Skip to main content
Log in

Identification of key pathways and transcription factors related to Parkinson disease in genome wide

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Parkinson disease (PD) is a common neurodegenerative disease. Most people with PD are idiopathic, with no specific known cause. Recently, several studies have indicated small proportion of PD cases may result from a mutation in some specific genes. However, the involved pathways of these genes and the co-expression patterns of associated pathways still remain unclear. Here, we aimed to systematically investigate PD related pathways by using microarray dataset GSE7621 from the public database library of gene expression omnibus and gene set enrichment analysis on the datasets. Furthermore, candidate transcription factors were also explored by distant regulatory elements software. As a result, 11 up-regulated pathways (such as glycosaminoglycan degradation) and 24 down-regulated pathways (such as ErbB signaling pathway and Long-term depression) were identified as PD related. Most of them were classified into the maps of human diseases, organismal system, and metabolism with no previous reports. Finally, we constructed co-expression networks of related pathways with the significant core genes and transcription factors, such as OCT and HNF3. All of these may be helpful to better understand the molecular mechanisms of human PD in genome wide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Przedborski S (2005) Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism Relat Disord 11:S3–S7

    Article  PubMed  Google Scholar 

  2. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. doi:10.1136/jnnp.2007.131045

    Article  PubMed  CAS  Google Scholar 

  3. Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127. doi:10.1093/bmb/ldn013

    Article  PubMed  CAS  Google Scholar 

  4. Lesage S, Brice A (2009) Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 18(R1):R48–R59. doi:10.1093/hmg/ddp012

    Article  PubMed  CAS  Google Scholar 

  5. Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M, Simon-Sanchez J, Schulte C, Lesage S, Sveinbjornsdottir S, Stefansson K, Martinez M, Hardy J, Heutink P, Brice A, Gasser T, Singleton AB, Wood NW (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377(9766):641–649. doi:10.1016/S0140-6736(10)62345-8

    Article  PubMed  Google Scholar 

  6. Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363(9423):1783–1793. doi:10.1016/S0140-6736(04)16305-8

    Article  PubMed  CAS  Google Scholar 

  7. Feng LR, Maguire-Zeiss KA (2010) Gene therapy in Parkinson’s disease: rationale and current status. CNS Drugs 24(3):177–192. doi:10.2165/11533740-000000000-00000

    Article  PubMed  CAS  Google Scholar 

  8. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16(6):653–661. doi:10.1038/nm.2165

    Article  PubMed  CAS  Google Scholar 

  9. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545

    Article  PubMed  CAS  Google Scholar 

  10. He K, Wang Q, Yang Y, Wang M, Pan Y (2011) A Comparative Study of Mouse Hepatic and Intestinal Gene Expression Profiles under PPARalpha Knockout by Gene Set Enrichment Analysis. PPAR Res 2011:629728. doi:10.1155/2011/629728

    Article  PubMed  Google Scholar 

  11. Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L, de Andrade M, Henley JR, Rocca WA, Ahlskog JE, Maraganore DM (2007) A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet 3(6):e98. doi:10.1371/journal.pgen.0030098

    Article  PubMed  Google Scholar 

  12. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315. doi:10.1093/bioinformatics/btg405

    Article  PubMed  CAS  Google Scholar 

  13. Chiaretti S, Li X, Gentleman R, Vitale A, Vignetti M, Mandelli F, Ritz J, Foa R (2004) Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood 103(7):2771–2778. doi:10.1182/blood-2003-09-3243

    Article  PubMed  CAS  Google Scholar 

  14. Gotea V, Ovcharenko I (2008) DiRE: identifying distant regulatory elements of co-expressed genes. Nucleic Acids Res 36 (Web Server issue):W133-139. doi:10.1093/nar/gkn300

  15. Simunovic F, Yi M, Wang Y, Macey L, Brown LT, Krichevsky AM, Andersen SL, Stephens RM, Benes FM, Sonntag KC (2009) Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain 132(7):1795–1809

    Article  PubMed  Google Scholar 

  16. Tun HW, Marlow LA, von Roemeling CA, Cooper SJ, Kreinest P, Wu K, Luxon BA, Sinha M, Anastasiadis PZ, Copland JA (2010) Pathway signature and cellular differentiation in clear cell renal cell carcinoma. PLoS One 5(5):e10696. doi:10.1371/journal.pone.0010696

    Article  PubMed  Google Scholar 

  17. Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 12(2):104–117. doi:10.1038/nrm3048

    Article  PubMed  CAS  Google Scholar 

  18. Cai Z, Zhang H, Liu J, Berezov A, Murali R, Wang Q, Greene MI (2010) Targeting erbB receptors. Semin Cell Dev Biol 21(9):961–966. doi:10.1016/j.semcdb.2010.09.005

    Article  PubMed  CAS  Google Scholar 

  19. Iwakura Y, Piao YS, Mizuno M, Takei N, Kakita A, Takahashi H, Nawa H (2005) Influences of dopaminergic lesion on epidermal growth factor-ErbB signals in Parkinson’s disease and its model: neurotrophic implication in nigrostriatal neurons. J Neurochem 93(4):974–983. doi:10.1111/j.1471-4159.2005.03073.x

    Article  PubMed  CAS  Google Scholar 

  20. Sancho RM, Law BM, Harvey K (2009) Mutations in the LRRK2 Roc-COR tandem domain link Parkinson’s disease to Wnt signalling pathways. Hum Mol Genet 18(20):3955–3968. doi:10.1093/hmg/ddp337

    Article  PubMed  CAS  Google Scholar 

  21. Domanskyi A, Geissler C, Vinnikov IA, Alter H, Schober A, Vogt MA, Gass P, Parlato R, Schutz G (2011) Pten ablation in adult dopaminergic neurons is neuroprotective in Parkinson’s disease models. FASEB J 25(9):2898–2910. doi:10.1096/fj.11-181958

    Article  PubMed  CAS  Google Scholar 

  22. Santini E, Heiman M, Greengard P, Valjent E, Fisone G (2009) Inhibition of mTOR signaling in Parkinson’s disease prevents L-DOPA-induced dyskinesia. Sci Signal 2(80):ra36. doi:10.1126/scisignal.2000308

    Article  PubMed  Google Scholar 

  23. Yang Y, Gehrke S, Haque ME, Imai Y, Kosek J, Yang L, Beal MF, Nishimura I, Wakamatsu K, Ito S, Takahashi R, Lu B (2005) Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci USA 102(38):13670–13675. doi:10.1073/pnas.0504610102

    Article  PubMed  CAS  Google Scholar 

  24. Giaime E, Sunyach C, Herrant M, Grosso S, Auberger P, McLean PJ, Checler F, da Costa CA (2006) Caspase-3-derived C-terminal product of synphilin-1 displays antiapoptotic function via modulation of the p53-dependent cell death pathway. J Biol Chem 281(17):11515–11522. doi:10.1074/jbc.M508619200

    Article  PubMed  CAS  Google Scholar 

  25. Levy OA, Malagelada C, Greene LA (2009) Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis 14(4):478–500. doi:10.1007/s10495-008-0309-3

    Article  PubMed  Google Scholar 

  26. Winslow AR, Rubinsztein DC (2011) The Parkinson disease protein alpha-synuclein inhibits autophagy. Autophagy 7(4):429–431

    Article  PubMed  Google Scholar 

  27. Gruden MA, Sewell RD, Yanamandra K, Davidova TV, Kucheryanu VG, Bocharov EV, Bocharova OR, Polyschuk VV, Sherstnev VV, Morozova-Roche LA (2011) Immunoprotection against toxic biomarkers is retained during Parkinson’s disease progression. J Neuroimmunol 233(1–2):221–227. doi:10.1016/j.jneuroim.2010.12.001

    Article  PubMed  CAS  Google Scholar 

  28. Benkler M, Agmon-Levin N, Hassin-Baer S, Cohen OS, Ortega-Hernandez OD, Levy A, Moscavitch SD, Szyper-Kravitz M, Damianovich M, Blank M, Chapman J, Shoenfeld Y (2011) Immunology, autoimmunity, and autoantibodies in Parkinson’s disease. Clin Rev Allergy Immunol. doi:10.1007/s12016-010-8242-y

    Google Scholar 

  29. Cunningham RL, Giuffrida A, Roberts JL (2009) Androgens induce dopaminergic neurotoxicity via caspase-3-dependent activation of protein kinase Cdelta. Endocrinology 150(12):5539–5548. doi:10.1210/en.2009-0640

    Article  PubMed  CAS  Google Scholar 

  30. Sutherland GT, Matigian NA, Chalk AM, Anderson MJ, Silburn PA, Mackay-Sim A, Wells CA, Mellick GD (2009) A cross-study transcriptional analysis of Parkinson’s disease. PLoS One 4(3):e4955. doi:10.1371/journal.pone.0004955

    Article  PubMed  Google Scholar 

  31. Jansson B, Jankovic J (1985) Low cancer rates among patients with Parkinson’s disease. Ann Neurol 17(5):505–509. doi:10.1002/ana.410170514

    Article  PubMed  CAS  Google Scholar 

  32. Takegawa K, Mitsumori K, Onodera H, Shimo T, Kitaura K, Yasuhara K, Hirose M, Takahashi M (2000) Studies on the carcinogenicity of potassium iodide in F344 rats. Food Chem Toxicol 38(9):773–781

    Article  PubMed  CAS  Google Scholar 

  33. Hildebrand MS, Sorensen JL, Jensen M, Kimberling WJ, Smith RJ (2008) Autoimmune disease in a DFNA6/14/38 family carrying a novel missense mutation in WFS1. Am J Med Genet A 146A(17):2258–2265. doi:10.1002/ajmg.a.32449

    Article  PubMed  CAS  Google Scholar 

  34. Goren B, Kahveci N, Eyigor O, Alkan T, Korfali E, Ozluk K (2005) Effects of intranigral vs intrastriatal fetal mesencephalic neural grafts on motor behavior disorders in a rat Parkinson model. Surg Neurol 64(Suppl 2):S33–S41. doi:10.1016/j.surneu.2005.07.038

    Article  PubMed  Google Scholar 

  35. Blair E, Redwood C, Ashrafian H, Oliveira M, Broxholme J, Kerr B, Salmon A, Ostman-Smith I, Watkins H (2001) Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet 10(11):1215–1220

    Article  PubMed  CAS  Google Scholar 

  36. Murphy RT, Mogensen J, McGarry K, Bahl A, Evans A, Osman E, Syrris P, Gorman G, Farrell M, Holton JL, Hanna MG, Hughes S, Elliott PM, Macrae CA, McKenna WJ (2005) Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome: natural history. J Am Coll Cardiol 45(6):922–930. doi:10.1016/j.jacc.2004.11.053

    Article  PubMed  CAS  Google Scholar 

  37. Lane EL, Soulet D, Vercammen L, Cenci MA, Brundin P (2008) Neuroinflammation in the generation of post-transplantation dyskinesia in Parkinson’s disease. Neurobiol Dis 32(2):220–228. doi:10.1016/j.nbd.2008.06.011

    Article  PubMed  CAS  Google Scholar 

  38. Villar-Cheda B, Rodriguez-Pallares J, Valenzuela R, Munoz A, Guerra MJ, Baltatu OC, Labandeira-Garcia JL (2010) Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson’s disease. Eur J Neurosci 32(10):1695–1706. doi:10.1111/j.1460-9568.2010.07448.x

    Article  PubMed  Google Scholar 

  39. Mure H, Hirano S, Tang CC, Isaias IU, Antonini A, Ma Y, Dhawan V, Eidelberg D (2011) Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. Neuroimage 54(2):1244–1253. doi:10.1016/j.neuroimage.2010.09.028

    Article  PubMed  Google Scholar 

  40. Farashahi Yazd E, Rafiee MR, Soleimani M, Tavallaei M, Salmani MK, Mowla SJ (2011) OCT4B1, a novel spliced variant of OCT4, generates a stable truncated protein with a potential role in stress response. Cancer Lett 309(2):170–175. doi:10.1016/j.canlet.2011.05.027

    Article  PubMed  Google Scholar 

  41. Hu J, Qin K, Zhang Y, Gong J, Li N, Lv D, Xiang R, Tan X (2011) Downregulation of transcription factor Oct4 induces an epithelial-to-mesenchymal transition via enhancement of Ca2+ influx in breast cancer cells. Biochem Biophys Res Commun 411(4):786–791. doi:10.1016/j.bbrc.2011.07.025

    Article  PubMed  CAS  Google Scholar 

  42. Liu D, Zhou P, Zhang L, Wu G, Zheng Y, He F (2011) Differential expression of Oct4 in HPV-positive and HPV-negative cervical cancer cells is not regulated by DNA methyltransferase 3A. Tumour Biol 32(5):941–950. doi:10.1007/s13277-011-0196-z

    Article  PubMed  CAS  Google Scholar 

  43. Deleidi M, Cooper O, Hargus G, Levy A, Isacson O (2011) Oct4-induced reprogramming is required for adult brain neural stem cell differentiation into midbrain dopaminergic neurons. PLoS One 6(5):e19926. doi:10.1371/journal.pone.0019926

    Article  PubMed  CAS  Google Scholar 

  44. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 105(15):5856–5861. doi:10.1073/pnas.0801677105

    Article  PubMed  CAS  Google Scholar 

  45. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH (2011) OCT1 polymorphism is associated with response and survival time in anti-Parkinsonian drug users. Neurogenetics 12(1):79–82. doi:10.1007/s10048-010-0254-5

    Article  PubMed  CAS  Google Scholar 

  46. Li Q, Zhang N, Jia Z, Le X, Dai B, Wei D, Huang S, Tan D, Xie K (2009) Critical role and regulation of transcription factor FoxM1 in human gastric cancer angiogenesis and progression. Cancer Res 69(8):3501–3509. doi:10.1158/0008-5472.CAN-08-3045

    Article  PubMed  CAS  Google Scholar 

  47. Raychaudhuri P, Park HJ (2011) FoxM1: a master regulator of tumor metastasis. Cancer Res 71(13):4329–4333. doi:10.1158/0008-5472.CAN-11-0640

    Article  PubMed  CAS  Google Scholar 

  48. Strahle U, Blader P, Henrique D, Ingham PW (1993) Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos. Genes Dev 7(7B):1436–1446

    Article  PubMed  CAS  Google Scholar 

  49. Zhang XM, Lin E, Yang XJ (2000) Sonic hedgehog-mediated ventralization disrupts formation of the midbrain-hindbrain junction in the chick embryo. Dev Neurosci 22(3):207–216

    Article  PubMed  CAS  Google Scholar 

  50. Labosky PA, Kaestner KH (1998) The winged helix transcription factor Hfh2 is expressed in neural crest and spinal cord during mouse development. Mech Dev 76(1–2):185–190

    Article  PubMed  CAS  Google Scholar 

  51. Singleton A, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R (2003) α-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841

    Article  PubMed  CAS  Google Scholar 

  52. Lücking CB, Dürr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi BS, Meco G, Denèfle P, Wood NW (2000) Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 342(21):1560–1567

    Article  PubMed  Google Scholar 

  53. Gandhi S, Muqit M, Stanyer L, Healy D, Abou-Sleiman P, Hargreaves I, Heales S, Ganguly M, Parsons L, Lees A (2006) PINK1 protein in normal human brain and Parkinson’s disease. Brain 129(7):1720–1731

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Xia, C., Lin, Q. et al. Identification of key pathways and transcription factors related to Parkinson disease in genome wide. Mol Biol Rep 39, 10881–10887 (2012). https://doi.org/10.1007/s11033-012-1985-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1985-1

Keywords

Navigation