Skip to main content

Advertisement

Log in

An AedesAnopheles Vaccine Candidate Supplemented with BCG Epitopes Against the Aedes and Anopheles Genera to Overcome Hypersensitivity to Mosquito Bites

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Background

Skeeter syndrome is a severe local allergic response to mosquito bites that is accompanied by considerable inflammation and, in some cases, a systemic response like fever. People with the syndrome develop serious allergies, ranging from rashes to anaphylaxis or shock. The few available studies on mosquito venom immunotherapy have utilized whole-body preparations and small sample sizes. Still, owing to their little success, vaccination remains a promising alternative as well as a permanent solution for infections like Skeeter’s.

Methods

This study, therefore, illustrated the construction of an epitope-based vaccine candidate against Skeeter Syndrome using established immunoinformatic techniques. We selected three species of mosquitoes, Anopheles melas, Anopheles funestus, and Aedes aegypti, to derive salivary antigens usually found in mosquito bites. Our construct was also supplemented with bacterial epitopes known to elicit a strong TH1 response and suppress TH2 stimulation that is predicted to reduce hypersensitivity against the bites.

Results

A quality factor of 98.9496, instability index of 38.55, aliphatic index of 79.42, solubility of 0.934747, and GRAVY score of -0.02 indicated the structural (tertiary and secondary) stability, thermostability, solubility, and hydrophilicity of the construct, respectively. The designed Aedes–Anopheles vaccine (AAV) candidate was predicted to be flexible and less prone to deformability with an eigenvalue of 1.5911e-9 and perfected the human immune response against Skeeter (hypersensitivity) and many mosquito-associated diseases as we noted the production of 30,000 Th1 cells per mm3 with little (insignificant production of Th2 cells. The designed vaccine also revealed stable interactions with the pattern recognition receptors of the host. The TLR2/vaccine complex interacted with a free energy of − 1069.2 kcal/mol with 26 interactions, whereas the NLRP3/vaccine complex interacted with a free energy of − 1081.2 kcal/mol with 16 molecular interactions.

Conclusion

Although being a pure in-silico study, the in-depth analysis performed herein speaks volumes of the potency of the designed vaccine candidate predicting that the proposition can withstand rigorous in-vitro and in-vivo clinical trials and may proceed to become the first preventative immunotherapy against mosquito bite allergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All the data generated in this research work has been included in the manuscript.

References

  1. Matsumoto K (2021) Valuable lessons from analyses of common signs and symptoms in rare diseases. Allergol Int 70:405–406. https://doi.org/10.1016/j.alit.2021.08.011

    Article  PubMed  Google Scholar 

  2. Abdel Motagaly A, Mohammad H, Morsy T (2017) A mini review on skeeter syndrome or large local allergy to mosquito bites. J Egypt Soc Parasitol 47:415–424. https://doi.org/10.21608/jesp.2017.77796

    Article  Google Scholar 

  3. Simons F, Estelle R, Peng Z (1999) Skeeter syndrome. J Allergy Clin Immunol 104:705–707. https://doi.org/10.1016/s0091-6749(99)70348-9

    Article  CAS  PubMed  Google Scholar 

  4. Sur R, Nigam A, Grote D, Liebel F, Southall MD (2008) Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity. Arch Dermatol Res 300:569–574. https://doi.org/10.1007/s00403-008-0858-x

    Article  CAS  PubMed  Google Scholar 

  5. Montag A (2021) Diseases caused by arthropods. Braun-Falco’S dermatology 1–45

  6. Brummer-Korvenkontio H, Palosuo T, François G, Reunala T (1997) Characterization of Aedes communis, Aedes aegypti and Anopheles stephensi mosquito saliva antigens by immunoblotting. Int Arch Allergy Immunol 112:169–174. https://doi.org/10.1159/000237450

    Article  CAS  PubMed  Google Scholar 

  7. Kearney EA, Agius PA, Chaumeau V, Cutts JC, Simpson JA, Fowkes FJ (2021) Anopheles salivary antigens as serological biomarkers of vector exposure and malaria transmission: a systematic review with multilevel modelling. Elife. https://doi.org/10.7554/eLife.73080

    Article  PubMed  PubMed Central  Google Scholar 

  8. Seda J, Horrall S (2019) Mosquito bites. StatPearls Publishing, Europe PMC

    Google Scholar 

  9. Cerio R, Dohil M, Jeanine D, Magina S, Mahé E, Stratigos AJ (2010) Mechanism of action and clinical benefits of colloidal oatmeal for dermatologic practice. J Drugs Dermatol 9:1116–1120

    PubMed  Google Scholar 

  10. Ma L, Chen M, Fa Z, Pan W, Liao W, Gao XH, Huo W, Yang Y, Chen HD, Holahan HM, Laureano AC, Schwartz RA, Chen X, Anstey A, Bugert J, Chiu TM, Tsai YG., Nanda S, Lim HW, Wang WH (2016) Skin diseases caused by factors from the environment. Practical immunodermatology 145–198

  11. Johnson J (2019) Skeeter syndrome: treatments and home remedies. https://www.medicalnewstoday.com/articles/325405

  12. Golden DBK, Kelly D, Hamilton RG, Craig TJ (2009) Venom immunotherapy reduces large local reactions to insect stings. J Allergy Clin Immunol 123:1371–1375. https://doi.org/10.1016/j.jaci.2009.03.017

    Article  CAS  PubMed  Google Scholar 

  13. Meucci E, Radice A, Fassio F, Iorno MLC, Macchia D (2021) Omalizumab for prevention of anaphylactic episodes in a patient with severe mosquito allergy. Clin Case Rep. https://doi.org/10.1002/ccr3.4935

    Article  PubMed  PubMed Central  Google Scholar 

  14. Manning JE, Oliveira F, Coutinho-Abreu IV, Herbert S, Meneses C, Kamhawi S, Baus HA, Han A, Czajkowski L, Rosas LA, Cervantes-Medina A, Athota R, Reed S, Mateja A, Hunsberger S, James E, Pleguezuelos O, Stoloff G, Valenzuela JG, Memoli MJ (2020) Safety and immunogenicity of a mosquito saliva peptide-based vaccine: a randomised, placebo-controlled, double-blind, phase 1 trial. The Lancet 395:1998–2007. https://doi.org/10.1016/S0140-6736(20)31048-5

    Article  CAS  Google Scholar 

  15. Park SS, Heo EY, Kim DK, Chung HS, Lee CH (2015) The association of BCG vaccination with atopy and asthma in adults. Int J Med Sci 12:668–673. https://doi.org/10.7150/ijms.12233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vaishnav N, Gupta A, Paul S, John GJ (2014) Overview of computational vaccinology: vaccine development through information technology. J Appl Genet 56:381–391. https://doi.org/10.1007/s13353-014-0265-2

    Article  CAS  PubMed  Google Scholar 

  17. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311. https://doi.org/10.1093/nar/29.1.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. UNIPROT Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212

    Article  Google Scholar 

  19. Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8:1–7. https://doi.org/10.1186/1471-2105-8-4

    Article  CAS  Google Scholar 

  20. Dimitrov I, Bangov I, Flower DR, Doytchinova I (2014) AllerTOP v. 2-a server for in silico prediction of allergens. J Mol Model 20:1–6. https://doi.org/10.1007/s00894-014-2278-5

    Article  CAS  Google Scholar 

  21. Sharma N, Naorem LD, Jain S, Raghava GPS (2022) ToxinPred2: an improved method for predicting toxicity of proteins. Brief Bioinform 23:bbac174. https://doi.org/10.1093/bib/bbac174

    Article  CAS  PubMed  Google Scholar 

  22. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 1:W5-9. https://doi.org/10.1093/nar/gkn201

    Article  CAS  Google Scholar 

  23. Fleri W, Paul S, Dhanda SK, Mahajan S, Xu X, Peters B, Sette A (2017) The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front Immunol. https://doi.org/10.3389/fimmu.2017.00278

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chou PY, Fasman GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 1978:45–148. https://doi.org/10.1002/9780470122921.ch2

    Article  Google Scholar 

  25. Emini EA, Hughes JV, Perlow DS, Boger J (1985) Induction of hepatitis a virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55:836–839. https://doi.org/10.1128/JVI.55.3.836-839.1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karplus PA, Schulz GE (1985) Prediction of chain flexibility in proteins. Sci Nat 72:212–213. https://doi.org/10.1007/BF01195768

    Article  CAS  Google Scholar 

  27. Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276:172–174. https://doi.org/10.1016/0014-5793(90)80535-q

    Article  CAS  PubMed  Google Scholar 

  28. Parker JMR, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and x-ray-derived accessible sites. Biochemistry 25:5425–5432. https://doi.org/10.1021/bi00367a013

    Article  CAS  PubMed  Google Scholar 

  29. Ponomarenko JV, Bourne PE (2007) Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct Biol 7:64. https://doi.org/10.1186/1472-6807-7-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. https://doi.org/10.1186/1471-2105-9-514

    Article  Google Scholar 

  31. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B (2018) The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 47:D339–D343. https://doi.org/10.1093/nar/gky1006

    Article  CAS  PubMed Central  Google Scholar 

  32. Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, Brunak S, Lund O (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Prot Sci 12:1007–1017. https://doi.org/10.1110/ps.0239403

    Article  CAS  Google Scholar 

  33. Nielsen M, Lund O (2009) NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinform. https://doi.org/10.1186/1471-2105-10-296

    Article  Google Scholar 

  34. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Consortium OSDD, Raghava GP (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 13:e73957. https://doi.org/10.1371/journal.pone.0073957

    Article  CAS  Google Scholar 

  35. Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A (2006) Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform 7:153. https://doi.org/10.1186/1471-2105-7-153

    Article  CAS  Google Scholar 

  36. Sánchez MF, Els-Heindl S, Beck-Sickinger AG, Wieneke R, Tampé R (2021) Photoinduced receptor confinement drives ligand-independent GPCR signaling. Science 26:eabb7657. https://doi.org/10.1126/science.abb7657

    Article  CAS  Google Scholar 

  37. Naveed M, Makhdoom SI, Ali U, Jabeen K, Aziz T, Khan AA, Jamil S, Shahzad M, Alharbi M, Alshammari A (2022) Immunoinformatics approach to design multi-epitope-based vaccine against machupo virus taking viral nucleocapsid as a potential candidate. Vaccines 10:1732. https://doi.org/10.3390/vaccines10050664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Naveed M, Ali U, Karobari MI, Ahmed N, Mohamed RN, Abullais SS, Kader MA, Marya A, Messina P, Scardina GA (2022) A vaccine construction against COVID-19-associated mucormycosis contrived with immunoinformatics-based scavenging of potential mucoralean epitopes. Vaccines 10:664. https://doi.org/10.3390/vaccines10050664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein Identification and analysis tools on the ExPASy server. The proteomics protocols handbook 571–607

  40. Magnan CN, Randall A, Baldi P (2009) SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics 25:2200–2207. https://doi.org/10.1093/bioinformatics/btp386

    Article  CAS  PubMed  Google Scholar 

  41. Shende G, Haldankar H, Barai RS, Bharmal MH, Shetty V, Idicula-Thomas S (2017) PBIT: pipeline builder for identification of drug targets for infectious diseases. Bioinformatics 33:929–931. https://doi.org/10.1093/bioinformatics/btw760

    Article  CAS  PubMed  Google Scholar 

  42. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405. https://doi.org/10.1093/bioinformatics/16.4.404

    Article  CAS  PubMed  Google Scholar 

  43. Rapin N, Lund O, Castiglione F (2011) Immune system simulation online. Bioinformatics 27:2013–2014. https://doi.org/10.1093/bioinformatics/btr335

    Article  CAS  PubMed  Google Scholar 

  44. Du Z, Su H, Wang W, Ye L, Wei H, Peng Z, Anishchenko I, Baker D, Yang J (2021) The trRosetta server for fast and accurate protein structure prediction. Nat Protoc 16:5634–5651. https://doi.org/10.1038/s41596-021-00628-9

    Article  CAS  PubMed  Google Scholar 

  45. Ko J, Park H, Heo L, Seok C (2012) GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res 40:W294–W297. https://doi.org/10.1093/nar/gks493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, Lundegaard C, Sette A, Lund O, Bourne PE (2012) Immune epitope database analysis resource. Nucleic Acids Res 40:W525–W530. https://doi.org/10.1093/nar/gks438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dombkowski AA, Sultana KZ, Craig DB (2013) Protein disulfide engineering. FEBS Lett 588:206–212. https://doi.org/10.1016/j.febslet.2013.11.024

    Article  CAS  PubMed  Google Scholar 

  48. López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P (2014) iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res 42:W271–W276. https://doi.org/10.1093/nar/gku339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Desta IT, Porter KA, Xia B, Kozakov D, Vajda S (2020) Performance and its limits in rigid body protein-protein docking. Structure 28:1071-1081.e3. https://doi.org/10.1016/j.str.2020.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, Duarte JM, Dutta S, Fayazi M, Feng Z, Flatt JW, Ganesan SJ, Goodsell DS, Ghosh S, Kramer Green R, Guranovic V, Henry J, Hudson BP, Lawson CL, Liang Y (2021) RCSB protein data bank: celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D. Prot Sci 31:187–208. https://doi.org/10.1002/pro.4213

    Article  CAS  Google Scholar 

  51. Leitner WW, Thalhamer J (2003) DNA vaccines for non-infectious diseases: new treatments for tumour and allergy. Expert Opin Biol Ther 3:627–638. https://doi.org/10.1517/14712598.3.4.627

    Article  CAS  PubMed  Google Scholar 

  52. Rousseau MC, Parent ME, St-Pierre Y (2008) Potential health effects from non-specific stimulation of the immune function in early age: the example of BCG vaccination. Pediatr Allergy Immunol 19:438–448. https://doi.org/10.1111/j.1399-3038.2007.00669.x

    Article  PubMed  Google Scholar 

  53. Pascolo S (2015) The messenger’s great message for vaccination. Expert Rev Vaccines 14:153–156. https://doi.org/10.1586/14760584.2015.1000871

    Article  CAS  PubMed  Google Scholar 

  54. Graham H (2020) Red, hot, and blistered. what is it? J Pediatr Surg Nurs 10:77–79. https://doi.org/10.1097/JPS.0000000000000288

    Article  Google Scholar 

  55. Thapa SS, Basnyat B (2018) Common Bite—Bizarre Rash. Wilderness Environ Med 29:123–124. https://doi.org/10.1016/j.wem.2017.09.001

    Article  PubMed  Google Scholar 

  56. Ariano R, Panzani RC (2004) Efficacy and safety of specific immunotherapy to mosquito bites. Eur Ann Allergy Clin Immunol 36:131–138

    CAS  PubMed  Google Scholar 

  57. Racioppi JV, Spielman A (1987) Secretory proteins from the salivary glands of adult Aedes aegypti mosquitoes. Insect Biochem 17:503–511. https://doi.org/10.1016/0020-1790(87)90010-2

    Article  CAS  Google Scholar 

  58. Peng Z, Xu WW, Sham Y, Lam H, Sun D, Li C, Rasic NF, Guan Q, James AA, Simons FER (2016) Mosquito salivary allergen Aed a 3: cloning, comprehensive molecular analysis, and clinical evaluation. Allergy 71:621–628. https://doi.org/10.1111/all.12812

    Article  CAS  PubMed  Google Scholar 

  59. Martini S, Nielsen M, Peters B, Sette A (2020) The immune epitope database and analysis resource program 2003–2018: reflections and outlook. Immunogenetics 72:57–76. https://doi.org/10.1007/s00251-019-01137-6

    Article  PubMed  Google Scholar 

  60. Naveed M, Sheraz M, Amin A, Waseem M, Aziz T, Khan AA, Ghani M, Shahzad M, Alruways MW, Dablool AS, Elazzazy AM, Almalki AA, Alamri AS, Alhomrani M (2022) Designing a novel peptide-based multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant providencia heimbachae. Vaccines 10:1300. https://doi.org/10.3390/vaccines10081300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peng Z, Simons FER (2004) Mosquito allergy: immune mechanisms and recombinant salivary allergens. Int Arch Allergy Immunol 133:198–209. https://doi.org/10.1159/000076787

    Article  CAS  PubMed  Google Scholar 

  62. Hema K, Priyadarshini IV (2015) Identification of putative drug targets and vaccine candidates for pathogens causing atherosclerosis. Biochem Anal Biochem. https://doi.org/10.4172/2161-1009.1000175

    Article  Google Scholar 

  63. Rawal K, Sinha R, Abbasi BA, Chaudhary A, Nath SK, Kumari P, Preeti P, Saraf D, Singh S, Mishra K, Gupta P, Mishra A, Sharma T, Gupta S, Singh P, Sood S, Subramani P, Dubey AK, Strych U, Hotez PJ (2021) Identifying vaccine targets in pathogens and designing a vaccine using computational approaches. Sci Rep. https://doi.org/10.1101/2020.03.20.000141

    Article  PubMed  PubMed Central  Google Scholar 

  64. Singh H, Ansari HR, Raghava G (2013) Improved method for linear B-cell epitope prediction using antigen’s primary sequence. PLoS ONE 8:e62216. https://doi.org/10.1371/journal.pone.0062216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Curin M, Khaitov M, Karaulov A, Namazova-Baranova L, Campana R, Garib V, Valenta R (2018) Next-generation of allergen-specific immunotherapies: molecular approaches. Curr Allergy Asthma Rep. https://doi.org/10.1007/s11882-018-0790-x

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kowalewicz-Kulbat M, Locht C (2021) BCG for the prevention and treatment of allergic asthma. Vaccines 39:7341–7352. https://doi.org/10.1016/j.vaccine.2021.07.092

    Article  Google Scholar 

  67. Yoshimoto T, Yoshimoto T, Yasuda K, Mizuguchi J, Nakanishi K (2007) IL-27 Suppresses Th2 cell development and Th2 cytokines production from polarized Th2 cells: a novel therapeutic way for Th2-mediated allergic inflammation. J Immunol 179:4415–4423. https://doi.org/10.4049/jimmunol.179.7.4415

    Article  CAS  PubMed  Google Scholar 

  68. Christy AJ, Dharman K, Dhandapaani G, Palaniyandi K, Gupta UD, Gupta P, Ignacimuthu S, Narayanan S (2012) Epitope based recombinant BCG vaccine elicits specific Th1 polarized immune responses in BALB/c mice. Vaccines 30:1364–1370. https://doi.org/10.1016/j.vaccine.2011.12.059

    Article  CAS  Google Scholar 

  69. Sayers S, Ulysse G, Xiang Z, He Y (2012) Vaxjo: a web-based vaccine adjuvant database and its application for analysis of vaccine adjuvants and their uses in vaccine development. J Biomed Biotechnol 2012:1–13. https://doi.org/10.1155/2012/831486

    Article  CAS  Google Scholar 

  70. Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65:1357–1369. https://doi.org/10.1016/j.addr.2012.09.039

    Article  CAS  PubMed  Google Scholar 

  71. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533. https://doi.org/10.1016/s0968-0004(02)02169-2

    Article  CAS  PubMed  Google Scholar 

  72. Magombedze G, Eda S, Ganusov VV (2014) Competition for antigen between Th1 and Th2 responses determines the timing of the immune response switch during Mycobaterium avium subspecies paratuberulosis Infection in Ruminants. PLoS Comput Biol 10:e1003414. https://doi.org/10.1371/journal.pcbi.1003414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. DiToro D, Basu R (2021) Emerging complexity in CD4+T lineage programming and its implications in colorectal cancer. Front Immunol. https://doi.org/10.3389/fimmu.2021.694833

    Article  PubMed  PubMed Central  Google Scholar 

  74. León B, Ballesteros-Tato A (2021) Modulating Th2 cell immunity for the treatment of asthma. Front Immunol. https://doi.org/10.3389/fimmu.2021.637948

    Article  PubMed  PubMed Central  Google Scholar 

  75. Naveed M, Ain N, Aziz T, Javed K, Ishfaq H, Khalil S, Alharbi M, Alshammari A, Alasmari AF (2023) A pharmacophore screening approach of homeopathic phenols for a renovated design of fragment-optimized Bauhiniastatin-1 as a drug against acromegaly. Eur Rev Med Pharmacol Sci 27:5530–5541. https://doi.org/10.26355/eurrev_202306_32790

    Article  CAS  PubMed  Google Scholar 

  76. Naveed M, Hassan J, Aziz T, Ali U, Rana IK, Khan UA, Fakhrul H, Alharbi M, Alshammari A, Alasmari AF (2023) A one-health approach to design an mRNA-based vaccine candidate against the lumpy skin disease virus as an alternative to live-attenuated vaccines. Eur Rev Med Pharmacol Sci 27:6401–6413. https://doi.org/10.26355/eurrev_202307_33000

    Article  CAS  PubMed  Google Scholar 

  77. Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics, and molecular patterns. Nat Rev Immunol 10:787–796. https://doi.org/10.1038/nri2868

    Article  CAS  PubMed  Google Scholar 

  78. Ahmed N, Zeshan B, Naveed M, Afzal M, Mohamed M (2019) Antibiotic resistance profile in relation to virulence genes fimH, hlyA and usp of uropathogenic E. coli isolates in Lahore. Trop Biomed 36:559–568

    CAS  PubMed  Google Scholar 

  79. Muñoz-Caro T, Gibson AJ, Conejeros I, Werling D, Taubert A, Hermosilla C (2021) The role of TLR2 and TLR4 in recognition and uptake of the apicomplexan parasite Eimeria bovis and their effects on NET formation. Pathogens 10:118. https://doi.org/10.3390/pathogens10020118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mehwish H, Uzma S, Yasmeen R, Muhammad KA, Khalid M, Sumaira N, Tariq A, Metab A, Abdulrahman A, Abdullah FA (2023) Determining the 3-substituted coumarins inhibitory potential against the HslV protease of E. coli. Eur Rev Med Pharmacol Sci 27:9160–9168. https://doi.org/10.26355/eurrev_202310_33945

    Article  Google Scholar 

  81. Naveed M, Mahmood S, Aziz T, Azeem A, Hussain I, Waseem M, Ali A, Alharbi M, Alshammari A, Alasmari A (2023) Designing a novel chimeric multi-epitope vaccine subunit against Staphylococcus argenteus through artificial intelligence approach integrating pan-genome analysis, in vitro identification, and immunogenicity profiling. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2023.2256881

    Article  PubMed  Google Scholar 

  82. Hussain N, Mumtaz M, Adil M, Ali Nadeem A, Sarwar A, Aziz T, Alharbi M, Alshammari A, Alasmari AF, Alharbi ME (2023) Investigation of VEGF (rs 699947) polymorphism in the progression of Rheumatoid Arthritis (RA) and in-silico nanoparticle drug delivery of potential phytochemicals to cure RA. Acta Biochim Pol 5:591–598. https://doi.org/10.18388/abp.2020_6654

    Article  CAS  Google Scholar 

  83. Naveed M, Ahmed I, Khalid N, Mumtaz AS (2014) Bioinformatics based structural characterization of glucose dehydrogenase (gdh) gene and growth promoting activity of Leclercia sp. QAU-66. Braz J Microbiol 45:603–611. https://doi.org/10.1590/s1517-83822014000200031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Researchers Supporting Project number (RSP2024R462), King Saud University, Riyadh, Saudi Arabia.

Funding

No external funding was received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MN, UA, RN, MMK. and TA; methodology, MMK; software, UA; validation, SM, and TA; formal analysis, MN, UA, RN, MMK and TA; investigation, UA and SM; resources, MN; data curation, ASA, MA, and RN; writing—original draft preparation, MA and AAS; writing—review and editing, THA; visualization, TA and RN; supervision, MN and TA; project administration, MMK; funding acquisition, TA.

Corresponding authors

Correspondence to Muhammad Naveed or Tariq Aziz.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveed, M., Ali, U., Aziz, T. et al. An AedesAnopheles Vaccine Candidate Supplemented with BCG Epitopes Against the Aedes and Anopheles Genera to Overcome Hypersensitivity to Mosquito Bites. Acta Parasit. 69, 483–504 (2024). https://doi.org/10.1007/s11686-023-00771-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-023-00771-1

Keywords

Navigation