Skip to main content
Log in

Impact of ethylene carbonate on electrical properties of PVA/(NH4)2SO4/H2SO4 proton-conductive membrane

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A new proton-conductive membrane (PCM) based on poly (vinyl alcohol) and ammonium sulfate (NH4)2SO4 complexed with sulfuric acid and plasticized with ethylene carbonate (EC) at different weight percent were prepared by casting technique. The structural properties of these electrolyte films were examined by XRD studies. The XRD patterns of all the prepared polymer electrolytes reveal the amorphous nature of the films. ac conductivity and dielectric spectra of the electrolyte were studied with changing EC content from weight 0.00 to 0.75 g. A maximum conductivity of 7.3 × 10−5 S cm−1 has been achieved at ambient temperature for PCM containing 0.25 g of ethylene carbonate. The electrical conductivity σ, dielectric constant ε′ and dielectric loss ε″ of PCM in frequency range (100 Hz to 100 KHz), and temperature range (300–400 K) were carried out. Measurement of transference number was carried out to investigate the nature of charge transport in these polymer electrolyte films using Wagner’s polarization technique. Transport number data showed that the charge transport in these polymer electrolyte systems was predominantly due to ions. The electrolyte with the highest electrical conductivity was used in the fabrication of a solid-state electrochemical cell with the configuration (Mg/PCM/PbO2). Various cell parameters ldensity, and current density were determined. The fabricated cells gave capacity of 650 μAh and have an internal resistance of 11.6 kΩ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zukowska G, Wieczorek W, Kedzierski M, Florjanczyk Z (2001) Solid State Ionics 144:163

    Article  CAS  Google Scholar 

  2. Gong KC, Cai HS (1989) In: Wazari G, Huggins RA, Shriver DF (eds) Solid state ionics. Materials Science Society, Pittsburg, p 377

    Google Scholar 

  3. Chiang CY, Shen YJ, Reddy MJ, Chu PP (2003) J Power Sources 123:222

    Article  CAS  Google Scholar 

  4. Yang XQ, Lee HS, Hanson L, McBreen J, Okamoto Y (1995) J Power Sources 54:198

    Article  CAS  Google Scholar 

  5. Austin Suthanthiraraj S, Joice Sheeba D, Joseph Paul B (2009) Mater Res Bull 44:1543

    Article  Google Scholar 

  6. Mark HF (ed) (1964) Encyclopedia of polymer science and engineering, vol. 1. Wiley-Interscience, New York, USA

    Google Scholar 

  7. Maurya KK, Srivastava N, Hashmi SA, Chandra S (1992) J Mater Sci 27:6357

    Article  CAS  Google Scholar 

  8. Ali AMM, Mohamed NS, Arof AK (1998) J Power Sources 74:135

    Article  CAS  Google Scholar 

  9. Srivastava N, Chandra A, Chandra S (1995) Phys Rev B 52(1):225

    Article  CAS  Google Scholar 

  10. Martinelli A, Matic A, Jacobsson P, Borjesson L, Navarra MA, Fernicola A, Panero S, Scrosati B (2006) Solid State Ionics 177:2431

    Article  CAS  Google Scholar 

  11. Wu GM, Lin SJ, Yang CC (2006) J Membr Sci 275:127

    Article  CAS  Google Scholar 

  12. Buraidah MH, Teo LP, Majid SR, Arof AK (2009) Phys, B Condens Matter 404:1373

    Article  CAS  Google Scholar 

  13. Rice MJ, Roth WL (1972) J Solid State Chem 4:294

    Article  CAS  Google Scholar 

  14. Majid SR, Arof AK (2005) Phys, B Condens Matter 355:78

    Article  CAS  Google Scholar 

  15. Chandra S, Tolpadi SK, Hashmi SA (1989) J Phys Condens Matter 1:9101

    Article  CAS  Google Scholar 

  16. Srivastava N, Hashmi SA, Chandra S (1992) In: Chowdari BVR, Chandra S, Singh S, Srivastava PC (eds) Solid state ionics: materials and applications. World Scientific, India, p 561

    Google Scholar 

  17. Hashmi SA, Kumar A, Maurya KK, Chandra S (1990) J Phys D Appl Phys 23:1307

    Article  CAS  Google Scholar 

  18. Mohamed RI (2000) J Phys Chem Solids 61:1357

    Article  CAS  Google Scholar 

  19. Balaji Bhargav P, Madhu Mohan V, Sharma AK, Rao VVRN (2009) Curr Appl Phys 9:165

    Article  Google Scholar 

  20. Winie T, Arof AK (2004) Ionics 10:193

    Article  Google Scholar 

  21. Murugaraj R, Govindaraj G, George D (2003) Mater Lett 57:1656

    Article  CAS  Google Scholar 

  22. Hema M, Selvasekerapandian S, Sakunthala A, Arunkumar D, Nithy H (2008) Phys B 403:2740

    Article  CAS  Google Scholar 

  23. Sheha E, El-Mansy MK (2008) J Power Sources 185:1509

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Gouda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gouda, M.E., Badr, S.K., Hassan, M.A. et al. Impact of ethylene carbonate on electrical properties of PVA/(NH4)2SO4/H2SO4 proton-conductive membrane. Ionics 17, 255–261 (2011). https://doi.org/10.1007/s11581-010-0506-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-010-0506-2

Keywords

Navigation