Skip to main content
Log in

Truncated Ubiquitin 5′ Regulatory Region from Erianthus arundinaceus Drives Enhanced Transgene Expression in Heterologous Systems

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Characterization of novel plant gene promoters underpins the development of transgenic crop plants. Here, we report a novel 5′ regulatory sequence (Eriubi D7) of the ubiquitin gene from Erianthus arundinaceus, a wild relative of sugarcane resistant to many biotic and abiotic stresses. A 3.2-kb regulatory sequence of ubiquitin gene was isolated through random amplification of genomic ends technique and characterized in rice, tobacco, and sugarcane. In silico analysis revealed that the regulatory sequence contained a promoter region of 1600 bp upstream to the transcription start site. Between the promoter and the coding region, two putative introns of 584 and 583 bp and two putative non-coding exons of 459 and 37 bp were spaced alternatively. To identify the active domains required for gene regulation, 12 truncations/recombinants were made in the regulatory sequence and characterized in heterologous systems. Transformation studies with the recombinant constructs revealed that Eriubi D7, a truncated fragment containing 830 bp promoter and the intron I, conferred enhanced GUS reporter gene expression in both monocots and dicots compared to other routinely used promoters such as maize ubi1 and Cauliflower Mosaic Virus 35S. Further analysis confirms that this regulatory sequence is quite distinct from the other reported ubiquitin promoters and was also found to enhance expression of the reporter gene upon wounding. This is the first report on the isolation and characterization of a promoter from a wild sugarcane germplasm and is expected to be useful for development of transgenic crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Singh, R. K., Kumar, P., Tiwari, N. N., Rastogi, J., & Singh, S. P. (2013). Current status of sugarcane transgenic: an overview. Advances in Genetic Engineering, 2(112), 2169. doi:10.4172/2169-0111.1000112.

    Google Scholar 

  2. Philip, A., Syamaladevi, D. P., Chakravarthi, M., Gopinath, K., & Subramonian, N. (2013). 5′ Regulatory region of ubiquitin 2 gene from Porteresia coarctata makes efficient promoters for transgene expression in monocots and dicots. Plant Cell Reports, 32(8), 1199–1210.

    Article  CAS  Google Scholar 

  3. Callis, J., Raasch, J. A., & Vierstra, R. D. (1990). Ubiquitin extension proteins of Arabidopsis thaliana. Structure, localization, and expression of their promoters in transgenic tobacco. The Journal of biological chemistry, 265(21), 12486–12493.

    CAS  Google Scholar 

  4. Binet, M. N., Weil, J. H., & Tessier, L. H. (1991). Structure and expression of sunflower ubiquitin genes. Plant Molecular Biology, 17(3), 395–407.

    Article  CAS  Google Scholar 

  5. Genschik, P., Marbach, J., Uze, M., Feuerman, M., Plesse, B., & Fleck, J. (1994). Structure and promoter activity of a stress and developmentally regulated polyubiquitin-encoding gene of Nicotiana tabacum. Gene, 148(2), 195–202.

    Article  CAS  Google Scholar 

  6. Garbarino, J. E., Oosumi, T., & Belknap, W. R. (1995). Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiology, 109(4), 1371–1378.

    Article  CAS  Google Scholar 

  7. Rollfinke, I. K., Silber, M. V., & Pfitzner, U. M. (1998). Characterization and expression of a heptaubiquitin gene from tomato. Gene, 211(2), 267–276.

    Article  CAS  Google Scholar 

  8. Chiera, J. M., Bouchard, R. A., Dorsey, S. L., Park, E., Buenrostro-Nava, M. T., Ling, P. P., & Finer, J. J. (2007). Isolation of two highly active soybean (Glycine max (L.) Merr.) promoters and their characterization using a new automated image collection and analysis system. Plant Cell Reports, 26(9), 1501–1509.

    Article  CAS  Google Scholar 

  9. Maekawa, T., Kusakabe, M., Shimoda, Y., Sato, S., Tabata, S., Murooka, Y., & Hayashi, M. (2008). Polyubiquitin promoter-based binary vectors for overexpression and gene silencing in Lotus japonicus. Molecular Plant–Microbe Interactions, 21(4), 375–382.

    Article  CAS  Google Scholar 

  10. Cornejo, M. J., Luth, D., Blankenship, K. M., Anderson, O. D., & Blechl, A. E. (1993). Activity of a maize ubiquitin promoter in transgenic rice. Plant Molecular Biology, 23(3), 567–581.

    Article  CAS  Google Scholar 

  11. Wang, J. L., Jiang, J. D., & Oard, J. H. (2000). Structure expression and promoter activity of two polyubiquitin genes from rice (Oryza sativa L.). Plant Science, 156(2), 201–211.

    Article  CAS  Google Scholar 

  12. Sivamani, E., & Qu, R. (2006). Expression enhancement of a rice polyubiquitin gene promoter. Plant Molecular Biology, 60(2), 225–239.

    Article  CAS  Google Scholar 

  13. Christensen, A. H., Sharrock, R. A., & Quail, P. H. (1992). Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Molecular Biology, 18(4), 675–689.

    Article  CAS  Google Scholar 

  14. Joung, Y. H., & Kamo, K. (2006). Expression of a polyubiquitin promoter isolated from Gladiolus. Plant Cell Reports, 25(10), 1081–1088.

    Article  CAS  Google Scholar 

  15. Wei, H., Wang, M. L., Moore, P. H., & Albert, H. H. (2003). Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. Journal of Plant Physiology, 160(10), 1241–1251.

    Article  CAS  Google Scholar 

  16. Mann, D. G., King, Z. R., Liu, W., Joyce, B. L., Percifield, R. J., Hawkins, J. S., et al. (2011). Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation. BMC Biotechnology, 11(1), 74.

    Article  CAS  Google Scholar 

  17. Park, S. H., Yi, N., Kim, Y. S., Jeong, M. H., Bang, S. W., Do Choi, Y., & Kim, J. K. (2010). Analysis of five novel putative constitutive gene promoters in transgenic rice plants. Journal of Experimental Botany, 61(9), 2459–2467.

    Article  CAS  Google Scholar 

  18. Furner, I. J., Sheikh, M. A., & Collett, C. E. (1998). Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation. Genetics, 149(2), 651–662.

    CAS  Google Scholar 

  19. Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.

    Google Scholar 

  20. Kuriakose, B., Ganesan, V., Thomas, G., Viswanathan, A., & Anand, N. (2009). Random amplification of genomic ends (RAGE) as an efficient method for isolation and cloning of promoters and uncloned genomic regions. African Journal of Biotechnology, 8(19), 4765–4773.

    CAS  Google Scholar 

  21. Higo, K., Ugawa, Y., Iwamoto, M., & Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Research, 27(1), 297–300.

    Article  CAS  Google Scholar 

  22. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.

    Article  CAS  Google Scholar 

  23. Sambrook, J., Fritsch, E., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  24. Bower, R., & Birch, R. G. (1992). Transgenic sugarcane plants via microprojectile bombardment. The Plant Journal, 2(3), 409–416.

    Article  CAS  Google Scholar 

  25. Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: Beta glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901–3907.

    CAS  Google Scholar 

  26. Kumar, K. K., Maruthasalam, S., Loganathan, M., Sudhakar, D., & Balasubramanian, P. (2005). An improved Agrobacterium-mediated transformation protocol for recalcitrant elite indica rice cultivars. Plant Molecular Biology Reports, 23(1), 67–73.

    Article  CAS  Google Scholar 

  27. Horsch, R. B., Fry, J. E., Hoffman, N. L., Eichholtz, D., Rogers, S. G., & Fraley, R. T. (1985). A simple and general method for transferring genes into plants. Science, 227(4691), 1229–1231.

    Article  CAS  Google Scholar 

  28. Arvinth, S., Arun, S., Selvakesavan, R. K., Srikanth, J., Mukunthan, N., Kumar, P. A., et al. (2010). Genetic transformation and pyramiding of aprotinin-expressing sugarcane with cry1Ab for shoot borer (Chilo infuscatellus) resistance. Plant Cell Reports, 29(4), 383–395.

    Article  CAS  Google Scholar 

  29. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods, 25(4), 402–408.

    Article  CAS  Google Scholar 

  30. Mascarenhas, D., Mettler, I. J., Pierce, D. A., & Lowe, H. W. (1990). Intron-mediated enhancement of heterologous gene expression in maize. Plant Molecular Biology, 15(6), 913–920.

    Article  CAS  Google Scholar 

  31. Rose, A. B., & Beliakoff, J. A. (2000). Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing. Plant Physiology, 122(2), 535–542.

    Article  CAS  Google Scholar 

  32. Zhang, F., & Peterson, T. (2005). Comparisons of maize pericarp color1 alleles reveal paralogous gene recombination and an organ-specific enhancer region. Plant Cell, 17(3), 903–914.

    Article  CAS  Google Scholar 

  33. Lin, Z., Wu, W. S., Liang, H., Woo, Y., & Li, W. H. (2010). The spatial distribution of cis regulatory elements in yeast promoters and its implications for transcriptional regulation. BMC Genomics, 11, 581.

    Article  Google Scholar 

  34. Cai, Q., Aitken, K. S., Fan, Y. H., Piperidis, G., Liu, X. L., McIntyre, C. L., et al. (2012). Assessment of the genetic diversity in a collection of Erianthus arundinaceus. Genetic Resources and Crop Evolution, 59(7), 1483–1491.

    Article  Google Scholar 

  35. Wessler, S. R., Bureau, T. E., & White, S. E. (1995). LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Current Opinion in Genetics & Development, 5(6), 814–821.

    Article  CAS  Google Scholar 

  36. Takashi, F., Takatoshi, K., Mikiko, O., & Yoshihiro, O. (2001). Mites-like element and transcriptional activation element. Patent No. WO2001005986A2.

  37. Rose, A. B., Elfersi, T., Parra, G., & Korf, I. (2008). Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. Plant Cell, 20(3), 543–555.

    Article  CAS  Google Scholar 

  38. Hernandez-Garcia, C. M., Bouchard, R. A., Rushton, P. J., Jones, M. L., Chen, X., Timko, M. P., & Finer, J. J. (2010). High level transgenic expression of soybean (Glycine max) GmERF and Gmubi gene promoters isolated by a novel promoter analysis pipeline. BMC Plant Biology, 10(1), 237.

    Article  Google Scholar 

  39. Lu, J., Sivamani, E., Azhakanandam, K., Samadder, P., Li, X., & Qu, R. (2008). Gene expression enhancement mediated by the 5′ UTR intron of the rice rubi3 gene varied remarkably among tissues in transgenic rice plants. Molecular Genetics and Genomics, 279, 563–572.

    Article  CAS  Google Scholar 

  40. Garbarino, J. E., Oosumi, T., & Belknap, W. R. (1995). Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiology, 109(4), 1371–1378.

    Article  CAS  Google Scholar 

  41. You, C., Chen, Z., & Ding, Y. (Eds.). (1993). Biotechnology in agriculture: proceedings of the first Asia-Pacific conference on agricultural biotechnology, Beijing, China, 20–24 August 1992 (15). Berlin: Springer.

  42. An, G., Costa, M. A., & Ha, S. B. (1990). Nopaline synthase promoter is wound inducible and auxin inducible. Plant Cell, 2(3), 225–233.

    Article  CAS  Google Scholar 

  43. Rushton, P. J., Reinstadler, A., Lipka, V., Lippok, B., & Somssich, I. E. (2002). Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen-and wound-induced signaling. Plant Cell, 14(4), 749–762.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Indian Council of Agricultural Research and Sugarcane Breeding Institute, Coimbatore for the funding and infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Subramonian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravarthi, M., Philip, A. & Subramonian, N. Truncated Ubiquitin 5′ Regulatory Region from Erianthus arundinaceus Drives Enhanced Transgene Expression in Heterologous Systems. Mol Biotechnol 57, 820–835 (2015). https://doi.org/10.1007/s12033-015-9875-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9875-0

Keywords

Navigation