/jnr.21227

    Article  PubMed  Google Scholar 

  62. Silva SL, Vaz AR, Barateiro A, Falcão AS, Fernandes A, Brito MA, Silva RFM, Brites D (2010) Features of bilirubin-induced reactive microglia: from phagocytosis to inflammation. Neurobiol Dis 40(3):663–675

    Article  CAS  PubMed  Google Scholar 

  63. Vaz AR, Silva SL, Barateiro A, Fernandes A, Falcão AS, Brito MA, Brites D (2011) Pro-inflammatory cytokines intensify the activation of NO/NOS, JNK1/2 and caspase cascades in immature neurons exposed to elevated levels of unconjugated bilirubin. Exp Neurol 229(2):381–390

    Article  CAS  PubMed  Google Scholar 

  64. Barateiro A, Vaz AR, Silva SL, Fernandes A, Brites D (2012) ER stress, mitochondrial dysfunction and calpain/JNK activation are involved in oligodendrocyte precursor cell death by unconjugated bilirubin. Neuromol Med 14(4):285–302. doi:10.1007/s12017-012-8187-9

    Article  CAS  Google Scholar 

  65. Fidzianska A, Gadamski R, Rafalowska J, Chrzanowska H, Grieb P (2006) Ultrastructural changes in lumbar spinal cord in transgenic SOD1G93A rats. Folia Neuropathol 44(3):175–182

    CAS  PubMed  Google Scholar 

  66. Martin LJ, Chen K, Liu Z (2005) Adult motor neuron apoptosis is mediated by nitric oxide and Fas death receptor linked by DNA damage and p53 activation. J Neurosci 25(27):6449–6459

    Article  CAS  PubMed  Google Scholar 

  67. Magrane J, Hervias I, Henning MS, Damiano M, Kawamata H, Manfredi G (2009) Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities. Hum Mol Genet 18(23):4552–4564. doi:10.1093/hmg/ddp421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Drechsel DA, Estevez AG, Barbeito L, Beckman JS (2012) Nitric oxide-mediated oxidative damage and the progressive demise of motor neurons in ALS. Neurotox Res 22(4):251–264. doi:10.1007/s12640-012-9322-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Konnecke H, Bechmann I (2013) The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas. Clin Dev Immunol 2013:914104. doi:10.1155/2013/914104

    Article  PubMed Central  PubMed  Google Scholar 

  70. Di Virgilio F (2000) Dr. Jekyll/Mr. Hyde: the dual role of extracellular ATP. J Auton Nerv Syst 81(1–3):59–63

    Article  PubMed  Google Scholar 

  71. Parry GJ, Rodrigues CM, Aranha MM, Hilbert SJ, Davey C, Kelkar P, Low WC, Steer CJ (2010) Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic Acid in patients with amyotrophic lateral sclerosis. Clin Neuropharmacol 33(1):17–21. doi:10.1097/WNF.0b013e3181c47569

    Article  CAS  PubMed  Google Scholar 

  72. Elliott JL (1999) Experimental models of amyotrophic lateral sclerosis. Neurobiol Dis 6(5):310–320. doi:10.1006/nbdi.1999.0266

    Article  CAS  PubMed  Google Scholar 

  73. Maier O, Bohm J, Dahm M, Bruck S, Beyer C, Johann S (2013) Differentiated NSC-34 motoneuron-like cells as experimental model for cholinergic neurodegeneration. Neurochem Int 62(8):1029–1038. doi:10.1016/j.neuint.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  74. Turner BJ, Atkin JD, Farg MA, Zang DW, Rembach A, Lopes EC, Patch JD, Hill AF, Cheema SS (2005) Impaired extracellular secretion of mutant superoxide dismutase 1 associates with neurotoxicity in familial amyotrophic lateral sclerosis. J Neurosci 25(1):108–117

    Article  CAS  PubMed  Google Scholar 

  75. Rizzardini M, Mangolini A, Lupi M, Ubezio P, Bendotti C, Cantoni L (2005) Low levels of ALS-linked Cu/Zn superoxide dismutase increase the production of reactive oxygen species and cause mitochondrial damage and death in motor neuron-like cells. J Neurol Sci 232(1–2):95–103

    Article  CAS  PubMed  Google Scholar 

  76. Cozzolino M, Amori I, Pesaresi MG, Ferri A, Nencini M, Carri MT (2008) Cysteine 111 affects aggregation and cytotoxicity of mutant Cu, Zn-superoxide dismutase associated with familial amyotrophic lateral sclerosis. J Biol Chem 283(2):866–874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Gal J, Strom AL, Kilty R, Zhang F, Zhu H (2007) p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis. J Biol Chem 282(15):11068–11077

    Article  CAS  PubMed  Google Scholar 

  78. Gurney ME (1994) Transgenic-mouse model of amyotrophic lateral sclerosis. N Engl J Med 331(25):1721–1722. doi:10.1056/NEJM199412223312516

    Article  CAS  PubMed  Google Scholar 

  79. Sathasivam S, Ince PG, Shaw PJ (2001) Apoptosis in amyotrophic lateral sclerosis: a review of the evidence. Neuropathol Appl Neurobiol 27(4):257–274

    Article  CAS  PubMed  Google Scholar 

  80. Ranganathan S, Bowser R (2010) p53 and cell cycle proteins participate in spinal motor neuron cell death in ALS. Open Pathol J 4:11–22. doi:10.2174/1874375701004010011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Sathasivam S, Shaw PJ (2005) Apoptosis in amyotrophic lateral sclerosis—what is the evidence? Lancet Neurol 4(8):500–509

    Article  CAS  PubMed  Google Scholar 

  82. Kawamata H, Manfredi G (2010) Mitochondrial dysfunction and intracellular calcium dysregulation in ALS. Mech Ageing Dev 131(7–8):517–526. doi:10.1016/j.mad.2010.05.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Dupuis L, di Scala F, Rene F, de Tapia M, Oudart H, Pradat PF, Meininger V, Loeffler JP (2003) Up-regulation of mitochondrial uncoupling protein 3 reveals an early muscular metabolic defect in amyotrophic lateral sclerosis. FASEB J 17 (12):2091-+. doi: 10.1096/fj.02-1182fje

  84. Reyes NA, Fisher JK, Austgen K, VandenBerg S, Huang EJ, Oakes SA (2010) Blocking the mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model of amyotrophic lateral sclerosis. J Clin Invest 120(10):3673–3679. doi:10.1172/JCI42986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Guegan C, Vila M, Rosoklija G, Hays AP, Przedborski S (2001) Recruitment of the mitochondrial-dependent apoptotic pathway in amyotrophic lateral sclerosis. J Neurosci 21(17):6569–6576

    CAS  PubMed  Google Scholar 

  86. Inoue H, Tsukita K, Iwasato T, Suzuki Y, Tomioka M, Tateno M, Nagao M, Kawata A, Saido TC, Miura M, Misawa H, Itohara S, Takahashi R (2003) The crucial role of caspase-9 in the disease progression of a transgenic ALS mouse model. EMBO J 22(24):6665–6674. doi:10.1093/emboj/cdg634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Ilzecka J (2009) Serum caspase-9 levels are increased in patients with amyotrophic lateral sclerosis. Neurol Sci 33(4):825–829. doi:10.1007/s10072-011-0837-4

    Article  Google Scholar 

  88. Darwish RS, Amiridze NS (2010) Detectable levels of cytochrome C and activated caspase-9 in cerebrospinal fluid after human traumatic brain injury. Neurocrit Care 12(3):337–341. doi:10.1007/s12028-009-9328-3

    Article  CAS  PubMed  Google Scholar 

  89. Sunico CR, Gonzalez-Forero D, Dominguez G, Garcia-Verdugo JM, Moreno-Lopez B (2010) Nitric oxide induces pathological synapse loss by a protein kinase G-, Rho kinase-dependent mechanism preceded by myosin light chain phosphorylation. J Neurosci 30(3):973–984. doi:10.1523/JNEUROSCI.3911-09.2010

    Article  CAS  PubMed  Google Scholar 

  90. Basso M, Samengo G, Nardo G, Massignan T, D'Alessandro G, Tartari S, Cantoni L, Marino M, Cheroni C, De Biasi S, Giordana MT, Strong MJ, Estevez AG, Salmona M, Bendotti C, Bonetto V (2009) Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesis. PLoS One 4(12):e8130. doi:10.1371/journal.pone.0008130

    Article  PubMed Central  PubMed  Google Scholar 

  91. Schoser BG, Blottner D (1999) Matrix metalloproteinases MMP-2, MMP-7 and MMP-9 in denervated human muscle. Neuroreport 10(13):2795–2797

    Article  CAS  PubMed  Google Scholar 

  92. Fang L, Teuchert M, Huber-Abel F, Schattauer D, Hendrich C, Dorst J, Zettlmeissel H, Wlaschek M, Scharffetter-Kochanek K, Kapfer T, Tumani H, Ludolph AC, Brettschneider J (2010) MMP-2 and MMP-9 are elevated in spinal cord and skin in a mouse model of ALS. J Neurol Sci 294(1–2):51–56. doi:10.1016/j.jns.2010.04.005

    Article  CAS  PubMed  Google Scholar 

  93. Beuche W, Yushchenko M, Mader M, Maliszewska M, Felgenhauer K, Weber F (2000) Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. Neuroreport 11(16):3419–3422

    Article  CAS  PubMed  Google Scholar 

  94. Demestre M, Parkin-Smith G, Petzold A, Pullen AH (2005) The pro and the active form of matrix metalloproteinase-9 is increased in serum of patients with amyotrophic lateral sclerosis. J Neuroimmunol 159(1–2):146–154

    Article  CAS  PubMed  Google Scholar 

  95. Gottschall PE, Deb S (1996) Regulation of matrix metalloproteinase expressions in astrocytes, microglia and neurons. Neuroimmunomodulation 3(2–3):69–75

    Article  CAS  PubMed  Google Scholar 

  96. Kaplan A, Spiller KJ, Towne C, Kanning KC, Choe GT, Geber A, Akay T, Aebischer P, Henderson CE (2014) Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron 81(2):333–348. doi:10.1016/j.neuron.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  97. Hadass O, Tomlinson BN, Gooyit M, Chen S, Purdy JJ, Walker JM, Zhang C, Giritharan AB, Purnell W, Robinson CR 2nd, Shin D, Schroeder VA, Suckow MA, Simonyi A, Sun GY, Mobashery S, Cui J, Chang M, Gu Z (2013) Selective inhibition of matrix metalloproteinase-9 attenuates secondary damage resulting from severe traumatic brain injury. PLoS One 8(10):e76904. doi:10.1371/journal.pone.0076904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Bellentani S (2005) Immunomodulating and anti-apoptotic action of ursodeoxycholic acid: where are we and where should we go? Eur J Gastroenterol Hepatol 17(2):137–140

    Article  CAS  PubMed  Google Scholar 

  99. Kotb MA (2012) Molecular mechanisms of ursodeoxycholic acid toxicity & side effects: ursodeoxycholic acid freezes regeneration & induces hibernation mode. Int J Mol Sci 13(7):8882–8914. doi:10.3390/ijms13078882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. El-Sherbiny GA, Taye A, Abdel-Raheem IT (2009) Role of ursodeoxycholic acid in prevention of hepatotoxicity caused by amoxicillin-clavulanic acid in rats. Ann Hepatol 8(2):134–140

    PubMed  Google Scholar 

  101. Palmela I (2013) Behind bilirubin neurotoxicity: discovering what's left at the blood-brain barrier. PhD thesis, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal. [http://hdl.handle.net/10451/9919]

  102. Fekaj E, Gjata A, Maxhuni M (2013) The effect of ursodeoxycholic acid in liver functional restoration of patients with obstructive jaundice after endoscopic treatment: a prospective, randomized, and controlled study. BMC Surg 13:38. doi:10.1186/1471-2482-13-38

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drª. Júlia Costa, Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Portugal and Prof. Neil Cashman, Centre for Research in Neurodegenerative Diseases, University of Toronto, Canada, for the NSC-34 cells, as well as for SOD1 coding plasmids. This work was supported by FEDER (COMPETE Program) and by National funds (Fundação para a Ciência e a Tecnologia—FCT) through the projects PTDC/SAU-FAR/118787/2010 (to D.B.) and PEst-OE/SAU/UI4013/2011-2013 (to iMed.ULisboa). A.R.V. holds a postdoctoral research fellowship (SFRH/BPD/76590/2011) and C.C. is recipient of a PhD fellowship (SFRH/BD/91316/2012) from FCT. The funding organization had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of Interest

The authors declare that there are no actual or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora Brites.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaz, A.R., Cunha, C., Gomes, C. et al. Glycoursodeoxycholic Acid Reduces Matrix Metalloproteinase-9 and Caspase-9 Activation in a Cellular Model of Superoxide Dismutase-1 Neurodegeneration. Mol Neurobiol 51, 864–877 (2015). https://doi.org/10.1007/s12035-014-8731-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8731-8

Keywords

Navigation