Skip to main content

Advertisement

Log in

Identification of Critical Genes and miRNAs Associated with the Development of Parkinson’s Disease

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The purpose of this study was to explore the key mechanism involved in the pathogenesis of Parkinson’s disease (PD) based on microarray analysis. The expression profile data of GSE7621, which contained 9 substantia nigra tissues isolated from normals and 16 substantia nigra tissues isolated from PD patients, was obtained from Gene Expression Omnibus. The differentially expressed genes (DEGs) were screened, followed by functional enrichment analysis and protein-protein interaction (PPI) network construction. After the miRNAs regulating the DEGs were predicted, the miRNA-DEG regulatory network was then constructed. Besides, the 6-hydroxydopamine rat model of PD was established and the expression of key DEGs and miRNA was detected. A total of 388 DEGs were identified, including 218 upregulated genes and 170 downregulated ones. Tyrosine hydroxylase (TH) and solute carrier family 6 member 3 (SLC6A3) were significantly related to the functional terms of catecholamine biosynthetic process and dopamine biosynthetic process. TH and SLC6A3 were hub nodes in the PPI network. EBF3 could be targeted by miR-218. Moreover, TH and SLC6A3 were found downregulated in the 6-OHDA rat model of PD, while miR-218 was markedly upregulated. Our results reveal that SLC6A3, TH, and EBF3 targeted by miR-218 could be involved in PD. These molecules might provide a new insight into the development of therapeutic strategies for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvord G, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA (2007) The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8:R183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aoki-Kinoshita KF, Kanehisa M (2007) Gene annotation and pathway mapping in KEGG. In Comparative genomics, Eds Springer, 71–91

  • Baek S, Choi H, Kim J (2014) Ebf3-miR218 regulation is involved in the development of dopaminergic neurons. Brain Res 1587:23–32

    Article  PubMed  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  PubMed  CAS  Google Scholar 

  • de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  • Diboun I, Wernisch L, Orengo CA, Koltzenburg M (2006) Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics 7:252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318

    Article  PubMed  CAS  Google Scholar 

  • Fauss D, Motter R, Dofiles L, Rodrigues MAV, You M, Diep L, Yang Y, Seto P, Tanaka K, Baker J, Bergeron M (2013) Development of an enzyme-linked immunosorbent assay (ELISA) to measure the level of tyrosine hydroxylase protein in brain tissue from Parkinson’s disease models. J Neurosci Methods 215:245–257

    Article  PubMed  CAS  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    Article  PubMed  CAS  Google Scholar 

  • Habak C, Noreau A, Nagano-Saito A, Mejía-Constaín B, Degroot C, Strafella AP, Chouinard S, Lafontaine AL, Rouleau GA, Monchi O (2014) Dopamine transporter SLC6A3 genotype affects cortico-striatal activity of set-shifts in Parkinson’s disease. Brain 137:3025–3035

    Article  PubMed  PubMed Central  Google Scholar 

  • Haugarvoll K, Bindoff LA (2011) A novel compound heterozygous tyrosine hydroxylase mutation (p. R441P) with complex phenotype. J Parkinsons Dis 1:119–122

    PubMed  CAS  Google Scholar 

  • Hulsegge I, Kommadath A, Smits MA (2009) Globaltest and GOEAST: two different approaches for Gene Ontology analysis. BMC Proc 3(Suppl 4):S10

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelada SN, Checkoway H, Kardia SL et al (2006) 5′ and 3′ region variability in the dopamine transporter gene (SLC6A3), pesticide exposure and Parkinson’s disease risk: a hypothesis-generating study. Hum Mol Genet 15:3055–3062

    Article  PubMed  CAS  Google Scholar 

  • Leranth C, Roth RH, Elsworth JD, Naftolin F, Horvath TL, Redmond DE (2000) Estrogen is essential for maintaining nigrostriatal dopamine neurons in primates: implications for Parkinson’s disease and memory. J Neurosci 20:8604–8609

    Article  PubMed  CAS  Google Scholar 

  • Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L, de Andrade M, Henley JR, Rocca WA, Ahlskog JE, Maraganore DM (2007) A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet 3:e98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Chen Z, Yang F, Pan J, Li Y (2013) Development of a microchip-pulsed electrochemical method for rapid determination of L-DOPA and tyrosine in Mucuna pruriens. J Sep Sci 36:1590–1596

    Article  PubMed  CAS  Google Scholar 

  • Lim L, Jackson-Lewis V, Wong L et al (2011) Lanosterol induces mitochondrial uncoupling and protects dopaminergic neurons from cell death in a model for Parkinson’s disease. Cell Death Differ 19:416–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z, Hamamichi S, Lee BD et al (2011) Inhibitors of LRRK2 kinase attenuate neurodegeneration and Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila Parkinson’s disease models. Hum Mol Genet 20:3933–3942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mcdonnell SK, Schaid DJ, Elbaz A et al (2006) Complex segregation analysis of Parkinson’s disease: the Mayo Clinic Family Study. Ann Neurol 59:788–795

    Article  PubMed  CAS  Google Scholar 

  • Miñones-Moyano E, Friedländer MR, Pallares J, Kagerbauer B, Porta S, Escaramís G, Ferrer I, Estivill X, Martí E (2013) Upregulation of a small vault RNA (svtRNA2-1a) is an early event in Parkinson disease and induces neuronal dysfunction. RNA Biol 10:1093–1106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakashima A, Ota A, Kaneko YS, Mori K, Nagasaki H, Nagatsu T (2013) A possible pathophysiological role of tyrosine hydroxylase in Parkinson’s disease suggested by postmortem brain biochemistry: a contribution for the special 70th birthday symposium in honor of Prof. Peter Riederer. J Neural Transm 120:49–54

    Article  PubMed  CAS  Google Scholar 

  • Nepusz T, Yu H, Paccanaro A (2012) Detecting overlapping protein complexes in protein-protein interaction networks. Nat Methods 9:471–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papapetropoulos S, Ffrench-Mullen J, Mccorquodale D, Qin Y, Pablo J, Mash DC (2006) Multiregional gene expression profiling identifies MRPS6 as a possible candidate gene for Parkinson’s disease. Gene Expr 13:205–215

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press

  • Rhee Y-H, Ko J-Y, Chang M-Y, Yi SH, Kim D, Kim CH, Shim JW, Jo AY, Kim BW, Lee H, Lee SH, Suh W, Park CH, Koh HC, Lee YS, Lanza R, Kim KS, Lee SH (2011) Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest 121:2326–2335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to Cytoscape plugins. Nat Methods 9:1069–1076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sawada H, Oeda T, Yamamoto K (2013) Catecholamines and neurodegeneration in Parkinson’s disease—from diagnostic marker to aggregations of α-synuclein. Diagnostics 3:210–221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun AG, Lin AQ, Huang SY, Huo D, Cong CH (2015) Identification of potential drugs for Parkinson’s disease based on a sub-pathway method. Int J Neurosci 126:318

    Article  PubMed  CAS  Google Scholar 

  • Uhl GR (1998) Hypothesis: the role of dopaminergic transporters in selective vulnerability of cells in Parkinson’s disease. Ann Neurol 43:555–560

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Liu S, Yin M, Yin Y, Zhou G, Zhou J (2015) Ebf2 is required for development of dopamine neurons in the midbrain periaqueductal gray matter of mouse. Dev Neurobiol 75:1282–1294

    Article  PubMed  CAS  Google Scholar 

  • Yao SC, Hart AD, Terzella MJ (2013) An evidence-based osteopathic approach to Parkinson disease. Osteopathic Family Physician 5:96–101

    Article  Google Scholar 

  • Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33:W741–W748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang B, Xia C, Lin Q, Huang J (2012) Identification of key pathways and transcription factors related to Parkinson disease in genome wide. Mol Biol Rep 39:10881–10887

    Article  PubMed  CAS  Google Scholar 

  • Zimprich A, Benet-Pagès A, Struhal W, Graf E, Eck SH, Offman MN, Haubenberger D, Spielberger S, Schulte EC, Lichtner P, Rossle SC, Klopp N, Wolf E, Seppi K, Pirker W, Presslauer S, Mollenhauer B, Katzenschlager R, Foki T, Hotzy C, Reinthaler E, Harutyunyan A, Kralovics R, Peters A, Zimprich F, Brücke T, Poewe W, Auff E, Trenkwalder C, Rost B, Ransmayr G, Winkelmann J, Meitinger T, Strom TM (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89:168–175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by the Parkinson-related lncRNA differential expression analysis and Jilin Province Neurological Diseases Precision Medicine Science and Technology Innovation Center (No. 20170623006TC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajun Chen.

Ethics declarations

The study was conducted following the “Guiding Principles in the Care and Use of Animals” endorsed by the State Department of China.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Sun, Y. & Chen, J. Identification of Critical Genes and miRNAs Associated with the Development of Parkinson’s Disease. J Mol Neurosci 65, 527–535 (2018). https://doi.org/10.1007/s12031-018-1129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-018-1129-8

Keywords

Navigation