Skip to main content

Advertisement

Log in

Establishment of a cell model of ALS disease: Golgi apparatus disruption occurs independently from apoptosis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The Golgi apparatus (GA) appears disrupted in motor neurons of amyotrophic lateral sclerosis (ALS). Here, mouse motor neuron-like NSC-34 cell lines stably expressing human superoxide dismutase 1 (hSOD1)wt and mutant hSOD1G93A, as an ALS cell model, were constructed. The number of cells with disrupted GA increased from 14% to 34%. Furthermore, NSC-34/hSOD1G93A cells showed lower levels of proliferation and differentiation. GA disruption was not caused by apoptosis as determined by several techniques including caspase-3 activation. Similarly, spinal cords from ALS patients did not show caspase-3 activation. Therefore, NSC-34/hSOD1G93A cells are a suitable cell model to study GA dysfunction in ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brito C, Escrevente C, Reis CA et al (2007) Increased levels of fucosyltransferase IX and carbohydrate Lewis(x) adhesion determinant in human NT2N neurons. J Neurosci Res 85:1260–1270

    Article  PubMed  CAS  Google Scholar 

  • Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749

    Article  PubMed  CAS  Google Scholar 

  • Cashman NR, Durham HD, Blusztajn JK et al (1992) Neuroblastoma × spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194:209–221

    PubMed  CAS  Google Scholar 

  • Cooper AA, Gitler AD, Cashikar A et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328

    Article  PubMed  CAS  Google Scholar 

  • Demestre M, Parkin-Smith G, Petzold A et al (2005) The pro and the active form of matrix metalloproteinase-9 is increased in serum of patients with amyotrophic lateral sclerosis. J Neuroimmunol 159:146–154

    Article  PubMed  CAS  Google Scholar 

  • Embacher N, Kaufmann WA, Beer R et al (2001) Apoptosis signals in sporadic amyotrophic lateral sclerosis: an immunocytochemical study. Acta Neuropathol (Berl) 102:426–434

    CAS  Google Scholar 

  • Fujita K, Kato T, Yamauchi M et al (1998) Increases in fragmented glial fibrillary acidic protein levels in the spinal cords of patients with amyotrophic lateral sclerosis. Neurochem Res 23:169–174

    Article  PubMed  CAS  Google Scholar 

  • Gonatas NK, Stieber A, Gonatas JO (2006) Fragmentation of the Golgi apparatus in neurodegenerative diseases and cell death. J Neurol Sci 246:21–30

    Article  PubMed  CAS  Google Scholar 

  • Hicks SW, Machamer CE (2005) Golgi structure in stress sensing and apoptosis. Biochim Biophys Acta 1744:406–414

    Article  PubMed  CAS  Google Scholar 

  • Kirby J, Halligan E, Baptista MJ et al (2005) Mutant SOD1 alters the motor neuronal transcriptome: implications for familial ALS. Brain 128:1686–1706

    Article  PubMed  Google Scholar 

  • Lee KW, Kim HJ, Sung JJ et al (2002) Defective neurite outgrowth in aphidicolin/cAMP-induced motor neurons expressing mutant Cu/Zn superoxide dismutase. Int J Dev Neurosci 20:521–526

    Article  PubMed  CAS  Google Scholar 

  • Lim GP, Backstrom JR, Cullen MJ et al (1996) Matrix metalloproteinases in the neocortex and spinal cord of amyotrophic lateral sclerosis patients. J Neurochem 67:251–259

    Article  PubMed  CAS  Google Scholar 

  • Morais VA, Costa J (2003) Stable expression of recombinant human alpha3/4 fucosyltransferase III in Spodoptera frugiperda Sf9 cells. J Biotechnol 106:69–75

    Article  PubMed  CAS  Google Scholar 

  • Palma A, de Carvalho M, Barata N et al (2005) Biochemical characterization of plasma in amyotrophic lateral sclerosis: amino acid and protein composition. Amyotroph Lateral Scler Other Motor Neuron Disord 6:104–110

    Article  PubMed  CAS  Google Scholar 

  • Sathasivam S, Grierson AJ, Shaw PJ (2005) Characterization of the caspase cascade in a cell culture model of SOD1-related familial amyotrophic lateral sclerosis: expression, activation and therapeutic effects of inhibition. Neuropathol Appl Neurobiol 31:467–485

    Article  PubMed  CAS  Google Scholar 

  • Sathasivam S, Shaw PJ (2005) Apoptosis in amyotrophic lateral sclerosis–what is the evidence? Lancet Neurol 4:500–509

    Article  PubMed  CAS  Google Scholar 

  • Shorter J, Watson R, Giannakou ME et al (1999) GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. Embo J 18:4949–4960

    Article  PubMed  CAS  Google Scholar 

  • Stieber A, Gonatas JO, Moore JS et al (2004) Disruption of the structure of the Golgi apparatus and the function of the secretory pathway by mutants G93A and G85R of Cu, Zn superoxide dismutase (SOD1) of familial amyotrophic lateral sclerosis. J Neurol Sci 219:45–53

    Article  PubMed  CAS  Google Scholar 

  • Vieira HL, Boya P, Cohen I et al (2002) Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-X(L). Oncogene 21:1963–1977

    Article  PubMed  CAS  Google Scholar 

  • Yoshiyama Y, Zhang B, Bruce J et al (2003) Reduction of detyrosinated microtubules and Golgi fragmentation are linked to tau-induced degeneration in astrocytes. J Neurosci 23:10662–10671

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Francis Barr, Max-Planck-Institut für Biochemie, Martinsried, Germany, for polyclonal antibodies FBA 34 and FBA42; Prof. Neil Cashman, Centre for Research in Neurodegenerative Diseases, University of Toronto, Canada, for the NSC-34 cells; Prof. Don Cleveland, Neuroscience and Cellular and Molecular Medicine, University of California of San Diego, for SOD1 coding plasmids; Dr. Paula Alves, Dr. Helena Vieira and Marlene Carmo, Laboratory of Animal Cell Technology, ITQB, for help with FACS analysis; Prof. Mamede de Carvalho, Faculdade de Medicina de Lisboa, Portugal, and Prof. Michael Swash, The Royal London Hospital, for fruitful discussion; Cell Imaging Service (Instituto Gulbenkian de Ciência, Oeiras, Portugal) for the use of the confocal microscope. CG and AP were recipients of PhD fellowships from Fundação para a Ciência e a Tecnologia (FCT), Portugal. This work was funded by projects POCTI/BCI/38631/2001 and POCTI/CBO/43952/2002 from FCT and project STREP LSH-CT-2004-503228 from the European Commission to JC, and projects AG-10124 and AG-17586 to JQT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlia Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, C., Palma, A.S., Almeida, R. et al. Establishment of a cell model of ALS disease: Golgi apparatus disruption occurs independently from apoptosis. Biotechnol Lett 30, 603–610 (2008). https://doi.org/10.1007/s10529-007-9595-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9595-z

Keywords

Navigation