Skip to main content
Log in

An ultrafast laser micromachined broadband terahertz frequency selective surface

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The purpose of this paper is to focus on the frequency selective surface (FSS) filter structure which exhibits a broadband frequency response operating in the terahertz (THz) frequency regime. The achievement of the broadband frequency response has been accomplished by means of only invoking the FSS structure excluding the presence of a ground plane and also excluding the multilayered FSS technique. The FSS filter is simulated using CST Microwave Studio. This simulation has been carried out using Teflon as the substrate which is a dielectric over which the conductive material gold with a thickness of \(2\,\upmu \hbox {m}\) is coated in which the FSS filter structure is designed with periodic hexagonal aperture unit cells. The structure of the proposed frequency selective surface filter helps in achieving a broadband frequency response with a bandwidth of 300 GHz centred at 0.36 THz. The designed FSS structure is a bandpass filter and it exhibits the most imperative properties of angle resolvability and polarization insensitivity. The fabrication of the same has been carried out using the laser micromachining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sanphuang V, Nahar N K and Volakis J L 2013 Natl. Aerosp. Electron. Conf. Proc. IEEE 18

  2. Qiao S, Zhang Y, Zhao Y, Zhou Y, Liang S and Yang Z 2016 IEEE Trans. Terahertz Sci. Technol. 6 292

    Article  Google Scholar 

  3. Zhang X Y, Zheng Z X, Li X X, Tan R B, Zhang Z P, Zhou Y et al 2012 Adv. Mater. Res. 571 362

    Article  CAS  Google Scholar 

  4. Ferraro A, Zografopoulos D C, Caputo R and Beccherelli R 2017 J. Sel. Top. Quantum Electron. 23 1

  5. Xia B G, Yao C F, Huang J, Meng J, Zhang D H and Zhang J S 2013 Electron. Lett. 49 1398

    Article  Google Scholar 

  6. Dickie R, Cahill R, Fusco V, Gamble H S and Mitchell N 2011 IEEE Trans. Terahertz Sci. Technol. 1 450

    Article  Google Scholar 

  7. Sanphuang V, Ghalichechian N, Nahar N K and Volakis J L 2016 IEEE Trans. Terahertz Sci. Technol. 6 583

    Article  CAS  Google Scholar 

  8. Zhang J L, Zhang Y, Gao K and Zhao G Z 2013 Chinese Sci. Bull. 58 4687

    Article  CAS  Google Scholar 

  9. Chen X and Fan W H 2015 Mater. Res. Express 2 1

  10. Kumar A and Kartikeyan M V 2013 Act. Passiv. Electron. Components 6 6

  11. Ebrahimi A, Nirantar S, Withayachumnankul W, Bhaskaran M, Sriram S, Al-Sarawi S F et al 2015 IEEE Trans. Terahertz Sci. Technol. 5 761

    Article  CAS  Google Scholar 

  12. Manikandan E, Sreeja B S, Radha S and Bathe R N 2018 Mater. Lett. 229 320

    Article  CAS  Google Scholar 

  13. Manikandan E, Sreeja B S, Radha S, Bathe R N, Jain R and Prabhu S S 2018 J. Infrared Millim. Terahertz Waves 34 489

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Sasi Princy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Princy, S.S., Sreeja, B.S., Manikandan, E. et al. An ultrafast laser micromachined broadband terahertz frequency selective surface. Bull Mater Sci 42, 151 (2019). https://doi.org/10.1007/s12034-019-1879-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1879-0

Keywords

Navigation