Skip to main content
Log in

In-Vitro Refolding and Characterization of Recombinant Laccase (CotA) From Bacillus pumilus MK001 and Its Potential for Phenolics Degradation

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Among lignocellulolytic enzymes, laccases are the most versatile, broadly specific, and largely studied enzyme with a wide range of biotechnological potential. Putative laccase (CotA) from Bacillus pumilus MK001 was cloned and expressed in E. coli. In addition to soluble bioactive fraction, inactive inclusion body fraction was also harvested and refolded under optimized conditions resulting in 64 % of refolding efficiency. The enzyme was found to be thermostable exhibiting a half-life of 60 min at 80 °C. UV thermal CD spectra also supported the observation as about 9 % increase in β-sheets was recorded after thermal induction. The 3D CotA structure was constructed through homology modeling and the best selected model was verified through PROCHECK, ERRAT, Verify 3D, and PROSA servers. Final 3D model showed potential binding affinities with ferulic acid, caffeic acid, and vanillin. Results of the docking studies were further validated by HPLC analysis which signified the efficient bioconversion ability of CotA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sharma, K. K., & Kuhad, R. C. (2008). Laccase: enzyme revisited and function redefined. Indian Journal of Microbiology, 48(3), 309–316. doi:10.1007/s12088-008-0028-z.

    Article  CAS  Google Scholar 

  2. Margot, J., Bennati-Granier, C., Maillard, J., Blánquez, P., Barry, D. A., & Holliger, C. (2013). Bacterial versus fungal laccase: Potential for micropollutant degradation. AMB Express, 3(1), 1.

    Article  Google Scholar 

  3. Ferraroni, M., Myasoedova, N. M., Schmatchenko, V., Leontievsky, A. A., Golovleva, L. A., Scozzafava, A., et al. (2007). Crystal structure of a blue laccase from Lentinus tigrinus: Evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Structural Biology, 7(1), 60. doi:10.1186/1472-6807-7-60.

    Article  Google Scholar 

  4. Reiss, R., Ihssen, J., & Thöny-Meyer, L. (2011). Bacillus pumilus laccase: A heat stable enzyme with a wide substrate spectrum. BMC Biotechnology, 11(1), 1.

    Article  Google Scholar 

  5. Mate, D. M., & Alcalde, M. (2015). Laccase engineering: From rational design to directed evolution. Biotechnology Advances, 33(1), 25–40. doi:10.1016/j.biotechadv.2014.12.007.

    Article  CAS  Google Scholar 

  6. Sharma, P., Goel, R., & Capalash, N. (2007). Bacterial laccases. World Journal of Microbiology & Biotechnology, 23(6), 823–832. doi:10.1007/s11274-006-9305-3.

    Article  CAS  Google Scholar 

  7. Enguita, F. J., Martins, L. O., Henriques, A. O., & Carrondo, M. A. (2003). Crystal structure of a bacterial endospore coat component: A laccase with enhanced thermostability properties. Journal of Biological Chemistry, 278(21), 19416–19425. doi:10.1074/jbc.M301251200.

    Article  CAS  Google Scholar 

  8. Durão, P., Chen, Z., Fernandes, A. T., Hildebrandt, P., Murgida, D. H., Todorovic, S., et al. (2008). Copper incorporation into recombinant CotA laccase from Bacillus subtilis: Characterization of fully copper loaded enzymes. JBIC Journal of Biological Inorganic Chemistry, 13(2), 183–193. doi:10.1007/s00775-007-0312-0.

    Article  Google Scholar 

  9. Kudanga, T., Nyanhongo, G. S., Guebitz, G. M., & Burton, S. (2011). Potential applications of laccase-mediated coupling and grafting reactions: A review. Enzyme and Microbial Technology, 48(3), 195–208. doi:10.1016/j.enzmictec.2010.11.007.

    Article  CAS  Google Scholar 

  10. Mathew, S., & Abraham, T. E. (2004). Ferulic acid: An antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Critical Reviews in Biotechnology, 24(2–3), 59–83. doi:10.1080/07388550490491467.

    Article  CAS  Google Scholar 

  11. Christopher, L. P., Yao, B., & Ji, Y. (2014). Lignin biodegradation with laccase-mediator systems. Frontiers in Energy Research, 2, 12. doi:10.3389/fenrg.2014.00012.

    Article  Google Scholar 

  12. Ausec, L., van Elsas, J. D., & Mandic-Mulec, I. (2011). Two- and three-domain bacterial laccase-like genes are present in drained peat soils. Soil Biology & Biochemistry, 43(5), 975–983. doi:10.1016/j.soilbio.2011.01.013.

    Article  CAS  Google Scholar 

  13. Upadhyay, A. K., Murmu, A., Singh, A., & Panda, A. K. (2012). Kinetics of inclusion body formation and its correlation with the characteristics of protein aggregates in Escherichia coli. PLoS One, 7(3), e33951. doi:10.1371/journal.pone.0033951.

    Article  CAS  Google Scholar 

  14. Singh, S. M., & Panda, A. K. (2005). Solubilization and refolding of bacterial inclusion body proteins. Journal of Bioscience and Bioengineering, 99(4), 303–310. doi:10.1263/jbb.99.303.

    Article  CAS  Google Scholar 

  15. Kumar, S., Jain, K. K., Bhardwaj, K. N., Chakraborty, S., & Kuhad, R. C. (2015). Multiple Genes in a single host: Cost-effective production of bacterial laccase (cotA), pectate lyase (pel), and endoxylanase (xyl) by simultaneous expression and cloning in single vector in E. coli. PLoS One, 10(12), e0144379. doi:10.1371/journal.pone.0144379.

    Article  Google Scholar 

  16. Kumar, S., Jain, K. K., Singh, A., Panda, A. K., & Kuhad, R. C. (2015). Characterization of recombinant pectate lyase refolded from inclusion bodies generated in E. coli BL21(DE3). Protein Expression and Purification, 110, 43–51. doi:10.1016/j.pep.2014.12.003.

    Article  CAS  Google Scholar 

  17. Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M., et al. (2001). Comparative protein structure modeling using modeller. Current protocols in protein science. New York: Wiley.

    Google Scholar 

  18. Seeliger, D., & Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422. doi:10.1007/s10822-010-9352-6.

    Article  CAS  Google Scholar 

  19. Irwin, J. J., & Shoichet, B. K. (2005). ZINC—A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177–182. doi:10.1021/ci049714+.

    Article  CAS  Google Scholar 

  20. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., et al. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. doi:10.1002/jcc.21256.

    Article  CAS  Google Scholar 

  21. Dwivedi, U. N., Singh, P., Pandey, V. P., & Kumar, A. (2011). Structure–function relationship among bacterial, fungal and plant laccases. Journal of Molecular Catalysis. B, Enzymatic, 68(2), 117–128. doi:10.1016/j.molcatb.2010.11.002.

    Article  CAS  Google Scholar 

  22. Sokalingam, S., Raghunathan, G., Soundrarajan, N., & Lee, S.-G. (2012). A study on the effect of surface lysine to arginine mutagenesis on protein stability and structure using green fluorescent protein. PLoS One, 7(7), e40410. doi:10.1371/journal.pone.0040410.

    Article  CAS  Google Scholar 

  23. Guruprasad, K., Reddy, B. V., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, 4(2), 155–161.

    Article  CAS  Google Scholar 

  24. Nasoohi, N., Khajeh, K., Mohammadian, M., & Ranjbar, B. (2013). Enhancement of catalysis and functional expression of a bacterial laccase by single amino acid replacement. International Journal of Biological Macromolecules, 60, 56–61. doi:10.1016/j.ijbiomac.2013.05.011.

    Article  CAS  Google Scholar 

  25. Trubitsina, L. I., Tishchenko, S. V., Gabdulkhakov, A. G., Lisov, A. V., Zakharova, M. V., & Leontievsky, A. A. (2015). Structural and functional characterization of two-domain laccase from Streptomyces viridochromogenes. Biochimie, 112, 151–159. doi:10.1016/j.biochi.2015.03.005.

    Article  CAS  Google Scholar 

  26. Mollania, N., Khajeh, K., Ranjbar, B., Rashno, F., Akbari, N., & Fathi-Roudsari, M. (2013). An efficient in vitro refolding of recombinant bacterial laccase in Escherichia coli. Enzyme and Microbial Technology, 52(6–7), 325–330. doi:10.1016/j.enzmictec.2013.03.006.

    Article  CAS  Google Scholar 

  27. Arakawa, T., & Tsumoto, K. (2003). The effects of arginine on refolding of aggregated proteins: Not facilitate refolding, but suppress aggregation. Biochemical and Biophysical Research Communications, 304(1), 148–152. doi:10.1016/S0006-291X(03)00578-3.

    Article  CAS  Google Scholar 

  28. Yang, J. T., Wu, C. S., & Martinez, H. M. (1986). Calculation of protein conformation from circular dichroism. Methods in Enzymology, 130, 208–269.

    Article  CAS  Google Scholar 

  29. Kumar, S., & Nussinov, R. (2001). How do thermophilic proteins deal with heat? Cellular and Molecular Life Sciences CMLS, 58(9), 1216–1233. doi:10.1007/PL00000935.

    Article  CAS  Google Scholar 

  30. Mukhopadhyay, A., Dasgupta, A. K., & Chakrabarti, K. (2013). Thermostability, pH stability and dye degrading activity of a bacterial laccase are enhanced in the presence of Cu2O nanoparticles. Bioresource Technology, 127, 25–36. doi:10.1016/j.biortech.2012.09.087.

    Article  CAS  Google Scholar 

  31. Zhu, G. P., Xu, C., Teng, M. K., Tao, L. M., Zhu, X. Y., Wu, C. J., et al. (1999). Increasing the thermostability of D-xylose isomerase by introduction of a proline into the turn of a random coil. Protein Engineering, 12(8), 635–638. doi:10.1093/protein/12.8.635.

    Article  CAS  Google Scholar 

  32. Ragusa, S., Cambria, M. T., Pierfederici, F., Scirè, A., Bertoli, E., Tanfani, F., et al. (2002). Structure–activity relationship on fungal laccase from Rigidoporus lignosus: A Fourier-transform infrared spectroscopic study. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1601(2), 155–162.

    Article  CAS  Google Scholar 

  33. Mongkolthanaruk, Wiyada. (2012). Independent behavior of bacterial laccases to inducers and metal ions during production and activity. African Journal of Biotechnology, 11(39), 9391–9398. doi:10.5897/AJB11.3042.

    CAS  Google Scholar 

  34. Errami, M., Geourjon, C., & Deléage, G. (2003). Detection of unrelated proteins in sequences multiple alignments by using predicted secondary structures. Bioinformatics, 19(4), 506–512. doi:10.1093/bioinformatics/btg016.

    Article  CAS  Google Scholar 

  35. Enguita, F. J., Marcal, D., Martins, L. O., Grenha, R., Henriques, A. O., Lindley, P. F., et al. (2004). Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis. Journal of Biological Chemistry, 279(22), 23472–23476. doi:10.1074/jbc.M314000200.

    Article  CAS  Google Scholar 

  36. Carunchio, F., Crescenzi, C., Girelli, A. M., Messina, A., & Tarola, A. M. (2001). Oxidation of ferulic acid by laccase: Identification of the products and inhibitory effects of some dipeptides. Talanta, 55(1), 189–200.

    Article  CAS  Google Scholar 

  37. Adelakun, O. E. (2012). Biocatalytic production of new antioxidant compounds and the characterization of their antioxidant effects. Cape Town: Cape Peninsula University of Technology.

    Google Scholar 

  38. Gutteridge, A., & Thornton, J. M. (2005). Understanding nature’s catalytic toolkit. Trends in Biochemical Sciences, 30(11), 622–629. doi:10.1016/j.tibs.2005.09.006.

    Article  CAS  Google Scholar 

  39. Dodson, G., & Wlodawer, A. (1998). Catalytic triads and their relatives. Trends in Biochemical Sciences, 23(9), 347–352. doi:10.1016/S0968-0004(98)01254-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial assistance from the University of Delhi South Campus and DU/DST PURSE Grant to RCK is highly acknowledged. Also the fellowship grants from Indian Council of Medical Research (ICMR), New Delhi to SK and from Council of Scientific and industrial research (CSIR) to KKJ is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chander Kuhad.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Jain, K.K., Rani, S. et al. In-Vitro Refolding and Characterization of Recombinant Laccase (CotA) From Bacillus pumilus MK001 and Its Potential for Phenolics Degradation. Mol Biotechnol 58, 789–800 (2016). https://doi.org/10.1007/s12033-016-9978-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9978-2

Keywords

Navigation