Skip to main content
Log in

Dense-plasma-driven ultrafast formation of FePt organization on silicon substrate

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This article demonstrates the removal of organic capping and promotion of long-range 2D organization of chemically synthesized FePt nanoparticles dispersed on Si 〈100 〉 substrate by means of pulsed H+ energetic ion irradiation using a dense plasma focus (DPF) device. The irradiation of energetic H+ ions on FePt nanoparticles clearly resulted in enhanced structural and magnetic behaviour of the FePt nanoparticles as a function of plasma focused irradiation shots. Transmission electron microscopy (TEM)/scanning electron microscopy (SEM) images of the FePt nanoparticles clearly show a marked enhancement in average particle size from 2.5 nm for non-irradiated sample to about 28 nm for four plasma focus shots irradiation. The gradual removal of organic capping over chemically synthesized FePt nanoparticles with increasing plasma focus shots exposure is confirmed using Raman spectroscopy. A uniform 2D organization of bimetallic FePt nanoparticles over 1 cm × 1 cm silicon substrate is obtained with three plasma focus shots with better magnetic properties as compared with plasma-untreated FePt nanoparticles.

Plasma focused irradiation shots

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sun S, Murray C B, Weller D, Folks L and Moser A 2000 , Science 287 1989

    Article  Google Scholar 

  2. Nguyen H L, Howard L E M, Stinton G W, Giblin S R, Tanner B K, Terry I, Hughes A K, Ross I M, Serres A and Evans J S O 2006 , J. Chem. Mater. 18 6414

    Article  Google Scholar 

  3. Jeyadevan B, Hobo A, Urakawa K, Chinnasamy C N, Shinoda K and Tohji K 2003 , J. Appl. Phys. 93 7574

    Article  Google Scholar 

  4. Luong N H, Hiep V V, Hong D M, Chau N, Linh N D, Kurisu M, Anh D T K and Nakamoto G 2005 , J. Magn. Magn. Mater. 290 559

    Article  Google Scholar 

  5. Xu X H, Wu H S, Wang F and Li X L 2005 , Thin Solid Films 472 222

  6. Takahashi Y K, Ohnuma M and Hono K 2003 , J. Appl. Phys. 93 7580

    Article  Google Scholar 

  7. Gupta R, Medwal R, Sharma P, Mahapatro A K and Annapoorni S 2013 , Superlattices Microstruct. 64 408

    Article  Google Scholar 

  8. Gupta R, Medwal R, Sehdev N and Annapoorni S 2013 , J. Magn. Magn. Mater. 345 60

    Article  Google Scholar 

  9. Bublat T and Goll D 2011 , Nanotechnology 22 315301–1

    Article  Google Scholar 

  10. Qiu L J, Ding J, Adeyeye A O, Yin J H, Chen J S, Goolaup S and Singh N 2007 , IEEE Trans. Magn. 43 2157

    Article  Google Scholar 

  11. Li G L, Leung C W, Lei Z Q, Lin K W, Lai P T and Pong P W T 2011 , Thin Solid Films 519 8307

    Article  Google Scholar 

  12. Kim H, Noh J S, Roh J W, Chun D W, Kim S, Jung S H, Kang H K, Jeong W Y and Lee W 2011 , Nanoscale Res. Lett. 6 13–1

    Google Scholar 

  13. Li G, Dong Q, Xin J, Leung C W, Lai P T, Wong Y and Pong P W T 2013 , Microelectron. Eng. 110 192

    Article  Google Scholar 

  14. Medwal R, Sehdev N and Annapoorni S 2012 , J. Phys. D : Appl. Phys. 45 055001–1

    Article  Google Scholar 

  15. Medwal R, Sehdev N, Gupta G and Annapoorni S 2012 , Appl. Phys. A 109 403

    Article  Google Scholar 

  16. Antoniak C, Trunova A, Spasova M, Farle M, Wende H, Wilhelm F and Rogalev A 2008 , Phys. Rev. B 78 041406

    Article  Google Scholar 

  17. Lin J J, Roshan M V, Pan Z Y, Verma R, Lee P, Springham S V, Tan T L and Rawat R S 2008 , J. Phys. D : Appl. Phys. 41 135213–1

    Article  Google Scholar 

  18. Pan Z Y, Rawat R S, Roshan M V, Lin J J, Verma R, Lee P, Springham S V and Tan T L 2009 , J. Phys. D : Appl. Phys. 42 175001–1

    Article  Google Scholar 

  19. Pan Z Y, Lin J J, Zhang T, Karamat S, Tan T L, Lee P, Springham S V, Ramanujan R V and Rawat R S 2009 , Thin Solid Films 517 2753

    Article  Google Scholar 

  20. Medwal R, Sehdev N and Annapoorni S 2013 , J. Nanopart. Res. 15 1423–1

    Article  Google Scholar 

  21. Medwal R, Gogia K, Thakar D, Vibhu V, Mohan J R, Sehdev N and Annapoorni S 2014 , Surf. Coat. Technol. 258 509

    Article  Google Scholar 

  22. Rawat R S 2013 , IEEE Trans. Plasma Sci. 41 701

    Article  Google Scholar 

  23. Tang J, Photopoulos P, Tserepi A and Tsoukalas D 2011 , Nanotechnology 22 235306–1

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by NIE/NTU AcRF grant (RI 7/11 RSR) provided by the National Institute of Education, Nanyang Technological University, Singapore.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ROHIT MEDWAL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MEDWAL, R., SEHDEV, N., YING, W. et al. Dense-plasma-driven ultrafast formation of FePt organization on silicon substrate. Bull Mater Sci 40, 233–238 (2017). https://doi.org/10.1007/s12034-017-1359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1359-3

Keywords

Navigation