Skip to main content
Log in

Effect of cerium doping on the optical and photocatalytic properties of ZnO nanoflowers

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Photocatalytic performances of the synthesized cerium doped (Ce-doped) ZnO nanoflowers are reported in this work. A microwave-assisted sol–gel method is adopted for the synthesis of the nanomaterial and its structural and morphological features are characterized. While doping, the \(\hbox {Ce}^{3+}\) ions occupy the sites of \(\hbox {Zn}^{2+}\) ions in the hexagonal ZnO lattice, which is investigated by means of X-ray diffraction studies and energy dispersive X-ray analysis. At higher \(\hbox {Ce}^{3+}\) concentrations, ultraviolet (UV) light absorption is quite high as evidenced by the UV–Vis absorption spectra. The photoluminescence study demonstrates higher oxygen vacancy and zinc interstitials for the Ce-doped ZnO compared to the undoped ZnO. Ce-doping improves the electrical properties of the sample as well. Finally, it is established that the Ce-doped ZnO nanoflower is highly efficient in UV degrading the methylene blue organic dye.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mo J, Hwang J E, Jegal J and Kim J 2007 Dye. Pig.  72 240

    Article  CAS  Google Scholar 

  2. Deshmukh K, Ahmed M B, Deshmulh R R, Pasha S K K, Sadasivuni K K, Polu A R et al 2017 J. Mater. Sci.: Mater. Electron.  28 973

  3. Ghazy M B, Esmail F A, El-Zawawy W K, Al-Maadeed M A and Owda M E 2016 J. Adv. Chem.  12 3

    Article  Google Scholar 

  4. Al-Maadeed M A and Al-Thani R 2012 Int. J. Mater. Sci. Tech.  2 69

    Google Scholar 

  5. Al-Maadeed M A, Shabana Y M and Noorunisha Khanam P 2014 Mater. Des.  581 374

    Article  Google Scholar 

  6. Fayyad E M, Sadasivuni K K, Ponnamma D and Al-Maadeed M A 2016 Carbohydr. Polym.  151 871

    Article  CAS  Google Scholar 

  7. Poornima Vijayan P and Al-Maadeed M A 2016 Exp. Polym. Lett.  10 506

    Article  Google Scholar 

  8. Janson A, Minier-Matar J, Al-Shamari E, Hussain A, Sharma R, Rowley D et al 2018 Emerg. Mater.  1 77

    Article  Google Scholar 

  9. Basavaiah K, Kahsay M H and Rama Devi D 2018 Emerg. Mater.  1–2 121

    Article  Google Scholar 

  10. Liu H, Owen J S and Paul Alivisatos A 2007 J. Am. Chem. Soc.  129 305

    Article  CAS  Google Scholar 

  11. Cao H, Zhao Y G, Ho S T, Seeling E W, Wang Q H and Chang R P H 1999 Phys. Rev. Lett.  82 2278

    Article  CAS  Google Scholar 

  12. Zhao J, Wang L, Yan X, Yang Y, Lei Y, Zhou J et al 2011 Mater. Res. Bull.  46 1207

    Article  CAS  Google Scholar 

  13. Nagaraj A, Govindaraj D and Rajan M 2018 Emerg. Mater.  1 25

    Article  Google Scholar 

  14. Jia T, Wang W, Long F, Fu Z, Wang H and Zhang Q 2009 J. Alloys Compd.  484 410

    Article  CAS  Google Scholar 

  15. Liu X, Zuo Y, Li L, Huang X and Li G 2014 RSC Adv.  4 6397

    Article  CAS  Google Scholar 

  16. Haase M, Riwotzki K, Meyssamy H and Kornowski A 2000 J. Alloys Compd.  303 191

    Article  Google Scholar 

  17. Du Y P, Zhang Y W, Sun L D and Yan C H 2008 J. Phys. Chem. C  112 12234

    Article  CAS  Google Scholar 

  18. Khatamian M, Khandar A A, Divband B, Haghigh M and Ebrahimias S 2012 J. Mol. Catal A: Chem.  365 120

  19. Clament Sagaya Selvam N, Judith Vijaya J and John Kennedy L 2013 J. Colloid. Inter. Sci.  407 215

  20. Sanoop P K, Anas S, Anadhakumar S, Gunasekar V, Saravanan R and Ponnusami V 2016 Arab. J. Chem.  9 S1618

    Article  CAS  Google Scholar 

  21. Mordkovich V Z, Hayashi H, Haemori M, Fukumura T and Kawasaki M 2003 Adv. Funct. Mater.  13 519

    Article  CAS  Google Scholar 

  22. Cheng B, Xiao Y, Wu G and Zhang L 2004 Adv. Funct. Mater.  14 913

    Article  CAS  Google Scholar 

  23. Li G R, Lu X H, Zhao W X, Su C Y and Tong Y X 2008 Cryst. Growth Des.  8 1276

    Article  CAS  Google Scholar 

  24. Hasnidawani J N, Azlina H N, Norita H, Bonia N N, Ratim S and Ali E S 2016 Proc. Chem.  19 211

    Article  CAS  Google Scholar 

  25. Thomas D, Augustine S, Sadasivuni K K, Ponnamma D, Alhaddad A Y, Cabibihan J J et al 2016 J. Electron. Mater.  45 4847

    Article  CAS  Google Scholar 

  26. Thomas D, Thomas A, Tom A E, Sadasivuni K K, Ponnamma D, Goutham S et al 2017 Synth. Metals  232 123

    Article  CAS  Google Scholar 

  27. Hezam A, Namratha K, Ponnamma D, Drmosh Q A, Saeed A M, Cheng C et al 2018 ACS Omega  3 12260

    Article  CAS  Google Scholar 

  28. Hezam A, Namratha K, Drmosh Q A, Ponnamma D, Saeed A M, Ganesh V et al 2018 Mater. Chem. A  6 21379

    Article  CAS  Google Scholar 

  29. Bilecka L and Niederberger M 2010 Nanoscale  4 1358

    Article  Google Scholar 

  30. Thomas D, Vijayalakshmi K A, Mathen J J, Augustine S, Ponnamma D, Sadasivuni K K et al 2017 Polym. Bull.  74 4989

    Article  CAS  Google Scholar 

  31. Tompsett G A, Conner W C and Yngvesson K S 2006 Chem. Phys. Chem.  7 296

    Article  CAS  Google Scholar 

  32. Anandhababu G, Ravi G, Mahalingam T, Navaneethan M, Arivanandhan M and Hayakawa Y 2014 J. Phys. Chem. C  118 23335

    Article  CAS  Google Scholar 

  33. Hemalatha P, Karthick S N, Hemalatha K V, Yi M, Kim H J and Alagar M 2016 J. Mater. Sci.: Mater. Electron.  27 2367

  34. Papa F, Patron L, Carp O, Paraschir C and Ioan B 2009 J. Mol. Catal A: Chem.  299 93

  35. Harish K N, Bhojya Naik H S, Prashanth Kumar P N and Viswanath R 2013 ACS Sustain. Chem. Eng.  1 1143

    Article  CAS  Google Scholar 

  36. Cullity B D and Stock S R 2001 Elements of X-ray diffraction, 2nd edn (Upper Saddle River: Prentice Hall)

    Google Scholar 

  37. Humphreys F J and Ardakani M G 1996 Acta Mater.  44 2717

    Article  CAS  Google Scholar 

  38. Wang X, Zheng R, Liu Z, Ho H P, Xu J and Ringer S P 2008 Nanotechnology  19 455702

    Article  Google Scholar 

  39. Hassan M M, Khan W, Azam A and Naqvi A H 2015 J. Ind. Eng. Chem.  21 283

    Article  Google Scholar 

  40. Suwanboon S, Amornpitoksuk P, Sukolrat A and Muensit N 2013 Ceram. Int.  39 2811

    Article  CAS  Google Scholar 

  41. Shi H L and Duan Y 2008 Eur. Phys. J. B  66 439

    Article  CAS  Google Scholar 

  42. Parangusan H, Ponnamma D, Al-Maadeed M A and Marimuthu A 2018 Photochem. Photobio.  94 237

    Article  CAS  Google Scholar 

  43. Liu X, Sroppa D G, Heggan M, Ermolenko Y, Offenhausser A and Mourzina Y 2015 J. Phys. Chem. C  119 10336

    Article  CAS  Google Scholar 

  44. Karunakaran C, Gomathisankar P and Manikandan G 2010 Mater. Chem. Phys.  123 585

    Article  CAS  Google Scholar 

  45. Zhang H, Zong R, Zhu J and Zhu Y 2009 J. Phys. Chem. C  113 4605

    Article  CAS  Google Scholar 

  46. Divya N K and Pradyumnan P P 2017 J. Mater. Sci.: Mater. Electron.  28 2147

  47. Xu H, Li H, Xu L, Wu C, Sun G, Xu Y et al 2009 Ind. Eng. Chem. Res.  48 10771

    Article  CAS  Google Scholar 

  48. Liu I T, Hon M H and Tech L G 2014 Ceram. Int.  40 4019

    Article  CAS  Google Scholar 

  49. Chang C J, Lin C Y, Hsu M H and Taiwan J 2014 Inst. Chem. Eng.  45 1954

    CAS  Google Scholar 

  50. Anandhababu G, Ravi G and Hayakawa Y 2015 Appl. Phys. A  119 219

    Article  CAS  Google Scholar 

  51. Bohle D S and Spina C J 2009 J. Am. Chem. Soc.  131 4397

    Article  CAS  Google Scholar 

  52. Vanheusden K, Seager C H, Warren W L, Tallent D R and Voigetr J A 1996 Appl. Phys. Lett.  68 403

    Article  CAS  Google Scholar 

  53. Singh A K, Viswanath V and Janu V C 2009 J. Lumin.  129 874

    Article  CAS  Google Scholar 

  54. Wong K W, Field N R, Ou J Z, Lathm L, Spencer M J, Yarovsky I et al 2010 Nanotechnology  23 015705

    Article  Google Scholar 

  55. Choudhury B and Choudhury A 2012 Mater. Chem. Phys.  131 666

    Article  CAS  Google Scholar 

  56. Eskizeybek V, Fahriyesani B, Gulce H, Gulce A and Ahmet A 2012 Appl. Catal. B: Environ.  119 197

    Article  Google Scholar 

  57. Li D and Haneda H 2003 Chemosphere  51 129

    Article  CAS  Google Scholar 

  58. Tomar M S, Melgarejo R, Dobal P S and Katiyar R S 2001 J. Mater. Res.  16 903

    Article  CAS  Google Scholar 

  59. Cao Y, Yang W S, Chen Y M, Du H and Yue P 2004 Appl. Surf. Sci.  236 223

    Article  CAS  Google Scholar 

  60. Liu Y, Kang Z H, Chen Z H, Shafiq I, Zapien J A, Bello I et al 2009 Cryst. Growth Des.  9 3222

    Article  CAS  Google Scholar 

  61. Kansal S K, Singh M and Sud D 2007 J. Hazard Mater.  141 581

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepalekshmi Ponnamma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parangusan, H., Ponnamma, D. & Al-Maadeed, M.A.A. Effect of cerium doping on the optical and photocatalytic properties of ZnO nanoflowers. Bull Mater Sci 42, 179 (2019). https://doi.org/10.1007/s12034-019-1865-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1865-6

Keywords

Navigation