Skip to main content

Advertisement

Log in

Investigation of solid bio-membrane based on corn biomass as a proton-conducting bio-electrolyte

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A solid bio-electrolyte has been prepared by blending the extract of the silk part of the corn biomass (corn silk extract, CSE), polyvinyl alcohol (PVA) and NH4HCO2 as the charge carrier via the solution casting technique. This biodegradable electrolyte is optimized by the AC impedance analysis for the composition 1 g PVA + 0.9 g CSE + 0.5 wt% NH4HCO2 from their maximum conductivity values. The highest ionic conductivity for this optimized composition at room temperature is 3.302×10–3 S cm–1. This bio-electrolyte is then characterized by X-ray diffraction technique, Fourier transform infrared spectroscopy, differential scanning calorimetry, transference number analysis and electrochemical impedance spectroscopy. A primary proton-conducting battery was constructed with an output circuit voltage of 1.83 V at room temperature. A single stack PEM fuel cell has been constructed with the bio-electrolyte (0.9 g CSE + 1 g PVA + 0.5 wt% NH4HCO2) and obtained an output circuit of 480 mV. This work implies the possibility of the development of an electrolyte from a biodegradable and renewable source for energy storage applications.

Graphical abstract

Synopsis: A bio-membrane from Corn biomass has been developed by blending the extract of the corn silk with polyvinyl alcohol and then a bio-electrolyte has been cast by adding ammonium formate as an ionic dopant. A primary proton cell with an output voltage of 1.83 V is fabricated with the bio-electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. de Wit M and Faaij A 2010 Biomass Bioenergy 34 188

    Article  Google Scholar 

  2. Augustyn V, Simon P and Dunn B 2014 Energy Environ. Sci. 7 1597

    Article  CAS  Google Scholar 

  3. Ibrahim H, Ilinca A and Perron J 2008 Renew. Sust. Energ. Rev. 12 1221

    Article  CAS  Google Scholar 

  4. Bentsen N S and Felby C 2012 Biotechnol. Biofuels 5 25

    Article  Google Scholar 

  5. Perumal P, Christopher Selvin P and Selvasekarapandian S 2018 Ionics 24 3259

    Article  CAS  Google Scholar 

  6. Monisha S, Selvasekarapandian S, Mathavan T, Milton Franklin Benial A, Manoharan S and Karthikeyan S 2016 J. Mater. Sci.: Mater. Electron. 27 9314

    CAS  Google Scholar 

  7. Nirmala Devi G, Chitra S, Selvasekarapandian S, Premalatha M, Monisha S and Saranya J 2017 Ionics 23 3377

    Article  CAS  Google Scholar 

  8. Selvalakshmi S, Mathavan T, Selvasekarapandian S and Premalatha M 2017 Ionics 23 2791

    Article  CAS  Google Scholar 

  9. Vadivazhagan M, Parameswaran P, Mani U and Nallathamby K 2018 ACS Sustain. Chem. Eng. 6 13915

    Article  CAS  Google Scholar 

  10. Wan W, Wang Q, Zhang L, Liang H W, Chen P and Yu S H 2016 J. Mater. Chem. A 4 8602

    Article  CAS  Google Scholar 

  11. Parsimehr H and Ehsani A 2020 Chem. Rec. 20 1163

    Article  CAS  Google Scholar 

  12. Pan Y, Wang C, Chen Z, Li W, Yuan G and Chen H 2017 Carbohydr. Polym. 164 370

    Article  CAS  Google Scholar 

  13. Guo Q, Xu L, Chen Y, Ma Q, Santhanam R K, Xue Z et al 2019 Carbohydr. Polym. 208 161

    Article  CAS  Google Scholar 

  14. Ali G W, Abdel-Fattah W I, Elhaes H and Ibrahim M A 2019 Biointerface Res. Appl. Chem. 9 4581

    Article  CAS  Google Scholar 

  15. Hasanudin K, Hashim P and Mustafa S 2012 Molecules 17 9697

    Article  CAS  Google Scholar 

  16. Limmatvapirat C, Nateesathittarn C, Dechasathian K, Moohummad T, Chinajitphan P and Limmatvapirat S 2020 J. Ayurveda Integr. Med. 11 344

    Article  Google Scholar 

  17. Chen S, Chen H, Tian J, Wang Y, Xing L and Wang J 2013 Carbohydr. Polym. 98 428

    Article  CAS  Google Scholar 

  18. Suvarnna K, Kirubavathy S J, Selvasekarapandian S, Krishna M V and Ramaswamy M 2022 Ionics 28 1767

    Article  CAS  Google Scholar 

  19. Liew C W and Ramesh S 2015 Carbohydr. Polym. 124 222

    Article  CAS  Google Scholar 

  20. Perumal P, Christopher Selvin P, Selvasekarapandian S, Sivaraj P, Abhilash K P, Moniha V et al 2019 Polym. Degrad. Stab. 159 43

    Article  CAS  Google Scholar 

  21. Parameswaran V, Nallamuthu N, Devendran P, Nagarajan E R and Manikandan A 2017 Phys. B: Condens. Matter 515 89

    Article  CAS  Google Scholar 

  22. Premalatha M, Mathavan T, Selvasekarapandian S and Selvalakshmi S 2018 AIP Conf. Proc. 1942 070005

    Article  Google Scholar 

  23. Naachiyar R M, Ragam M, Selvasekarapandian S, Krishna M V and Buvaneshwari P 2021 Ionics 27 3415

    Article  CAS  Google Scholar 

  24. Meera Naachiyar R, Ragam M, Selvasekarapandian S, Aristatil G, Aafrin Hazaana S, Muniraj Vignesh N et al 2022 J. Polym. Sci. 29 8

    Google Scholar 

  25. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B and Hemalatha R 2019 Mater. Today: Proc. 8 449

    CAS  Google Scholar 

  26. Muthukrishnan M, Shanthi C, Selvasekarapandian S, Shanthi G, Sampathkumar L and Maheshwari T 2021 Ionics 27 3443

    Article  CAS  Google Scholar 

  27. Boopathi G, Pugalendhi S, Selvasekarapandian S, Premalatha M, Monisha S and Aristatil G 2017 Ionics 23 2781

    Article  CAS  Google Scholar 

  28. Saadiah M A, Nagao Y and Samsudin A S 2020 Int. J. Hydrog. Energy 45 14880

    Article  CAS  Google Scholar 

  29. Hodge R M, Edward G H and Simon G P 1996 Polymer (Guildf) 37 1371

    Article  CAS  Google Scholar 

  30. Kamarudin K H and Isa M I N 2013 Int. J. Phys. Sci. 8 1581

    CAS  Google Scholar 

  31. Ramlli M A and Isa M I N 2016 J. Phys. Chem. B 120 11567

    Article  CAS  Google Scholar 

  32. Samsudin A S, Lai H M and Isa M I N 2014 Electrochim. Acta 129 1

    Article  CAS  Google Scholar 

  33. Selvalakshmi S, Vijaya N, Selvasekarapandian S and Premalatha M 2017 J. Appl. Polym. Sci. 134 15

    Article  Google Scholar 

  34. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Hemalatha R and Boopathi G 2018 J. Solid State Electrochem. 22 3209

    Article  CAS  Google Scholar 

  35. Muthuvinayagam M and Gopinathan C 2015 Polymer (Guildf) 68 122

    Article  CAS  Google Scholar 

  36. Du J F, Bai Y, Pan D A, Chu W Y and Qiao L J 2009 J. Polym. Sci. B: Polym. Phys. 47 549

    Article  CAS  Google Scholar 

  37. Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N et al 2017 Carbohydr. Polym. 157 38

    Article  CAS  Google Scholar 

  38. Shukur M F, Ithnin R and Kadir M F Z 2014 Mol. Cryst. Liq. 603 52

    Article  CAS  Google Scholar 

  39. Wagner J B and Wagner C 1957 J. Chem. Phys. 26 1597

    Article  CAS  Google Scholar 

  40. Gouda M E, Badr S K, Hassan M A and Sheha E 2011 Ionics 17 255

    Article  CAS  Google Scholar 

  41. Bhuvaneswari R, Karthikeyan S, Selvasekarapandian S, Vinoth Pandi D, Vijaya N, Araichimani A et al 2015 Ionics 21 387

    Article  CAS  Google Scholar 

  42. Irvine J T S, Sinclair D C and West A R 1990 Adv. Mater. 2 132

    Article  CAS  Google Scholar 

  43. Woo H J, Majid S R and Arof A K 2011 Solid State Ion. 14 199

    Google Scholar 

  44. Chitra R, Krishna M V and Selvasekarapandian S 2021 Polym. Bull. 79 3555

    Article  Google Scholar 

  45. Boukamp B A 1986 Solid State Ion. 20 31

    Article  CAS  Google Scholar 

  46. Boukamp B A 1986 Solid State Ion. 18 136

    Article  Google Scholar 

  47. Sravanthi K, Sundari G S and Erothu H 2021 Optik (Stuttg) 241 166229

    Article  CAS  Google Scholar 

  48. Vijaya N, Selvasekarapandian S, Sornalatha M, Sujithra K S and Monisha S 2017 Ionics 23 2799

    Article  CAS  Google Scholar 

  49. Liew C W, Ramesh S, Ramesh K and Arof A K 2012 J. Solid State Electrochem. 16 1869

    Article  CAS  Google Scholar 

  50. Tang Y, Yuan W, Pan M and Wan Z 2010 Int. J. Hydrog. Energy 35 9661

    Article  CAS  Google Scholar 

  51. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B and Boopathi G 2018 J. Non-Cryst. Solids 481 424

    Article  CAS  Google Scholar 

  52. Selvalakshmi S, Mathavan T, Selvasekarapandian S and Premalatha M 2019 J. Solid State Electrochem. 23 1727

    Article  CAS  Google Scholar 

Download references

Acknowledgement

K Suvarnna and Dr S Jone Kirubavathy would like to thank DST FIST, Government of India, for their equipment support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Jone Kirubavathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suvarnna, K., Shanjitha, S., Selvasekarapandian, S. et al. Investigation of solid bio-membrane based on corn biomass as a proton-conducting bio-electrolyte. Bull Mater Sci 46, 112 (2023). https://doi.org/10.1007/s12034-023-02946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02946-y

Keywords

Navigation