Skip to main content
Log in

Temperature-dependent conductivity, optical properties, thermal stability and dielectric modelling studies of Cu-Al2O3/CPE/PVC blend nanocomposites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Optical, thermal, crystalline, conductivity and dielectric properties of chlorinated polyethylene/poly (vinyl chloride) (CPE/PVC) blend composites with various loadings of copper alumina (Cu-Al2O3) nanoparticles were investigated in this work. The optical absorbance measured by UV–visible spectroscopy manifests the successful reinforcement of CPE/PVC blend by Cu-Al2O3 nanoparticles. The bandgap energies of nanocomposites were determined using Tauc’s equation and the minimum bandgap was obtained for 7 wt% loading. The X-ray diffractometer studies emphasized the enhanced crystallinity of nanocomposites relative to bare blend and the crystallinity increased with increasing filler concentration. The thermal properties of the samples were studied by thermogravimetric analysis and the results demonstrated a decrease in the rate of thermal degradation for nanocomposites compared to the polymer blend, revealing the excellent thermal stability of nanocomposites. AC conductivity studies were carried out at different temperatures and the conductivity of all the nanocomposites was improved compared to the CPE/PVC blend. The Coulomb barrier of charge carriers was determined using Coulomb barrier height model and the results showed a decrease in barrier height with an increase in temperature. The activation energy calculated from the Arrhenius plot decreases as a function of frequency. Temperature-dependent electrical impedance measurements also supported the enhanced conductivity at higher temperatures. The dielectric constant of CPE/PVC blend nanocomposites of various loadings of Cu-Al2O3 decreased with frequency and increased with temperature. The experimental values of dielectric constant were correlated with different theoretical models. The model based on Maxwell-Garnet equation was in good agreement with the experimental dielectric constants of the polymer nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Savaş S 2019 Bull. Mater. Sci. 42 92

    Article  Google Scholar 

  2. Dey B, Ahmad M W, Almezeni A, Sarkhel G, Bag D S and Choudhury A 2020 Bull. Mater. Sci. 43 207

    Article  CAS  Google Scholar 

  3. Ghezelbash Z, Ashouri D, Mousavian S, Ghandi A H and Rahnama Y 2012 Bull. Mater. Sci. 5 925

    Article  Google Scholar 

  4. Hasan M, Banerjee A N and Lee M 2015 Bull. Mater. Sci. 38 283

    Article  CAS  Google Scholar 

  5. Singh N, Mazumder R, Gupta P and Kumar D 2017 Bull. Mater. Sci. 40 527

    Article  CAS  Google Scholar 

  6. Suhailath K and Ramesan M T 2020 J. Thermoplast. Compos. Mater. 33 1061

    Article  CAS  Google Scholar 

  7. Wang G, Qu Z, Liu L, Shi Q and Guo J 2008 Mater. Sci. Eng. A 472 136

    Article  Google Scholar 

  8. Garcia D, Balart R, Crespo J E and Lopez J 2006 J. Appl. Polym. Sci. 101 2464

    Article  CAS  Google Scholar 

  9. Lian Y, Peng Z, Zhang X, Fan R and Zhang Y 2001 J. Appl. Polym. Sci. 80 2823

    Article  CAS  Google Scholar 

  10. Deshpande V D and Singh U 2006 J. Appl. Polym. Sci. 101 624

    Article  CAS  Google Scholar 

  11. Jasna V C and Ramesan M T 2013 Int. J. Plast. Technol. 23 217

    Google Scholar 

  12. Bhagabati P and Chaki T K 2013 J. Appl. Polym. Sci. 131 40316

    Google Scholar 

  13. Tangboriboon N, Pannangpetch W, Aranyik K, Petcharoen K and Sirivat A 2015 Prog. Rubber Plast. Recycl. Technol. 31 189

    Article  Google Scholar 

  14. Marossy K and Toth J 2004 Plast. Rubber Compos. 34 438

    Article  Google Scholar 

  15. Wang T, Li X, Xiong Y and Guo S 2011 RSC Adv. 10 44584

    Article  Google Scholar 

  16. Suhailath K, Thomas M and Ramesan M T 2021 Polym. Polym. Compos. 29 1200

    CAS  Google Scholar 

  17. Xiang Z, Li Z, Lei Q, Xiao Z and Pang Y 2015 Trans. Nonferrous Met. Soc. China 25 444

    Article  CAS  Google Scholar 

  18. Jach K, Pietrzak K, Wajler A, Sidorowicz A and Brykała U 2013 Arch. Metall. Mater. 58 1425

    Article  CAS  Google Scholar 

  19. Du Y, Gao J, Yang J and Liu X 2012 J. Appl. Polym. Sci. 129 174

    Article  Google Scholar 

  20. Sankar S and Ramesan M T 2022 Polym. Eng. Sci. 62 2402

    Article  CAS  Google Scholar 

  21. Hasan M, Kumar R, Barakat M A and Lee M 2015 RSC Adv. 5 14393

    Article  CAS  Google Scholar 

  22. El-Khiyami S S, Ismail A M and Hafez R S 2021 J. Inorg. Organomet. Polym. Mater. 31 4313

    Article  CAS  Google Scholar 

  23. Parvathi K, Bahuleyan B K and Ramesan M T 2022 J. Inorg. Organomet. Polym. Mater. 32 2827

    Article  CAS  Google Scholar 

  24. Sankar S, George A and Ramesan M T 2022 RSC Adv. 12 17637

    Article  CAS  Google Scholar 

  25. Maji P, Pande P P and Choudhary R B 2015 Bull. Mater. Sci. 38 417

    Article  CAS  Google Scholar 

  26. Volkova V K and Kalistratova L F 2015 Inorg. Mater. Appl. Res. 6 411

    Article  Google Scholar 

  27. Klari I, Vrande N S and Roje U 2000 J. Appl. Polym. Sci. 78 166

    Article  Google Scholar 

  28. Suhailath K, Bahuleyan B K and Ramesan M T 2021 J. Inorg. Organomet. Polym. Mater. 31 365

    Article  CAS  Google Scholar 

  29. Pandey M, Joshi G M, Deshmukh K and Ahmad J 2015 Adv. Mater. Lett. 6 165

    Article  CAS  Google Scholar 

  30. Zangina T, Hassan J, Matori K A, Azis R S, Ahmadu U and See A 2016 Results Phys. 6 719

    Article  Google Scholar 

  31. Sarker B K, Islam A B M O, Ahmed F and Bhuiyan A H 2006 Polym. Polym. Compos. 14 741

    CAS  Google Scholar 

  32. Dhahri A, Dhahri E and Hlil E K 2018 RSC Adv. 8 9103

    Article  CAS  Google Scholar 

  33. Abdelrazek E M, Abdelghany A M, Tarabiah A E and Zidan H M 2019 J. Mater. Sci. Mater. Electron. 30 15521

    Article  CAS  Google Scholar 

  34. Farman N, Mumtaz M, Mahmood M A, Khan S D, Zia M A, Raffi M et al 2020 Opt. Mater. 99 109534

    Article  CAS  Google Scholar 

  35. Suhailath K, Thomas M and Ramesan M T 2020 Res. Chem. Intermed. 46 2579

    Article  CAS  Google Scholar 

  36. Mannu P, Palanisamy M, Bangaru G, Ramakrishnan S, Kandasami A and Kumar P 2019 Appl. Phys. A 125 458

    Article  CAS  Google Scholar 

  37. Sownthari K and Suthanthiraraj S A 2014 J. Appl. Polym. Sci. 131 40524

    Article  Google Scholar 

  38. Sun D and Wei Y 2008 J. Appl. Polym. Sci. 108 3748

    Article  CAS  Google Scholar 

  39. Arunkumar R, Babu R S and Rani M U 2017 J. Mater. Sci. Mater. Electron. 28 3309

    Article  CAS  Google Scholar 

  40. Prasanna S and Suthanthiraraj S A 2017 Ionics 23 3137

    Article  Google Scholar 

  41. Mohamed A T, Ahmed Y A and Mobarak Y 2012 J. Eng. Sci. 40 1375

    Google Scholar 

  42. Parvathi K and Ramesan M T 2022 Polym. Compos. 43 2628

    Article  CAS  Google Scholar 

  43. Bruggeman D A G 1935 Ann. Phys. 416 636

    Article  Google Scholar 

  44. Garnett J C M 1904 Proc. Math. Phys. Eng. 203 359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M T Ramesan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suvarna, S., Niranjana, V.S., Subburaj, M. et al. Temperature-dependent conductivity, optical properties, thermal stability and dielectric modelling studies of Cu-Al2O3/CPE/PVC blend nanocomposites. Bull Mater Sci 45, 246 (2022). https://doi.org/10.1007/s12034-022-02829-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02829-8

Keywords

Navigation