Skip to main content
Log in

Microfabrication of Low Cost Frequency Selective Surface for Terahertz Wave by Laser Ablation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A method of fabricating and characterizing terahertz frequency selective surface filters from a low-cost silver adhesive tape has been reported in this paper. The proposed filter was initially evaluated numerically using the method of moment’s simulation and verified experimentally by terahertz time-domain spectroscopy technique. The numerical results show that the cross aperture frequency selective surface has angle-resolved and polarization independent operation. The proposed silver adhesive tape and conventional copper-based frequency selective surface have been fabricated using a laser micromachining process. A 20 ns-pulsed laser operating at 1064 nm wavelength was used to create the desired structure by ablation mechanism in the copper film. The pattern ablated by the laser is a cross-shaped slit on copper and silver adhesive tape. The patterned structure was designed to resonate at 0.25 THz by the cross-arm structure. The fabricated structure shows the peak transmittance of 90% with a full-width half maximum of 48% with respect to the resonance. The adhesive tape based frequency selective surface provides similar transmission characteristics compared to a conventional frequency selective surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tonouchi, Nat. Photonics 1, 97 (2007).

    Article  Google Scholar 

  2. J. Li, Y. Li, and L. Zhang, IEEE Photonics Technol. Lett. 30, 238 (2017).

    Article  Google Scholar 

  3. D.W. Porterfield, J.L. Hesler, R. Densing, E.R. Mueller, T.W. Crowe, and R.M. Weikle, Appl. Opt. 33, 6046 (1994).

    Article  Google Scholar 

  4. P.A.R. Ade, G. Pisano, C. Tucker, and S. Weaver, Proc. SPIE. 6275, 62750U (2006).

    Article  Google Scholar 

  5. M.J. Madou, Fundamentals of Microfabrication and Nanotechnology, 3rd ed. (Boca Raton: CRC Press, 2011).

    Book  Google Scholar 

  6. M. Esakkimuthu, S.B. Suseela, R. Sankararajan, A. Gupta, G. Rana, and S. Prabhu, J. Laser Micro Nanoeng. 12, 313 (2017).

    Google Scholar 

  7. N. Ahmed, S. Darwish, and A.M. Alahmari, Mater. Manuf. Process. 31, 1121 (2016).

    Article  Google Scholar 

  8. S. Mishra and V. Yadava, Opt. Lasers Eng. 73, 89 (2015).

    Article  Google Scholar 

  9. J. Bonse, S. Hohm, S.V. Kirner, A. Rosenfeld, and J. Kruger, IEEE J. Sel. Top. Quantum Electron. 23, 1 (2017).

    Article  Google Scholar 

  10. K.G. Nichols, Proc. IEE 116, 2093 (1969).

    Google Scholar 

  11. R. Jordan, D. Cole, G. Lunney, K. Mackay, and D. Givord, Appl. Surf. Sci. 86, 24 (1995).

    Article  Google Scholar 

  12. A. Bogaerts, Z. Chen, and D. Bleiner, J. Anal. At. Spectrom. 21, 384 (2006).

    Article  Google Scholar 

  13. C.R. Phipps, T.P. Turner, R.F. Harrison, G.W. York, W.Z. Osborne, G.K. Anderson, X.F. Corlis, L.C. Haynes, H.S. Steele, K.C. Spicochi, and T.R. King, J. Appl. Phys. 64, 1083 (1988).

    Article  Google Scholar 

  14. T.J. Hirsch, R.F. Miracky, and C. Lin, Appl. Phys. Lett. 57, 1357 (1990).

    Article  Google Scholar 

  15. A. Bogaerts, Z. Chen, R. Gijbels, and A. Vertes, Spectrochim. Acta Part B At. Spectrosc. 58, 1867 (2003).

    Article  Google Scholar 

  16. M. Aghaei, S. Mehrabian, and S.H. Tavassoli, J. Appl. Phys. 104, 053303 (2008).

    Article  Google Scholar 

  17. K. Tada, G. Cohoon, K. Kieu, M. Mansuripur, and R.A. Norwood, IEEE Photonic Technol. Lett. 85712, 430 (2012).

    Google Scholar 

  18. N. Farid, P. Dasgupta, H. Chan, D. Milne, and G.M. O’Connor, Opt. InfoBase Conf. Pap. Part F82-C, 6736 (2017).

  19. C. Mcdonnell, D. Milne, H. Chan, D. Rostohar, and G.M.O. Connor, Opt. Lasers Eng. 80, 73 (2016).

    Article  Google Scholar 

  20. E. Manikandan, B.S. Sreeja, S. Radha, and R.N. Bathe, Mater. Lett. 229, 320 (2018).

    Article  Google Scholar 

  21. N. Born, R. Gente, and M. Koch, Electron. Lett. 51, 1012 (2015).

    Article  Google Scholar 

  22. E. Manikandan, B.S. Sreeja, S. Radha, R.N. Bathe, and R. Jain, J. Infrared Millime. Terahertz Waves 40, 38 (2018).

    Article  Google Scholar 

  23. E. Manikandan, B.S. Sreeja, S. Radha, M. Duraiselvam, A. Gupta, and S. Prabhu, Opt. Eng. 58, 011007 (2018).

    Google Scholar 

  24. A. Ferraro, D.C. Zografopoulos, R. Caputo, and R. Beccherelli, IEEE J. Sel. Top. Quantum Electron. 23, 8501308 (2017).

    Article  Google Scholar 

  25. P.D. Cunningham, N.N. Valdes, F.A. Vallejo, L.M. Hayden, B. Polishak, X. Zhou, J. Luo, A.K. Jen, J.C. Williams, and R.J. Twieg, J. Appl. Phys. 109, 043505 (2011).

    Article  Google Scholar 

  26. Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, J. Appl. Phys. 118, 043108 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manikandan Esakkimuthu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esakkimuthu, M., Suseela, S.B., Sankarrajan, R. et al. Microfabrication of Low Cost Frequency Selective Surface for Terahertz Wave by Laser Ablation. J. Electron. Mater. 48, 2423–2429 (2019). https://doi.org/10.1007/s11664-019-07008-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07008-w

Keywords

Navigation