Skip to main content
Log in

Dielectric, thermal, and electrochemical properties of PVC/PEMA blended polymer electrolytes complexed with zinc triflate salt

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A new solid polymer electrolyte system based on poly (vinyl chloride) (PVC) and poly (ethyl methacrylate) (PEMA) containing zinc triflate [Zn(CF3SO3)2] salt obtained in the form of thin film specimens using solution casting technique has been examined by means of complex impedance analysis, thermogravimetry (TG) and differential scanning calorimetric (DSC) studies, linear sweep voltammetry (LSV) and cyclic voltammetric (CV) measurements. The relevant mechanism of zinc ion transport involved in the case of the present polymer blend electrolyte viz., [PVC (30 wt%)/PEMA (70 wt%)] : x wt% [Zn(CF3SO3)2] (where x = 10, 15, 20, 25, 30, and 35, respectively) has been evaluated in terms of AC impedance method, dielectric and electrical modulus formalisms. The optimized composition of the chosen blended polymer electrolyte system having 30 wt% loading of zinc triflate salt exhibited a single glass transition temperature (T g) and possessed appreciable levels of thermal and electrochemical stability for possible utilization in zinc batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ramesh S, Leen KH, Kumutha K, Arof AK (2007) FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim Acta Part A 66:1237–1242. doi:10.1016/j.saa.2006.06.012

    Article  CAS  Google Scholar 

  2. Ramesh S, Yahaya AH, Arof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152-153:291–294

    Article  CAS  Google Scholar 

  3. Ahmed MT, Fahmy T (1999) Distributed relaxations in PVC/PEMA polymer blends as revealed by thermostimulated depolarization current. Polym Test 18:589–599

    Article  CAS  Google Scholar 

  4. Fahmy T, Ahmed MT (2000) Alpha relaxation study in poly (vinyl chloride) / poly (ethyl methacrylate) blends using thermally stimulated currents. Polym Int 49:669–677

    Article  CAS  Google Scholar 

  5. Zakaria NA, Isa MIN, Mohamed NS, Subban RHY (2012) Characterization of polyvinyl chloride / polyethyl methacrylate polymer blend for use as polymer host in polymer electrolytes. J Appl Polym Sci 126:E419–E424. doi:10.1002/app.36940

    Article  CAS  Google Scholar 

  6. Subadevi R, Sivakumar M, Rajendran S, Wu H-C, Wu N-L (2012) Development and characterizations of PVdF-PEMA gel polymer electrolytes. Ionics 18:283–289. doi:10.1007/s11581-011-0629-0

    Article  CAS  Google Scholar 

  7. Sim LN, Majid SR, Arof AK (2012) FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib Spectrosc 58:57–66. doi:10.1016/j.vibspec.2011.11.005

    Article  CAS  Google Scholar 

  8. Anuar NK, Subban RHY, Mahamed NS (2012) Properties of PEMA-NH4CF3SO3 added to BMATSFI ionic liquid. Materials 5:2609–2620. doi:10.3390/ma5122609

    Article  CAS  Google Scholar 

  9. Chakrabarti R, Chakraborty D (2007) Modification of the physical, mechanical, and thermal properties of poly (vinyl chloride) by blending with poly (ethyl methacrylate). J Appl Polym Sci 105:1377–1384. doi:10.1002/app.26256

    Article  CAS  Google Scholar 

  10. Ramesh S, Chai MF (2007) Conductivity, dielectric behavior and FTIR studies of high molecular weight poly (vinylchloride)-lithium triflate polymer electrolytes. Mat Sci Eng B 139:240–245. doi:10.1016/j.mseb.2007.03.003

    Article  CAS  Google Scholar 

  11. Rajendran S, Uma T (2001) FTIR and conductivity studies of PVC based polymer electrolyte systems. Ionics 7:122–125

    Article  CAS  Google Scholar 

  12. Kim H-T, Kim K-B, Kim S-W, Park J-K (2000) Li-ion polymer battery based on phase-separated gel polymer electrolyte. Electrochim Acta 45:4001–4007

    Article  CAS  Google Scholar 

  13. Sellam, Hashmi SA (2012) Enhanced zinc ion transport in gel polymer electrolyte: effect of nano-sized ZnO dispersion. J Solid State Electrochem 16:3105–3114. doi:10.1007/s10008-012-1733-4

  14. Sai Prasanna CM, Austin Suthanthiraraj S (2015) Electrical, structural, and morphological studies of honeycomb-like microporous zinc-ion conducting poly (vinyl chloride) / poly (ethyl methacrylate) blend-based polymer electrolytes. Ionics 22:389–404. doi:10.1007/s11581-015-1546-4

    Article  Google Scholar 

  15. Ravi M, Bhavani S, Kiran Kumar K, Narasimaha Rao VVR (2013) Investigations on electrical properties of PVP:KIO4 polymer electrolyte films. Solid State Sci 19:85–93. doi:10.1016/j.solidstatesciences.2013.02.006

    Article  CAS  Google Scholar 

  16. Rama Mohan K, Achari VBS, Rao VVRN, Sharma AK (2011) Electrical and optical properties of (PEMA/PVC) polymer blend electrolyte doped with NaClO4. Polym Test 30:881–886. doi:10.1016/j.polymertesting.2011.08.010

    Article  CAS  Google Scholar 

  17. Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2007) Structure, thermal and transport properties of PVAc-LiClO4 solid polymer electrolytes. J Phys Chem Solids 68:407–412. doi:10.1016/j.jpcs.2006.12.001

    Article  CAS  Google Scholar 

  18. Armstrong RD (1974) The metal-solid electrolyte interphase. J Electroanal Chem Interfacial Electrochem 52:413–419

    Article  CAS  Google Scholar 

  19. Sownthari K, Suthanthiraraj SA (2013) Synthesis and characterization of an electrolyte system based on a biodegradable polymer. Express Polym Lett 7:495–504. doi:10.3144/expresspolymlett.2013.46

    Article  CAS  Google Scholar 

  20. Polu AR, Kumar R, Joshi GM (2014) Effect of zinc salt on transport, structural, and thermal properties of PEG-based polymer electrolytes for battery application. Ionics 20:675–679. doi:10.1007/s11581-013-1024-9

    Article  CAS  Google Scholar 

  21. Amir S, Mohamed NS, Subban RHY (2013) Ionic conductivity studies on PEMA/PVC-NH4I polymer electrolytes. Int J Mater Eng Innov 4:281–290

    Article  Google Scholar 

  22. Ramesh S, Liew C-W (2013) Dielectric and FTIR studies on blending of [xPMMA-(1-x) PVC] with LiTFSI. Measurement 46:1650–1656

    Article  Google Scholar 

  23. MacCallum JR, Vincent CA (eds) (1987) Polymer electrolyte review - I & II. Elsevier, London

    Google Scholar 

  24. Kremer F, Schonhals A (eds) (2003) Broad band dielectric spectroscopy. Springer-Verlag Berlin Heidelberg, New York

    Google Scholar 

  25. Shukur MF, Ibrahim FM, Majid NA, Ithnin R, Kadir MFZ (2013) Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI. Phys Scr 88:1–9. doi:10.1088/0031-8949/88/02/025601

    Article  Google Scholar 

  26. Ravi M, Song S, Gu K, Tang J, Zhang Z (2015) Electrical properties of biodegradable poly(ε-caprolactone): lithium thiocyanate complexed polymer electrolyte films. Mater Sci Eng B. doi:10.1016/j.mseb.2015.02.003

    Google Scholar 

  27. Polu AR, Kumar R (2011) AC impedance and dielectric spectroscopic studies of Mg2+ ion conducting PVA-PEG blended polymer electrolytes. Bull Mater Sci 34:1063–1067

    Article  CAS  Google Scholar 

  28. Khiar ASA, Mat Radzi S, Abd Razak N (2013) Conductivity and dielectric behavior studies of LiCF3SO3 dissociation in L-chitosan/PMMA-based polymer electrolytes. Malays J Fundam Appl Sci 9:46–50

    Google Scholar 

  29. Tripathi SK, Gupta A, Kumari M (2012) Studies on electrical conductivity and dielectric behavior of PVdF-HFP-PMMA-NaI polymer blend electrolyte. Bull Mater Sci 35:969–975

    Article  CAS  Google Scholar 

  30. Francis KMG, Subramanian S, Shunmugavel K, Naranappa V, Pandian SSM, Nadar SC (2016) Lithium-ion conducting blend polymer electrolyte based on PVA-PAN doped with lithium nitrate. Polym-Plast Technol Eng 55:25–35. doi:10.1080/03602559.2015.1050523

    Article  CAS  Google Scholar 

  31. Sharma P, Kanchan DK, Gondaliya N (2012) Effect of nano-filler on structural and ionic transport properties of plasticized polymer electrolyte. Open J Org Polym Mater 2:38–44. doi:10.4236/ojopm.2012.22006

    Article  CAS  Google Scholar 

  32. Aziz SB, Abidin ZHZ, Arof AK (2010) Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan-silver triflate electrolyte membrane eXPRESS. Polym Lett 4:300–310. doi:10.3144/expresspolymlett.2010.38

    Article  CAS  Google Scholar 

  33. Fares S (2012) Influence of gamma-ray irradiation on optical and thermal degradation of poly(ethyl-methacrylate) (PEMA) polymer. Nat Sci 4:499–507. doi:10.4236/ns.2012.47067

    CAS  Google Scholar 

  34. Ramesh S, Liew C-W, Morris E, Durairaj R (2010) Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend-based polymer electrolytes. Thermochim Acta. doi:10.1016/j.tca.2010.08.005

    Google Scholar 

  35. Ramesh S, Liew C-W (2013) Development and investigation on PMMA-PVC blend-based solid polymer electrolytes with LiTFSI as dopant salt. Polym Bull 70:1277–1288. doi:10.1007/s00289-012-0851-6

    Article  CAS  Google Scholar 

  36. Xue X, Zhang H, Zhang S (2014) Preparation of MgAl LDHs intercalated with amines and effect on thermal behavior for poly(vinyl chloride). Adv Mater Phys Chem 4:258–266. doi:10.4236/ampc.2014.412028

    Article  Google Scholar 

  37. Aouachria K, Quintard G, Massardier-Nageotte V, Belhaneche-Bensemra N (2014) The effect of di-(-2-ethyl hexyl) phtlalate (DEHP) as plasticizer on the thermal and mechanical properties of PVC/PMMA blends. Polimeros 24:428–433. doi:10.1590/0104-1428.1588

    Google Scholar 

  38. Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski JL (2003) Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym Degrad Stab 79:271–281

    Article  CAS  Google Scholar 

  39. Sim LN, Majid SR, Arof AK (2014) Effects of 1-butyl-3-methyl imidazolium trifluoromethanesulfonate ionic liquid in poly (ethyl methacrylate) / poly (vinylidenefluoride-co-hexafluoropropylene) blend based polymer electrolyte system. Electrochim Acta 123:190–197. doi:10.1016/j.electacta.2014.01.017

    Article  CAS  Google Scholar 

  40. Ramesh S, Liew C-W, Ramesh K (2011) Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes. J Non-Cryst Soilds 357:2132–2138. doi:10.1016/j.jnoncrysol.2011.03.004

    Article  CAS  Google Scholar 

  41. Machado GO, Prud’homme RE, Pawlicka A (2007) Conductivity and thermal analysis studies of solid polymeric electrolytes based on plasticized hydroxyethyl cellulose. E-Polymers 115:1–9

    Google Scholar 

  42. Nadimicherla R, Kalla R, Muchakayala R, Guo X (2015) Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO:KI). Solid State Ionics 278:260–267. doi:10.1016/j.ssi.2015.07.002

    Article  CAS  Google Scholar 

  43. Mishra K, Hashmi SA, Rai DK (2013) Investigations on poly(ethylene oxide) + NH4PF6 solid polymer electrolyte system. Int J Polym Mater Polym Biomater 62:663–670. doi:10.1080/00914037.2013.769224

    Article  CAS  Google Scholar 

  44. Trapa PE, Won Y-Y, Mui SC, Olivetti EA, Huang B, Sadoway DR, Mayes AM, Dallek S (2005) Rubbery graft copolymer electrolytes for solid-state, thin-film lithium batteries. J Electrochem Soc 152:A1–A5

    Article  CAS  Google Scholar 

  45. Mathew CM, Kesavan K, Rajendran S (2015) Structural and electrochemical analysis of PMMA based gel electrolyte membranes. Int J Electrochem 2015:1–7. doi:10.1155/2015/494308

    Article  Google Scholar 

  46. Leszczynska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer / montmorillonite nanocomposites with improved thermal properties. Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96

    Article  CAS  Google Scholar 

  47. Wu F, Feng T, Bai Y, Wu C, Ye L, Feng Z (2009) Preparation and characterization of solid polymer electrolytes based on PHEMO and PVDF-HFP. Solid State Ionics 180:677–680. doi:10.1016/j.ssi.2009.03.003

    Article  CAS  Google Scholar 

  48. Nippani SK, Kuchhal P, Anand G, Kambila VK (2016) Structural, thermal and conductivity studies of PAN-LiBF4 polymer electrolytes. J Eng Sci Technol 11:1595–1608

    Google Scholar 

  49. Ramesh S, Teh GB, Louh R-F, Hou YK, Sin PY, Yi LJ (2010) Preparation and characterization of plasticized high molecular weight PVC-based polymer electrolytes. Sadhana 35:87–95

    Article  CAS  Google Scholar 

  50. Lin Y, Li J, Liu K, Liu Y, Li J, Wang X (2016) Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery. Green Chem 18:3796. doi:10.1039/c6g00444j

    Article  CAS  Google Scholar 

  51. Porcarelli L, Gerbaldi C, Bella F, Nair JR (2016) Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci Rep 6:19892. doi:10.1038/srep19892

    Article  CAS  Google Scholar 

  52. Chapi S, Raghu S, Devendrappa H (2016) Enhanced electrochemical, structural, optical, thermal stability and ionic conductivity of (PEO/PVP) polymer blend electrolyte for electrochemical applications. Ionics 22:803–814. doi:10.1007/s11581-015-1600-2

    Article  CAS  Google Scholar 

  53. Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2006) Ac impedance, DSC and FT-IR investigations on (x) PVAc-(1-x) PVdF blends with LiClO4. Mater Chem Phys 98:55–61. doi:10.1016/j.matchemphys.2005.08.063

    Article  CAS  Google Scholar 

  54. Kaniappan K, Latha S (2011) Certain investigations on the formulation and characterization of polystyrene/poly(methyl methacrylate) blends. Int J ChemTech Res 3:708–717

    CAS  Google Scholar 

  55. Subbu C, Rajendran S, Kesavan K, Mathew CM (2015) Lithium ion conduction in PVdC-co-AN based polymer blend electrolytes doped with different lithium salts. Intern Polym Process 4:476–486

    Article  Google Scholar 

  56. Kolarik J, Fambri L, Slouf M, Konecny D (2005) Heterogenous polyamide 66/syndiotactic polystyrene blends: phase structure and thermal and mechanical properties. J Appl Polym Sci 96:673–684

    Article  CAS  Google Scholar 

  57. Bhavani S, Pavani Y, Ravi M, Kiran Kumar K, Narasimha Rao VVR (2013) Structural and electrical properties of pure and NiCl2 doped PVA polymer electrolytes. Am J Polym Sci 3:56–62. doi:10.5923/j.ajps.20130303.04

    CAS  Google Scholar 

  58. Ravi M, Pavani Y, Kiran Kumar K, Bhavani S, Sharma AK, Narasimha Rao VVR (2011) Studies on electrical and dielectric properties of PVP:KBrO4 complexed polymer electrolyte films. Mater Chem Phys 130:442–448. doi:10.1016/j.matchemphys.2011.07.006

    Article  CAS  Google Scholar 

  59. Polu AR, Rhee H-W, Kim DK (2015) New solid polymer electrolytes (PEO20-LiTDI-SN) for lithium batteries: structural, thermal and ionic conductivity studies. J Mater Sci Mater Electron. doi:10.1007/s10854-015-3527-9

    Google Scholar 

  60. bt. Mohd Noor SA, Ahmad A, bin Abd Rahman MY, Talib IA (2010) Solid polymeric electrolyte of poly(ethylene)oxide-50% epoxidized natural rubber-lithium triflate (PEO-ENR50-LiCF3SO3). Nat Sci 2:190–196. doi:10.4236/ns.2010.23029

    Google Scholar 

  61. Premilaa R, Rajendrana S, Subbua C (2016) Response of conductivity towards the concentration of lithium perchlorate salt in solid polymer electrolytes. Int Seminar Nanosci Technol-Conf Proc 3:13–24

    Google Scholar 

  62. Yusof YM, Majid NA, Kasmani RM, Illias HA, Kadir MFZ (2014) The effect of plasticization on conductivity and other properties of starch/chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Mol Cryst Liq Cryst 603:73–88. doi:10.1080/15421406.2014.966261

    Article  CAS  Google Scholar 

  63. Dias FB, Plomp L, Veldhuis JBJ (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169–191

    Article  CAS  Google Scholar 

  64. Song M-K, Kim Y-T, Kim YT, Cho BW, Popov BN, Rhee H-W (2003) Thermally stable gel polymer electrolytes. J Electrochem Soc 150:A439–A444

    Article  CAS  Google Scholar 

  65. Nair JR, Chiappone A, Destro M, Jabbour L, Meligrana G, Gerbaldi C (2012) UV-induced radical photo-polymerization: a smart tool for preparing polymer electrolyte membranes for energy storage devices. Membranes 2:687–704. doi:10.3390/membranes2040687

    Article  CAS  Google Scholar 

  66. Xu JJ, Ye H, Huang J (2005) Novel zinc ion conducting polymer gel electrolytes based on ionic liquids. Electrochem Commun 7:1309–1317. doi:10.1016/j.elecom.2005.09.011

    Article  CAS  Google Scholar 

  67. Bender SF, Cretzmeyer JW, Reise TF (2002) Zinc/air batteries-button configuration. In: Linden D, Reddy TB (eds) Handbook of batteries. McGraw-Hill, New York (Chapter 13)

    Google Scholar 

  68. Imperiyka M, Ahmad A, Hanifah SA, Rahman MYA (2014) Preparation and characterization of polymer electrolyte of glycidyl methacrylate-methyl methacrylate-LiClO4 plasticized with ethylene carbonate. Int J Polym Sci 2014:1–7. doi:10.1155/2014/638279

    Article  Google Scholar 

  69. Leones R, Sentanin F, Rodrigues LC, Marrucho IM, Esperanca JMSS, Pawlicka A, Silva MM (2012) Investigation of polymer electrolytes based on agar and ionic liquids. Express Polym Lett 6:1007–1016. doi:10.3144/expresspolymlett.2012.106

    Article  CAS  Google Scholar 

  70. Brownson DAC, Banks CE (2014) Interpreting Electrochemistry, The handbook of graphene electrochemistry. Springer, Berlin (Chapter 2)

  71. Girish Kumar G, Sampath S (2003) Electrochemical characterization of poly(vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries. Solid State Ionics 160:289–300. doi:10.1016/S0167-2738(03)00209-1

    Article  Google Scholar 

  72. Wen Z, Itoh T, Ichikawa Y, Kubo M, Yamamoto O (2000) Blend-based polymer electrolytes of poly(ethylene oxide) and hyperbranched poly[bis(triethylene glycol) benzoate] with terminal acetyl groups. Solid State Ionics 134:281–289

    Article  CAS  Google Scholar 

  73. Kumar D, Suleman M, Hashmi SA (2011) Studies on poly(vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposite for sodium-sulfur batteries. Solid State Ionics 202:45–53. doi:10.1016/j.ssi.2011.09.001

    Article  CAS  Google Scholar 

  74. Venkata Narayanan NS, Ashokraj BV, Sampath S (2010) Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: application in rechargeable zinc batteries. J Colloid Interface Sci 342:505–512. doi:10.1016/j.jcis.2009.10.034

    Article  CAS  Google Scholar 

  75. Kumar D, Hashmi SA (2010) Ion transport and ion-filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J Power Sources 195:5101–5108. doi:10.1016/j.jpowsour.2010.02.026

    Article  CAS  Google Scholar 

  76. Girish Kumar G, Sampath S (2003) Electrochemical characterization of a zinc-based gel-polymer electrolyte and its application in rechargeable batteries. J Electrochem Soc 150:A608–A615

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (C.M.S.) of the present work gratefully acknowledges the financial support received in the form of WOS-A program from the Department of Science and Technology (DST), New Delhi, under DST Sanction No. SR/WOS-A/PS-32/2013 dated 23 April 2014. The author (C.M.S.) would also like to express gratefulness to Mr. A. Narayanan, Department of Chemistry, IIT Madras for his kind help and invaluable aid in carrying out DSC and TGA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Sai Prasanna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sai Prasanna, C.M., Austin Suthanthiraraj, S. Dielectric, thermal, and electrochemical properties of PVC/PEMA blended polymer electrolytes complexed with zinc triflate salt. Ionics 23, 3137–3150 (2017). https://doi.org/10.1007/s11581-017-2109-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2109-7

Keywords

Navigation