Skip to main content
Log in

Emerging Trends of Gold Nanostructures for Point-of-Care Biosensor-Based Detection of COVID-19

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In 2019, a worldwide pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged. SARS-CoV-2 is the deadly microorganism responsible for coronavirus disease 2019 (COVID-19), which has caused millions of deaths and irreversible health problems worldwide. To restrict the spread of SARS-CoV-2, accurate detection of COVID-19 is essential for the identification and control of infected cases. Although recent detection technologies such as the real-time polymerase chain reaction delivers an accurate diagnosis of SARS-CoV-2, they require a long processing duration, expensive equipment, and highly skilled personnel. Therefore, a rapid diagnosis with accurate results is indispensable to offer effective disease suppression. Nanotechnology is the backbone of current science and technology developments including nanoparticles (NPs) that can biomimic the corona and develop deep interaction with its proteins because of their identical structures on the nanoscale. Various NPs have been extensively applied in numerous medical applications, including implants, biosensors, drug delivery, and bioimaging. Among them, point-of-care biosensors mediated with gold nanoparticles (GNPSs) have received great attention due to their accurate sensing characteristics, which are widely used in the detection of amino acids, enzymes, DNA, and RNA in samples. GNPS have reconstructed the biomedical application of biosensors because of its outstanding physicochemical characteristics. This review provides an overview of emerging trends in GNP-mediated point-of-care biosensor strategies for diagnosing various mutated forms of human coronaviruses that incorporate different transducers and biomarkers. The review also specifically highlights trends in gold nanobiosensors for coronavirus detection, ranging from the initial COVID-19 outbreak to its subsequent evolution into a pandemic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

© 2021 Elsevier B.V.]

Fig. 6

© 2022 Elsevier B.V.]

Fig. 7

© 2021 American Chemical Society]

Fig. 8
Fig. 9

© 2022 Elsevier B.V.]

Fig. 10

© 2022 American Chemical Society]

Fig. 11

© 2022 Elsevier B.V.]; B Schematic presentation of the SERS-based apt sensor biosensors for the quantitative detection of SARS-CoV-2. Cy3 Raman reporter conjugated on the ending of the aptamer DNAs and 4-mercaptobenzoic acid (internal standard) are bonded on the surface of the gold nanopopcorns substrate [reprinted from Chen et al. with permission from ACS Sens © 2021 American Chemical Society]

Fig. 12
Fig. 13

© Springer]

Similar content being viewed by others

Data Availability

Data were not used for the research described in the article.

References

  1. Ribeiro, B. V., Cordeiro, T. A. R., Freitas, G. R. O., et al. (2020). Biosensors for the detection of respiratory viruses: A review. Talanta Open, 2, 100007.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ma, L., Zeng, F., Cong, F., et al. (2019). Development of a SYBR green-based real-time RT-PCR assay for rapid detection of the emerging swine acute diarrhea syndrome coronavirus. Journal of Virological Methods, 265, 66–70.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, R., & Li, J. (2020). The way to reduce the false negative results of 2019 novel coronavirus nucleic acid detection. Zhonghua Yi Xue Za Zhi, 100, 801–804.

    CAS  PubMed  Google Scholar 

  4. Xie, C., Jiang, L., Huang, G., et al. (2020). Comparison of different samples for 2019 novel coronavirus detection by nucleic acid amplification tests. International Journal of Infectious Diseases, 93, 264–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou, L., Sun, Y., Lan, T., et al. (2019). Retrospective detection and phylogenetic analysis of swine acute diarrhoea syndrome coronavirus in pigs in Southern China. Transboundary and Emerging Diseases, 66, 687–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kang, S., Peng, W., Zhu, Y., et al. (2020). Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: Detection, mechanisms and treatment. International Journal of Antimicrobial Agents, 55, 105950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu, R., Zhao, X., Li, J., et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395, 565–574.

    Article  CAS  Google Scholar 

  8. Gao, C., Zhu, L., Jin, C. C., et al. (2021). Prevalence and impact factors of recurrent positive SARS-CoV-2 detection in 599 hospitalized COVID-19 patients. Clinical Microbiology and Infection, 27(785), e781-787.

    Google Scholar 

  9. Krähling, V., Halwe, S., Rohde, C., et al. (2021). Development and characterization of an indirect ELISA to detect SARS-CoV-2 spike protein-specific antibodies. Journal of Immunological Methods, 490, 112958.

    Article  PubMed  PubMed Central  Google Scholar 

  10. WHO. (2023). WHO report on cancer: setting priorities, investing wisely and providing care for all.

  11. Shi, L., Sun, Q., He, J. A., et al. (2015). Development of SPR biosensor for simultaneous detection of multiplex respiratory viruses. Bio-Medical Materials and Engineering, 26, S2207–S2216.

    Article  PubMed  Google Scholar 

  12. UNCTAD. (2023). UNCTAD annual report 2022. United Nations conference on trade and development, United Nations, Geneva, https://unctad.org/system/files/official-document/osg2023d1_en.pdf assessed 14/03/2024.

  13. McKinsey. (2023). Ten shifts that are transforming organizations and what to do about them. The State of Organizations, https://www.mckinsey.com/~/media/mckinsey/business%20functions/people%20and%20organizational%20performance/our%20insights/the%20state%20of%20organizations%202023/the-state-of-organizations-2023.pdf assessed 14/03/2024.

  14. Hu, F., Qiu, L., Xi, X., et al. (2022). Has COVID-19 changed China’s digital trade?—Implications for health economics. Frontiers in Public Health. https://doi.org/10.3389/fpubh.2022.831549

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qiu, L., Yu, R., Hu, F., et al. (2023). How can China’s medical manufacturing listed firms improve their technological innovation efficiency? An analysis based on a three-stage DEA model and corporate governance configurations. Technological Forecasting and Social Change, 194, 122684.

    Article  Google Scholar 

  16. Zhang, Q., Wang, Y., Bai, R.-T., et al. (2023). X-linked Charcot-Marie-Tooth disease after SARS-CoV-2 vaccination mimicked stroke-like episodes: A case report. World Journal of Clinical Cases, 11, 464.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Franklin, S. M., Crist, M. B., Perkins, K. M., et al. (2022). Outbreak response capacity assessments and improvements among public health department health care-associated infection programs-United States, 2015–2017. Journal of Public Health Management and Practice, 28, 116–125.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mc Kenna, P., Broadfield, L. A., Willems, A., et al. (2023). Digital health technology used in emergency large-scale vaccination campaigns in low- and middle-income countries: A narrative review for improved pandemic preparedness. Expert Review of Vaccines, 22, 243–255.

    Article  CAS  PubMed  Google Scholar 

  19. Tozzi, A. E., Gesualdo, F., D’Ambrosio, A., et al. (2016). Can digital tools be used for improving immunization programs? Frontiers in Public Health, 4, 36.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rodriguez-Lonebear, D., Barceló, N. E., Akee, R., et al. (2022). American Indian reservations and COVID-19: Correlates of early infection rates in the pandemic: Erratum. Journal of Public Health Management and Practice, 28, 125.

    Article  Google Scholar 

  21. WHO. (2021). Global strategy on digital health 2020–2025. World Health Organization, Geneva, https://www.who.int/docs/default-source/documents/gs4dhdaa2a9f352b0445bafbc79ca799dce4d.pdf assessed 14/03/2024.

  22. Chauhan, D. S., Prasad, R., Srivastava, R., et al. (2020). Comprehensive review on current interventions, diagnostics, and nanotechnology perspectives against SARS-CoV-2. Bioconjugate Chemistry, 31, 2021–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dhar, A., Gupta, S. L., Saini, P., et al. (2023). Nanotechnology-based theranostic and prophylactic approaches against SARS-CoV-2. Immunologic Research, 72, 1–20.

    Google Scholar 

  24. Talebian, S., Wallace, G. G., Schroeder, A., et al. (2020). Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nature Nanotechnology, 15, 618–621.

    Article  CAS  PubMed  Google Scholar 

  25. Weiss, C., Carriere, M., Fusco, L., et al. (2020). Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano, 14, 6383–6406.

    Article  CAS  PubMed  Google Scholar 

  26. Derakhshan, M. A., Amani, A., & Faridi-Majidi, R. (2021). State-of-the-art of nanodiagnostics and nanotherapeutics against SARS-CoV-2. ACS Applied Materials & Interfaces, 13, 14816–14843.

    Article  CAS  Google Scholar 

  27. Draz, M. S., Lakshminaraasimulu, N. K., Krishnakumar, S., et al. (2018). Motion-based immunological detection of Zika virus using Pt-nanomotors and a cellphone. ACS Nano, 12, 5709–5718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moulick, A., Richtera, L., Milosavljevic, V., et al. (2017). Advanced nanotechnologies in avian influenza: Current status and future trends—a review. Analytica Chimica Acta, 983, 42–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vaculovicova, M., Michalek, P., Krizkova, S., et al. (2017). Nanotechnology-based analytical approaches for detection of viruses. Analytical Methods, 9, 2375–2391.

    Article  Google Scholar 

  30. Wang, H., Sugiarto, S., Li, T., et al. (2016). Advances in nanomaterials and their applications in point of care (POC) devices for the diagnosis of infectious diseases. Biotechnology Advances, 34, 1275–1288.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zehbe, I., Hacker, G. W., Su, H., et al. (1997). Sensitive in situ hybridization with catalyzed reporter deposition, streptavidin-nanogold, and silver acetate autometallography: Detection of single-copy human papillomavirus. The American Journal of Pathology, 150, 1553.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Caires, A., Mansur, H., Mansur, A., et al. (2019). Gold nanoparticle-carboxymethyl cellulose nanocolloids for detection of human immunodeficiency virus type-1 (HIV-1) using laser light scattering immunoassay. Colloids and Surfaces B: Biointerfaces, 177, 377–388.

    Article  CAS  PubMed  Google Scholar 

  33. Tomichan, R., Sharma, A., Akash, K., et al. (2023). Insight of smart biosensors for COVID-19: A review. Luminescence, 38, 1102–1110.

    Article  PubMed  Google Scholar 

  34. Mirzadeh-rafie, F., Rahbarizadeh, F., Shoaei, N., et al. (2023). Carbon nanoparticle-based COVID-19 biosensors. Sensors International, 4, 100246.

    Article  Google Scholar 

  35. Oliveira, D. A., Silva, J. V., Flauzino, J. M., et al. (2019). Carbon nanomaterial as platform for electrochemical genosensor: A system for the diagnosis of the hepatitis C in real sample. Journal of Electroanalytical Chemistry, 844, 6–13.

    Article  CAS  Google Scholar 

  36. Lao, X., Liu, Y., Li, L., et al. (2023). Plasmon-enhanced FRET biosensor based on Tm3+/Er3+ co-doped core-shell upconversion nanoparticles for ultrasensitive virus detection. Aggregate. https://doi.org/10.1002/agt2.448

    Article  Google Scholar 

  37. Tsang, M.-K., Ye, W., Wang, G., et al. (2016). Ultrasensitive detection of Ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano, 10, 598–605.

    Article  CAS  PubMed  Google Scholar 

  38. Adegoke, O., Oyinlola, K., Achadu, O. J., et al. (2023). Blue-emitting SiO2-coated Si-doped ZnSeS quantum dots conjugated aptamer-molecular beacon as an electrochemical and metal-enhanced fluorescence biosensor for SARS-CoV-2 spike protein. Analytica Chimica Acta, 1281, 341926.

    Article  CAS  Google Scholar 

  39. Fayyadh, T. K., Ma, F., Qin, C., et al. (2017). Simultaneous detection of multiple viruses in their co-infected cells using multicolour imaging with self-assembled quantum dot probes. Microchimica Acta, 184, 2815–2824.

    Article  CAS  Google Scholar 

  40. Hung, L.-Y., Chang, J.-C., Tsai, Y.-C., et al. (2014). Magnetic nanoparticle-based immunoassay for rapid detection of influenza infections by using an integrated microfluidic system. Nanomedicine: Nanotechnology Biology and Medicine, 10, 819–829.

    Article  CAS  PubMed  Google Scholar 

  41. Tarighat, M. A., Ghorghosheh, F. H., Abdi, G. (2022) Fe3O4@SiO2-Ag nanocomposite colorimetric sensor for determination of arginine and ascorbic acid based on synthesized small size AgNPs by cystoseria algae extract. Materials Science and Engineering: B 283, 115855. https://doi.org/10.1016/j.mseb.2022.115855

  42. Yu, L., Adamson, P., Lay Yap, P., et al. (2023). From biowaste to lab-bench: Low-cost magnetic iron oxide nanoparticles for RNA extraction and SARS-CoV-2 diagnostics. Biosensors, 13, 196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mokhtarzadeh, A., Eivazzadeh-Keihan, R., Pashazadeh, P., et al. (2017). Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends in Analytical Chemistry, 97, 445–457.

    Article  CAS  PubMed  Google Scholar 

  44. Salim, E. T., Fakhri, M. A., Tariq, S. M., et al. (2023). The unclad single-mode fiber-optic sensor simulation for localized surface plasmon resonance sensing based on silver nanoparticles embedded coating. Plasmonics, 19, 1–13.

    Google Scholar 

  45. Hassan, M. E., Yang, Q., Xiao, Z., et al. (2019). Impact of immobilization technology in industrial and pharmaceutical applications. Biotech, 9, 1–16.

    Google Scholar 

  46. Kumar, S., Rathee, G., Bartwal, G., et al. (2023). Biosensors for point-of-care (POC) applications: The flag bearer of the modern medicinal technology to tackle infectious diseases. Point-of-care biosensors for infectious diseases (pp. 69–86). Wiley.

    Chapter  Google Scholar 

  47. Huang, X., Jain, P. K., El-Sayed, I. H., et al. (2007). Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2, 681.

    Article  CAS  PubMed  Google Scholar 

  48. Oliveira, B. B., Ferreira, D., Fernandes, A. R., et al. (2023). Engineering gold nanoparticles for molecular diagnostics and biosensing. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 15, e1836.

    CAS  PubMed  Google Scholar 

  49. Liu, S., Wei, W., Wang, Y., et al. (2016). Ultrasensitive electrochemical detection of nucleic acid by coupling an autonomous cascade target replication and enzyme/gold nanoparticle-based post-amplification. Biosensors and Bioelectronics, 80, 208–214.

    Article  CAS  PubMed  Google Scholar 

  50. Koo, K. M., Carrascosa, L. G., Shiddiky, M. J., et al. (2016). Amplification-free detection of gene fusions in prostate cancer urinary samples using mrna–gold affinity interactions. Analytical Chemistry, 88, 6781–6788.

    Article  CAS  PubMed  Google Scholar 

  51. Larguinho, M., & Baptista, P. V. (2012). Gold and silver nanoparticles for clinical diagnostics—From genomics to proteomics. Journal of Proteomics, 75, 2811–2823.

    Article  CAS  PubMed  Google Scholar 

  52. Li, Y., Schluesener, H. J., & Xu, S. (2010). Gold nanoparticle-based biosensors. Gold Bulletin, 43, 29–41.

    Article  Google Scholar 

  53. Thaxton, C. S., Georganopoulou, D. G., & Mirkin, C. A. (2006). Gold nanoparticle probes for the detection of nucleic acid targets. Clinica Chimica Acta, 363, 120–126.

    Article  CAS  Google Scholar 

  54. Biju, V. (2014). Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chemical Society Reviews, 43, 744–764.

    Article  CAS  PubMed  Google Scholar 

  55. Alafeef, M., Dighe, K., Moitra, P., et al. (2020). Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano, 14, 17028–17045.

    Article  CAS  PubMed  Google Scholar 

  56. Ionescu, R. E. (2023). Updates on the biofunctionalization of gold nanoparticles for the rapid and sensitive multiplatform diagnosis of SARS-CoV-2 virus and its proteins: From computational models to validation in human samples. International Journal of Molecular Sciences, 24, 9249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saha, K., Agasti, S. S., Kim, C., et al. (2012). Gold nanoparticles in chemical and biological sensing. Chemical Reviews, 112, 2739–2779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shamsipur, M., Emami, M., Farzin, L., et al. (2018). A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. Biosensors and Bioelectronics, 103, 54–61.

    Article  CAS  PubMed  Google Scholar 

  59. Li, S., Zhang, T., Zhu, Z., et al. (2016). Lighting up the gold nanoparticles quenched fluorescence by silver nanoparticles: A separation distance study. RSC Advances, 6, 58566–58572.

    Article  CAS  Google Scholar 

  60. Asnaashari, M., Kenari, R. E., Farahmandfar, R., et al. (2018). Fluorescence quenching biosensor for acrylamide detection in food products based on double-stranded DNA and gold nanoparticles. Sensors and Actuators B: Chemical, 265, 339–345.

    Article  CAS  Google Scholar 

  61. Lv, X., Zhang, Y., Liu, G., et al. (2017). Aptamer-based fluorescent detection of ochratoxin A by quenching of gold nanoparticles. RSC Advances, 7, 16290–16294.

    Article  CAS  Google Scholar 

  62. Wang, W., Kong, T., Zhang, D., et al. (2015). Label-free microRNA detection based on fluorescence quenching of gold nanoparticles with a competitive hybridization. Analytical Chemistry, 87, 10822–10829.

    Article  CAS  PubMed  Google Scholar 

  63. Guo, C., Wang, J., Chen, X., et al. (2018). Construction of a biosensor based on a combination of cytochrome c, graphene, and gold nanoparticles. Sensors, 19, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Roushani, M., & Shahdost-Fard, F. (2016). Fabrication of an electrochemical nanoaptasensor based on AuNPs for ultrasensitive determination of cocaine in serum sample. Materials Science and Engineering: C, 61, 599–607.

    Article  CAS  PubMed  Google Scholar 

  65. Shamsipur, M., Farzin, L., & Tabrizi, M. A. (2016). Ultrasensitive aptamer-based on-off assay for lysozyme using a glassy carbon electrode modified with gold nanoparticles and electrochemically reduced graphene oxide. Microchimica Acta, 183, 2733–2743.

    Article  CAS  Google Scholar 

  66. Young, S. L., Kellon, J. E., & Hutchison, J. E. (2016). Small gold nanoparticles interfaced to electrodes through molecular linkers: A platform to enhance electron transfer and increase electrochemically active surface area. Journal of the American Chemical Society, 138, 13975–13984.

    Article  CAS  PubMed  Google Scholar 

  67. Zhu, Y., Sun, S., Yin, X., et al. (2023). Carbon nanotube-gold nanoparticle-based self-powered electrochemical biosensors for highly sensitive and stable detection of myoglobin. ACS Applied Nano Materials, 6, 11085.

    Article  CAS  Google Scholar 

  68. Bao, Q., Li, G., Yang, Z., et al. (2023). Electrochemical biosensor based on antibody-modified Au nanoparticles for rapid and sensitive analysis of influenza A virus. Ionics, 29, 2021–2029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bharath, G., Naldoni, A., Ramsait, K. H., et al. (2016). Enhanced electrocatalytic activity of gold nanoparticles on hydroxyapatite nanorods for sensitive hydrazine sensors. Journal of Materials Chemistry A, 4, 6385–6394.

    Article  CAS  Google Scholar 

  70. Yu, A., Liang, Z., Cho, J., et al. (2003). Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Letters, 3, 1203–1207.

    Article  CAS  Google Scholar 

  71. Zhang, J., Lahtinen, R. M., Kontturi, K., et al. (2001). Electron transfer reactions at gold nanoparticles. Chemical Communications. https://doi.org/10.1039/b103458h

    Article  PubMed  Google Scholar 

  72. Zhu, W., Michalsky, R., Metin, O. N., et al. (2013). Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. Journal of the American Chemical Society, 135, 16833–16836.

    Article  CAS  PubMed  Google Scholar 

  73. Aquino, A., Paschoalin, V. M. F., Tessaro, L. L. G., et al. (2022). Updating the use of nano-biosensors as promising devices for the diagnosis of coronavirus family members: A systematic review. Journal of Pharmaceutical and Biomedical Analysis, 211, 114608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bu, J., Deng, Z., Liu, H., et al. (2021). Current methods and prospects of coronavirus detection. Talanta, 225, 121977.

    Article  CAS  PubMed  Google Scholar 

  75. Dhar, B. C. (2022). Diagnostic assay and technology advancement for detecting SARS-CoV-2 infections causing the COVID-19 pandemic. Analytical and Bioanalytical Chemistry, 414, 2903–2934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Drobysh, M., Ramanaviciene, A., Viter, R., et al. (2022). Biosensors for the determination of SARS-CoV-2 virus and diagnosis of COVID-19 infection. International Journal of Molecular Sciences, 23, 666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hamidi-Asl, E., Heidari-Khoshkelat, L., Raoof, J. B., et al. (2022). A review on the recent achievements on coronaviruses recognition using electrochemical detection methods. Microchemical Journal, 178, 107322.

    Article  CAS  PubMed Central  Google Scholar 

  78. Mobed, A., & Shafigh, E. S. (2021). Biosensors promising bio-device for pandemic screening “COVID-19.” Microchemical Journal, 164, 106094.

    Article  CAS  PubMed Central  Google Scholar 

  79. Mollarasouli, F., Zare-Shehneh, N., & Ghaedi, M. (2022). A review on corona virus disease 2019 (COVID-19): Current progress, clinical features and bioanalytical diagnostic methods. Microchimica Acta, 189, 103.

    Article  CAS  PubMed  Google Scholar 

  80. Bárcena, M., Oostergetel, G. T., Bartelink, W., et al. (2009). Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the coronavirion. Proceedings of the National Academy of Sciences, 106, 582–587.

    Article  Google Scholar 

  81. Neuman, B. W., Adair, B. D., Yoshioka, C., et al. (2006). Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. Journal of Virology, 80, 7918–7928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ren, L.-L., Wang, Y.-M., Wu, Z.-Q., et al. (2020). Identification of a novel coronavirus causing severe pneumonia in human: A descriptive study. Chinese Medical Journal, 133, 1015–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Malik, Y. A. (2020). Properties of coronavirus and SARS-CoV-2. The Malaysian Journal of Pathology, 42, 3–11.

    CAS  PubMed  Google Scholar 

  84. Neuman, B. W., Kiss, G., Kunding, A. H., et al. (2011). A structural analysis of M protein in coronavirus assembly and morphology. Journal of Structural Biology, 174, 11–22.

    Article  CAS  PubMed  Google Scholar 

  85. Chang, C.-K., Sue, S.-C., Yu, T.-H., et al. (2006). Modular organization of SARS coronavirus nucleocapsid protein. Journal of Biomedical Science, 13, 59–72.

    Article  CAS  PubMed  Google Scholar 

  86. de Haan, C. A., & Rottier, P. J. (2005). Molecular interactions in the assembly of coronaviruses. Advances in Virus Research, 64, 165–230.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Peng, Y., Du, N., Lei, Y., et al. (2020). Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. The EMBO Journal, 39, e105938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sanderson, T., Hisner, R., Donovan-Banfield, I. A., et al. (2023). A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes. Nature, 623, 1–3.

    Article  Google Scholar 

  89. Nieto-Torres, J. L., DeDiego, M. L., Álvarez, E., et al. (2011). Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology, 415, 69–82.

    Article  CAS  PubMed  Google Scholar 

  90. Venkatagopalan, P., Daskalova, S. M., Lopez, L. A., et al. (2015). Coronavirus envelope (E) protein remains at the site of assembly. Virology, 478, 75–85.

    Article  CAS  PubMed  Google Scholar 

  91. Kirchdoerfer, R. N., Cottrell, C. A., Wang, N., et al. (2016). Pre-fusion structure of a human coronavirus spike protein. Nature, 531, 118–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Song, H. C., Seo, M.-Y., Stadler, K., et al. (2004). Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein. Journal of Virology, 78, 10328–10335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ou, X., Liu, Y., Lei, X., et al. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications, 11, 1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wrapp, D., Wang, N., Corbett, K. S., et al. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367, 1260–1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, S., Xiao, G., Chen, Y., et al. (2004). Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: Implications for virus fusogenic mechanism and identification of fusion inhibitors. The Lancet, 363, 938–947.

    Article  CAS  Google Scholar 

  96. Li, F., Li, W., Farzan, M., et al. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 309, 1864–1868.

    Article  CAS  PubMed  Google Scholar 

  97. Lu, G., Hu, Y., Wang, Q., et al. (2013). Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature, 500, 227–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Walls, A. C., Park, Y.-J., Tortorici, M. A., et al. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(281–292), e286.

    Google Scholar 

  99. Li, G., Fan, Y., Lai, Y., et al. (2020). Coronavirus infections and immune responses. Journal of Medical Virology, 92, 424–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, X., Geng, M., Peng, Y., et al. (2020). Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis, 10, 102–108.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Post, N., Eddy, D., Huntley, C., et al. (2020). Antibody response to SARS-CoV-2 infection in humans: A systematic review. PLoS ONE, 15, e0244126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Isho, B., Abe, K. T., Zuo, M., et al. (2020). Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Science Immunology. https://doi.org/10.1126/sciimmunol.abe5511

    Article  PubMed  PubMed Central  Google Scholar 

  103. Pecora, N. D., & Zand, M. S. (2020). Measuring the serologic response to severe acute respiratory syndrome coronavirus 2: Methods and meaning. Clinics in Laboratory Medicine, 40, 603–614.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rudrapal, M., Khairnar, S. J., & Jadhav, A. G. (2020). Drug repurposing (DR): An emerging approach in drug discovery. Drug repurposing-hypothesis, molecular aspects and therapeutic applications. IntechOpen.

    Google Scholar 

  105. Fang, F. C., Naccache, S. N., & Greninger, A. L. (2020). The laboratory diagnosis of coronavirus disease 2019—Frequently asked questions. Clinical Infectious Diseases, 71, 2996–3001.

    Article  CAS  PubMed  Google Scholar 

  106. WHO. (2020). Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases: interim guidance [BS]. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases (pp. 7–7). Interim guidance.

    Google Scholar 

  107. Azeem, A., Walters, R. W., Cavalieri, S. J., et al. (2023). Reproducibility of cycle threshold values from severe acute respiratory coronavirus virus 2 (SARS-CoV-2) reverse-transcription polymerase chain reaction (RT-PCR) assays. Infection Control & Hospital Epidemiology, 44, 688–689.

    Article  Google Scholar 

  108. Aouissi, H. A., Ababsa, M., & Gaagai, A. (2021). Review of a controversial treatment method in the fight against COVID-19 with the example of Algeria. Bulletin of the National Research Centre, 45, 1–7.

    Article  Google Scholar 

  109. Joung, J., Ladha, A., Saito, M., et al. (2020). Detection of SARS-CoV-2 with SHERLOCK one-pot testing. New England Journal of Medicine, 383, 1492–1494.

    Article  CAS  PubMed  Google Scholar 

  110. Brandsma, E., Verhagen, H. J., van de Laar, T. J., et al. (2021). Rapid, sensitive, and specific severe acute respiratory syndrome coronavirus 2 detection: A multicenter comparison between standard quantitative reverse-transcriptase polymerase chain reaction and CRISPR-based DETECTR. The Journal of Infectious Diseases, 223, 206–213.

    Article  CAS  PubMed  Google Scholar 

  111. Bhimraj, A., Morgan, R. L., Shumaker, A. H., et al. (2020). Infectious diseases society of America guidelines on the treatment and management of patients with coronavirus disease 2019 (COVID-19). Clinical Infectious Diseases. https://doi.org/10.1093/cid/ciaa478

    Article  PubMed  Google Scholar 

  112. Infantino, M., Damiani, A., Gobbi, F. L., et al. (2020). Serological assays for SARS-CoV-2 infectious disease: Benefits, limitations and perspectives. The Israel Medical Association Journal, 22, 203–210.

    PubMed  Google Scholar 

  113. Prince-Guerra, J. L., Almendares, O., Nolen, L. D., et al. (2021). Evaluation of Abbott BinaxNOW rapid antigen test for SARS-CoV-2 infection at two community-based testing sites—Pima County, Arizona, November 3–17, 2020. Morbidity and Mortality Weekly Report, 70, 100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Al Johani, S., & Hajeer, A. H. (2016). MERS-CoV diagnosis: An update. Journal of Infection and Public Health, 9, 216–219.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hanson, K. E., Caliendo, A. M., Arias, C. A., et al. (2020). Infectious diseases society of America guidelines on the diagnosis of coronavirus disease 2019. Clinical Infectious Diseases. https://doi.org/10.1093/cid/ciaa760

    Article  PubMed  Google Scholar 

  116. Carter, L. J., Garner, L. V., Smoot, J. W., et al. (2020). Assay techniques and test development for COVID-19 diagnosis. ACS Publications.

    Book  Google Scholar 

  117. Udugama, B., Kadhiresan, P., Kozlowski, H. N., et al. (2020). Diagnosing COVID-19: The disease and tools for detection. ACS Nano, 14, 3822–3835.

    Article  CAS  PubMed  Google Scholar 

  118. Gowri, A., Kumar, N. A., & Anand, B. S. (2021). Recent advances in nanomaterials based biosensors for point of care (PoC) diagnosis of COVID-19–a minireview. TrAC Trends in Analytical Chemistry, 137, 116205.

    Article  CAS  PubMed  Google Scholar 

  119. Sharma, S., Saini, S., Khangembam, M., et al. (2020). Nanomaterials-based biosensors for COVID-19 detection—A review. IEEE Sensors Journal, 21, 5598–5611.

    Article  PubMed  Google Scholar 

  120. Murugan, D., Bhatia, H., Sai, V., et al. (2020). P-FAB: A fiber-optic biosensor device for rapid detection of COVID-19. Transactions of the Indian National Academy of Engineering, 5, 211–215.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Miripour, Z. S., Sarrami-Forooshani, R., Sanati, H., et al. (2020). Real-time diagnosis of reactive oxygen species (ROS) in fresh sputum by electrochemical tracing; correlation between COVID-19 and viral-induced ROS in lung/respiratory epithelium during this pandemic. Biosensors and Bioelectronics, 165, 112435.

    Article  CAS  PubMed  Google Scholar 

  122. Michalet, X., Pinaud, F. F., Bentolila, L. A., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Srivastava, M., Srivastava, N., Mishra, P., et al. (2021). Prospects of nanomaterials-enabled biosensors for COVID-19 detection. Science of the Total Environment, 754, 142363.

    Article  CAS  PubMed  Google Scholar 

  124. Pishva, P., & Yüce, M. (2021). Nanomaterials to tackle the COVID-19 pandemic. Emergent Materials, 4, 211–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Keshavarzi Arshadi, A., Webb, J., Salem, M., et al. (2020). Artificial intelligence for COVID-19 drug discovery and vaccine development. Frontiers in Artificial Intelligence, 3, 65.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Naveed, M., Waseem, M., Aziz, T., et al. (2023). Identification of bacterial strains and development of anmRNA-based vaccine to combat antibiotic resistance in staphylococcus aureus via in vitro and in silico approaches. Biomedicines, 11, 1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Naveed, M., Makhdoom, S. I., Ali, U., et al. (2022). Immunoinformatics approach to design multi-epitope-based vaccine against machupo virus taking viral nucleocapsid as a potential candidate. Vaccines, 10, 1732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Naveed, M., Sheraz, M., Amin, A., et al. (2022). Designing a novel peptide-based multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant providencia heimbachae. Vaccines, 10, 1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Naveed, M., Ali, U., Aziz, T., et al. (2023). A reverse vaccinology approach to design an mRNA-based vaccine to provoke a robust immune response against HIV-1. Acta Biochimica Polonica, 70, 407–418.

    CAS  PubMed  Google Scholar 

  130. Naveed, M., Hassan, J., Aziz, T., et al. (2023). A one-health approach to design an mRNA-based vaccine candidate against the lumpy skin disease virus as an alternative to live-attenuated vaccines. European Review for Medical & Pharmacological Sciences, 27, 6401.

    CAS  Google Scholar 

  131. Naveed, M., Mahmood, S., Aziz, T., et al. (2023). Designing a novel chimeric multi-epitope vaccine subunit against Staphylococcus argenteus through artificial intelligence approach integrating pan-genome analysis, in vitro identification, and immunogenicity profiling. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2023.2256881

    Article  PubMed  Google Scholar 

  132. Naveed, M., Ali, U., Aziz, T., et al. (2024). An aedes-anopheles vaccine candidate supplemented with BCG epitopes against the aedes and anopheles genera to overcome hypersensitivity to mosquito bites. Acta Parasitologica. https://doi.org/10.1007/s11686-023-00771-1

    Article  PubMed  Google Scholar 

  133. Naveed, M., Ali, U., Aziz, T., et al. (2024). Development and immunological evaluation of an mRNA-based vaccine targeting Naegleria fowleri for the treatment of primary amoebic meningoencephalitis. Scientific Reports, 14, 767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sarkar, S., Mahato, M., & Gogoi, M. (2023). Nanomaterials for point-of-care biosensors [BS]. Nanobiosensors for point-of-care medical diagnostics (pp. 55–77). Springer.

    Google Scholar 

  135. Zhao, Z., Cui, H., Song, W., et al. (2020). A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. bioRxiv, 2020.2002. 2022.961268.

  136. Tian, B., Gao, F., Fock, J., et al. (2020). Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosensors and Bioelectronics, 165, 112356.

    Article  CAS  PubMed  Google Scholar 

  137. Pinals, R. L., Ledesma, F., Yang, D. W., et al. (2021). Rapid SARS-CoV-2 spike protein detection by carbon nanotube-based near-infrared nanosensors. Nano Letters, 21, 2272–2280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li, J., Wu, D., Yu, Y., et al. (2021). Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor. Biosensors and Bioelectronics, 183, 113206.

    Article  CAS  PubMed  Google Scholar 

  139. Nguyen, N. H. L., Kim, S., Lindemann, G., et al. (2021). COVID-19 spike protein induced phononic modification in antibody-coupled graphene for viral detection application. ACS Nano, 15, 11743–11752.

    Article  CAS  PubMed  Google Scholar 

  140. Seo, G., Lee, G., Kim, M. J., et al. (2020). Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 14, 5135–5142.

    Article  CAS  PubMed  Google Scholar 

  141. Mahari, S., Roberts, A., Shahdeo, D., et al. (2020). eCovSens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. bioRxiv, 2020.2004.2024.059204.

  142. Qiu, G. G., Gai, Z. B., Tao, Y. L., et al. (2020). Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 14, 5268–5277.

    Article  CAS  PubMed  Google Scholar 

  143. Li, Z., Yi, Y., Luo, X., et al. (2020). Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. Journal of Medical Virology, 92, 1518–1524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vadlamani, B. S., Uppal, T., Verma, S. C., et al. (2020). Functionalized TiO(2) nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2. Sensors (Basel), 20, 5871.

    Article  CAS  PubMed  Google Scholar 

  145. Pramanik, A., Gao, Y., Patibandla, S., et al. (2021). The rapid diagnosis and effective inhibition of coronavirus using spike antibody attached gold nanoparticles. Nanoscale Advances, 3, 1588–1596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Huang, J. C., Chang, Y. F., Chen, K. H., et al. (2009). Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in human serum using a localized surface plasmon coupled fluorescence fiber-optic biosensor. Biosensors and Bioelectronics, 25, 320–325.

    Article  CAS  PubMed  Google Scholar 

  147. Pramanik, A., Gao, Y., Patibandla, S., et al. (2021). Aptamer conjugated gold nanostar-based distance-dependent nanoparticle surface energy transfer spectroscopy for ultrasensitive detection and inactivation of corona virus. The Journal of Physical Chemistry Letters, 12, 2166–2171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, Z., Zheng, Z., Hu, H., et al. (2020). A point-of-care selenium nanoparticle-based test for the combined detection of anti-SARS-CoV-2 IgM and IgG in human serum and blood. Lab on a Chip, 20, 4255–4261.

    Article  CAS  PubMed  Google Scholar 

  149. Moitra, P., Alafeef, M., Dighe, K., et al. (2020). Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano, 14, 7617–7627.

    Article  CAS  PubMed  Google Scholar 

  150. Anik, M. I., Hossain, M. K., Hossain, I., et al. (2021). Recent progress of magnetic nanoparticles in biomedical applications: A review. Nano Select, 2, 1146–1186.

    Article  CAS  Google Scholar 

  151. Anik, M. I., Hossain, M. K., Hossain, I., et al. (2021). Biomedical applications of magnetic nanoparticles [BS]. Magnetic nanoparticle-based hybrid materials (pp. 463–497). Elsevier.

    Chapter  Google Scholar 

  152. Rubel, M. H., & Hossain, M. K. (2022). Crystal structures and properties of nanomagnetic materials [BS]. Fundamentals of low dimensional magnets (pp. 183–205). CRC Press.

    Chapter  Google Scholar 

  153. Khizar, S., Al-Dossary, A. A., Zine, N., et al. (2022). Contribution of magnetic particles in molecular diagnosis of human viruses. Talanta, 241, 123243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhong, J., Rosch, E. L., Viereck, T., et al. (2021). Toward rapid and sensitive detection of SARS-CoV-2 with functionalized magnetic nanoparticles. ACS Sensors, 6, 976–984.

    Article  CAS  PubMed  Google Scholar 

  155. Chan, J.F.-W., Kok, K.-H., Zhu, Z., et al. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9, 221–236.

    Article  CAS  Google Scholar 

  156. Balaban Hanoglu, S., Harmanci, D., Ucar, N., et al. (2023). Recent approaches in magnetic nanoparticle-based biosensors of miRNA detection. Magnetochemistry, 9, 23.

    Article  CAS  Google Scholar 

  157. Patel, S., Srivastav, A. K., Gupta, S. K., et al. (2021). Carbon nanotubes for rapid capturing of SARS-COV-2 virus: Revealing a mechanistic aspect of binding based on computational studies. RSC Advances, 11, 5785–5800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Varghese, R., Salvi, S., Sood, P., et al. (2022). Carbon nanotubes in COVID-19: A critical review and prospects. Colloid and Interface Science Communications, 46, 100544.

    Article  CAS  PubMed  Google Scholar 

  159. Zamzami, M. A., Rabbani, G., Ahmad, A., et al. (2022). Carbon nanotube field-effect transistor (CNT-FET)-based biosensor for rapid detection of SARS-CoV-2 (COVID-19) surface spike protein S1. Bioelectrochemistry, 143, 107982.

    Article  CAS  PubMed  Google Scholar 

  160. Shao, W., Shurin, M. R., Wheeler, S. E., et al. (2021). Rapid detection of SARS-CoV-2 antigens using high-purity semiconducting single-walled carbon nanotube-based field-effect transistors. ACS Applied Materials & Interfaces, 13, 10321–10327.

    Article  CAS  Google Scholar 

  161. Liang, Y., Mao, G., Dai, J., et al. (2023). Biofunctionalized semiconductor quantum dots for virus detection. Journal of Semiconductors, 44, 023101.

    Article  Google Scholar 

  162. Ju, B., Zhang, Q., Ge, J., et al. (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 584, 115–119.

    Article  CAS  PubMed  Google Scholar 

  163. Takemura, K., Ganganboina, A. B., Khoris, I. M., et al. (2021). Plasmon nanocomposite-enhanced optical and electrochemical signals for sensitive virus detection. ACS Sensors, 6, 2605–2612.

    Article  CAS  PubMed  Google Scholar 

  164. Lv, P., Zhou, H., Mensah, A., et al. (2018). A highly flexible self-powered biosensor for glucose detection by epitaxial deposition of gold nanoparticles on conductive bacterial cellulose. Chemical Engineering Journal, 351, 177–188.

    Article  CAS  Google Scholar 

  165. Maity, D., Murmu, G., Sahoo, S. R., et al. (2023). Metal/metal oxide nanoparticles-based biosensors for detection of infectious diseases. Point-of-care biosensors for infectious diseases (pp. 147–185). Wiley.

    Chapter  Google Scholar 

  166. Xie, M., Jiang, J., & Chao, J. (2023). DNA-based gold nanoparticle assemblies: From structure constructions to sensing applications. Sensors, 23, 9229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Banerjee, A., Maity, S., & Mastrangelo, C. H. (2021). Nanostructures for biosensing, with a brief overview on cancer detection, IoT, and the role of machine learning in smart biosensors. Sensors (Basel), 21, 1253.

    Article  CAS  PubMed  Google Scholar 

  168. Gooding, J. J. (2006). Biosensor technology for detecting biological warfare agents: Recent progress and future trends. Analytica Chimica Acta, 559, 137–151.

    Article  CAS  Google Scholar 

  169. Zhao, J., Fang, S., Liu, Y., et al. (2020). A lateral flow biosensor based on gold nanoparticles detects four hemorrhagic fever viruses. Analytical Methods, 12, 5613–5620.

    Article  CAS  PubMed  Google Scholar 

  170. Behrouzi, K., & Lin, L. (2022). Gold nanoparticle based plasmonic sensing for the detection of SARS-CoV-2 nucleocapsid proteins. Biosensors and Bioelectronics, 195, 113669.

    Article  CAS  PubMed  Google Scholar 

  171. Farzin, M. A., & Abdoos, H. (2021). A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta, 224, 121828.

    Article  CAS  PubMed  Google Scholar 

  172. Besharati, M., Tabrizi, M. A., Molaabasi, F., et al. (2022). Novel enzyme-based electrochemical and colorimetric biosensors for tetracycline monitoring in milk. Biotechnology and Applied Biochemistry, 69, 41–50.

    Article  CAS  PubMed  Google Scholar 

  173. Holzinger, M., Le Goff, A., & Cosnier, S. (2014). Nanomaterials for biosensing applications: A review. Frontiers in Chemistry, 2, 63.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Jiang, P., Wang, Y., Zhao, L., et al. (2018). Applications of gold nanoparticles in non-optical biosensors. Nanomaterials (Basel), 8, 977.

    Article  PubMed  Google Scholar 

  175. El-Said, W. A., Al-Bogami, A. S., & Alshitari, W. (2022). Synthesis of gold nanoparticles@reduced porous graphene-modified ITO electrode for spectroelectrochemical detection of SARS-CoV-2 spike protein. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 264, 120237.

    Article  CAS  PubMed  Google Scholar 

  176. Liv, L. (2021). Electrochemical immunosensor platform based on gold-clusters, cysteamine and glutaraldehyde modified electrode for diagnosing COVID-19. Microchemical Journal, 168, 106445.

    Article  CAS  PubMed Central  Google Scholar 

  177. Zhang, K., Fan, Z., Huang, Y., et al. (2022). A strategy combining 3D-DNA Walker and CRISPR-Cas12a trans-cleavage activity applied to MXene based electrochemiluminescent sensor for SARS-CoV-2 RdRp gene detection. Talanta, 236, 122868.

    Article  CAS  PubMed  Google Scholar 

  178. Yao, B., Zhang, J., Fan, Z., et al. (2021). Rational engineering of the dna walker amplification strategy by using a Au@Ti(3)C(2)@PEI-Ru(dcbpy)(3)(2+) nanocomposite biosensor for detection of the SARS-CoV-2 RdRp gene. ACS Applied Materials & Interfaces, 13, 19816–19824.

    Article  CAS  Google Scholar 

  179. Kim, H. E., Schuck, A., Park, H., et al. (2023). Gold nanostructures modified carbon-based electrode enhanced with methylene blue for point-of-care COVID-19 tests using isothermal amplification. Talanta, 265, 124841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lambert, C. J., Jayamohan, H., Gale, B. K., et al. (2023). Electrochemical detection of SARS-CoV-2 using immunomagnetic separation and gold nanoparticles on unmodified screen-printed carbon electrodes. Applied Sciences, 13, 10007.

    Article  CAS  Google Scholar 

  181. Braz, B. A., Hospinal-Santiani, M., Martins, G., et al. (2023). Gold-binding peptide as a selective layer for electrochemical detection of SARS-CoV-2 antibodies. Talanta, 257, 124348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Khan, R., Deshpande, A. S., Proteasa, G., et al. (2024). Aptamer-based electrochemical biosensor with S protein binding affinity for COVID-19 detection: integrating computational design with experimental validation of S protein binding affinity. Sensors and Actuators B: Chemical, 399, 134775.

    Article  CAS  Google Scholar 

  183. David, H., & Tahir, S. P. (2011). Historical perspectives in diagnostic clinical pathology: Development of the pregnancy test. Journal of Clinical Pathology, 64, 546.

    Article  Google Scholar 

  184. Gootenberg, J. S., Abudayyeh, O. O., Kellner, M. J., et al. (2018). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 360, 439–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhang, G., Nie, S., Zhang, Z., et al. (2020). Longitudinal change of severe acute respiratory syndrome coronavirus 2 antibodies in patients with coronavirus disease 2019. The Journal of Infectious Diseases, 222, 183–188.

    Article  CAS  PubMed  Google Scholar 

  186. Duan, Y., Wang, S., Zhang, Q., et al. (2021). Nanoparticle approaches against SARS-CoV-2 infection. Current Opinion in Solid State and Materials Science, 25, 100964.

    Article  CAS  PubMed  Google Scholar 

  187. Rosati, M., Agarwal, M., Hu, X., et al. (2021). Control of SARS-CoV-2 infection after spike DNA or spike DNA+protein co-immunization in rhesus macaques. PLOS Pathogens, 17, e1009701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Maohua, L., Yi, S., Kun, C., et al. (2021). Self-assessment of COVID-19 vaccination efficacy using a lateral flow tests for SARS-CoV-2 S1 protein antibody. medRxiv, 2021.2006.2027.21258591.

  189. Mabrouk, M. T., Chiem, K., Rujas, E., et al. (2021). Lyophilized, thermostable Spike or RBD immunogenic liposomes induce protective immunity against SARS-CoV-2 in mice. Science Advances, 7, 1476.

    Article  Google Scholar 

  190. WHO (2020). Antigen-detection in the diagnosis of Sars-Cov-2 infection using rapid immunoassays. https://www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sars-cov-2infection-usingrapid-immunoassays.

  191. Liu, C., Mao, B., Martinez, V., et al. (2020). A facile assay for rapid detection of COVID-19 antibodies. RSC Advances, 10, 28041–28048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wen, T., Huang, C., Shi, F.-J., et al. (2020). Development of a lateral flow immunoassay strip for rapid detection of IgG antibody against SARS-CoV-2 virus. The Analyst, 145, 5345–5352.

    Article  CAS  PubMed  Google Scholar 

  193. Huang, C., Wen, T., Shi, F.-J., et al. (2020). Rapid detection of IgM antibodies against the SARS-CoV-2 virus via colloidal gold nanoparticle-based lateral-flow assay. ACS Omega, 5, 12550–12556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Boumar, I., Deliorman, M., Sukumar, P., et al. (2023). Spike-and nucleocapsid-based gold colloid assay toward the development of an adhesive bandage for rapid SARS-CoV-2 immune response detection and screening. Microsystems & Nanoengineering, 9, 82.

    Article  CAS  Google Scholar 

  195. Huang, L., Ding, L., Zhou, J., et al. (2021). One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device. Biosensors and Bioelectronics, 171, 112685.

    Article  CAS  PubMed  Google Scholar 

  196. Azimi, S., & Docoslis, A. (2022). Recent advances in the use of surface-enhanced Raman scattering for illicit drug detection. Sensors (Basel), 22, 3877.

    Article  CAS  PubMed  Google Scholar 

  197. Arbuz, A., Sultangaziyev, A., Rapikov, A., et al. (2021). How gap distance between gold nanoparticles in dimers and trimers on metallic and non-metallic SERS substrates can impact signal enhancement. Nanoscale Advances, 4, 268–280.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Dinish, U. S., Balasundaram, G., Chang, Y. T., et al. (2014). Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Science and Reports, 4, 4075.

    Article  CAS  Google Scholar 

  199. Bistaffa, M. J., Camacho, S. A., Pazin, W. M., et al. (2022). Immunoassay platform with surface-enhanced resonance Raman scattering for detecting trace levels of SARS-CoV-2 spike protein. Talanta, 244, 123381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Antoine, D., Mohammadi, M., Vitt, M., et al. (2022). Rapid, point-of-care scFv-SERS assay for femtogram level detection of SARS-CoV-2. ACS Sens, 7, 866–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Chen, H., Park, S. G., Choi, N., et al. (2021). Sensitive detection of SARS-CoV-2 using a SERS-based aptasensor. ACS Sens, 6, 2378–2385.

    Article  CAS  PubMed  Google Scholar 

  202. Cha, H., Kim, H., Joung, Y., et al. (2022). Surface-enhanced Raman scattering-based immunoassay for severe acute respiratory syndrome coronavirus 2. Biosensors and Bioelectronics, 202, 114008.

    Article  CAS  PubMed  Google Scholar 

  203. Li, Y., Ren, Y., Yi, Z., et al. (2023). Detection of SARS-CoV-2 S protein based on FRET between carbon quantum dots and gold nanoparticles. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e22674

    Article  PubMed  PubMed Central  Google Scholar 

  204. Jamaluddin, N. D., Ibrahim, N., Yusof, N. Y. M., et al. (2023). Optical reflectometric measurement of SARS-CoV-2 (COVID-19) RNA based on cationic cysteamine-capped gold nanoparticles. Optics & Laser Technology, 157, 108763.

    Article  Google Scholar 

  205. Punnoy, P., Siripongpreda, T., Pisitkun, T., et al. (2023). Alternative platform for COVID-19 diagnosis based on AuNP-modified lab-on-paper. The Analyst, 148, 2767–2775.

    Article  CAS  PubMed  Google Scholar 

  206. Tung, Y. T., Chang, C. C., Lin, Y. L., et al. (2016). Development of double-generation gold nanoparticle chip-based dengue virus detection system combining fluorescence turn-on probes. Biosensors and Bioelectronics, 77, 90–98.

    Article  CAS  PubMed  Google Scholar 

  207. Park, T. J., Hyun, M. S., Lee, H. J., et al. (2009). A self-assembled fusion protein-based surface plasmon resonance biosensor for rapid diagnosis of severe acute respiratory syndrome. Talanta, 79, 295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Qiu, X. and Yuan, J. (2006). Temperature control for Pcr thermocyclers based on peltier-effect thermoelectric. In 2005 IEEE engineering in medicine and biology 27th annual conference, IEEE, pp. 7509−7512.

  209. Clavero, C. (2014). Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics, 8, 95–103.

    Article  CAS  Google Scholar 

  210. Baffou, G., & Quidant, R. (2013). Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat. Laser & Photonics Reviews, 7, 171–187.

    Article  CAS  Google Scholar 

  211. Nakhleh, M. K., Jeries, R., Gharra, A., et al. (2014). Detecting active pulmonary tuberculosis with a breath test using nanomaterial-based sensors. European Respiratory Journal, 43, 1522–1525.

    Article  PubMed  Google Scholar 

  212. Shan, B., Broza, Y. Y., Li, W., et al. (2020). Multiplexed nanomaterial-based sensor array for detection of COVID-19 in exhaled breath. ACS Nano, 14, 12125–12132.

    Article  CAS  PubMed  Google Scholar 

  213. Funari, R., Chu, K. Y., & Shen, A. Q. (2020). Detection of antibodies against SARS-CoV-2 spike protein by gold nanospikes in an opto-microfluidic chip. Biosensors & Bioelectronics, 169, 112578.

    Article  CAS  Google Scholar 

  214. Wu, F., Mao, M., Cai, L. Y., et al. (2022). Platinum-decorated gold nanoparticle-based microfluidic chip immunoassay for ultrasensitive colorimetric detection of SARS-CoV-2 nucleocapsid protein. ACS Biomaterials Science & Engineering, 8, 3924–3932.

    Article  CAS  Google Scholar 

  215. Qin, J., Tian, X., Liu, S., et al. (2024). Rapid classification of SARS-CoV-2 variant strains using machine learning-based label-free SERS strategy. Talanta, 267, 125080.

    Article  CAS  PubMed  Google Scholar 

  216. Beeram, R., Vepa, K. R., & Soma, V. R. (2023). Recent trends in SERS-based plasmonic sensors for disease diagnostics, biomolecules detection, and machine learning techniques. Biosensors, 13, 328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Carlomagno, C., Bertazioli, D., Gualerzi, A., et al. (2021). COVID-19 salivary Raman fingerprint: Innovative approach for the detection of current and past SARS-CoV-2 infections. Scientific Reports, 11, 4943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ye, J., Yeh, Y.-T., Xue, Y., et al. (2022). Accurate virus identification with interpretable Raman signatures by machine learning. Proceedings of the National Academy of Sciences, 119, e2118836119.

    Article  CAS  Google Scholar 

  219. Yang, Y., Peng, Y., Lin, C., et al. (2021). Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection. Nano-Micro letters, 13, 1–13.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the editors and anonymous reviewers for their valuable comments and suggestions to improve the quality of this article.

Funding

This research did not receive specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prathap Somu or Gholamreza Abdi.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could appear to influence the work reported in this paper.

Ethical Approval

Not required for this study.

Consent to Participate

Not required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K., Basavegowda, N., Shirin, S. et al. Emerging Trends of Gold Nanostructures for Point-of-Care Biosensor-Based Detection of COVID-19. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01157-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01157-y

Keywords

Navigation