Skip to main content

Advertisement

Log in

The Effect of miR-132, miR-146a, and miR-155 on MRP8/TLR4-Induced Astrocyte-Related Inflammation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Astrocyte activation, associated with the release of pro-inflammatory cytokines interleukin 1-β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), is a hallmark of multiple brain diseases, including mesial temporal lobe epilepsy. In recent years, several microRNAs have emerged as important controllers of Toll-like receptor (TLR) signaling. In this study, we investigated the effect of miR-132, miR-146a, and miR-155 on myeloid-related protein-8 (MRP8) induced astrocyte-related inflammation. Using quantitative polymerase chain reaction (qPCR) and western blot, we found clear upregulation of TLR4 and downstream inflammatory cytokines, along with dysregulation of miR-132, miR-146a, and miR-155 in in vitro astrocytes after exposing them to different concentrations of MRP8. In addition, we focused on the effect of miR-132 on astrocyte-related inflammation induced by MRP8 via lentiviral infection then evaluated the expression of its possible target genes: acetylcholinesterase (AChE) and interleukin-1 receptor-associated kinase (IRAK4). Our results show that miR-132 is a negative feedback regulator of IL-1β and IL-6, but not TNF-α, by targeting IRAK4. Together, our findings demonstrate the novel role of TLR4-related microRNAs, especially miR-132, in the regulation of MRP8-induced astrocyte activation and highlight the importance of miR-132 in the modulation of innate immune response induced by endogenous ligands in neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aronica E, Fluiter K, Iyer A et al (2010) Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci 31:1100–1107

    Article  CAS  PubMed  Google Scholar 

  • Aronica E, Ravizza T, Zurolo E, Vezzani A (2012) Astrocyte immune responses in epilepsy. Glia 60:1258–1268

    Article  PubMed  Google Scholar 

  • Ashhab MU, Omran A, Kong H et al (2013) Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J Mol Neurosci 51:950–958

    Article  CAS  PubMed  Google Scholar 

  • Bala S, Marcos M, Kodys K et al (2011) Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor {alpha} (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 286:1436–1444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berson A, Knobloch M, Hanan M et al (2008) Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology. Brain 131:109–119

    Article  PubMed  Google Scholar 

  • Bicker S, Lackinger M, Weiß K, Schratt G (2014) MicroRNA-132, −134, and −138: a microRNA troika rules in neuronal dendrites. Cell Mol Life Sci 71:3987–4005

    Article  CAS  PubMed  Google Scholar 

  • Brown J, Wang H, Hajishengallis GN, Martin M (2011) TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 90:417–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021

    CAS  PubMed  Google Scholar 

  • Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD (2005) Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 49:360–374

    Article  PubMed  Google Scholar 

  • Cheng HY, Papp JW, Varlamova O et al (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54:813–829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16

    Article  PubMed  Google Scholar 

  • Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190

    Article  CAS  PubMed  Google Scholar 

  • Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Engel S, Schluesener H, Mittelbronn M et al (2000) Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathol 100:313–322

    Article  CAS  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  • Floris S, van der Goes A, Killestein J et al (2004) Monocyte activation and disease activity in multiple sclerosis. A longitudinal analysis of serum MRP8/14 levels. J Neuroimmunol 148:172–177

    Article  CAS  PubMed  Google Scholar 

  • Gan N, Yang L, Omran A et al (2014) Myoloid-related protein 8, an endogenous ligand of Toll-like receptor 4, is involved in epileptogenesis of mesial temporal lobe epilepsy via activation of the nuclear factor-kappaB pathway in astrocytes. Mol Neurobiol 49:337–351

    Article  CAS  PubMed  Google Scholar 

  • Gill R, Tsung A, Billiar T (2010) Linking oxidative stress to inflammation: Toll-like receptors. Free Radic Biol Med 48:1121–1132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grisaru D, Sternfeld M, Eldor A, Glick D, Soreq H (1999) Structural roles of acetylcholinesterase variants in biology and pathology. Eur J Biochem 264:672–686

    Article  CAS  PubMed  Google Scholar 

  • Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7:494–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hancock ML, Preitner N, Quan J, Flanagan JG (2014) MicroRNA-132 is enriched in developing axons, locally regulates Rasa1 mRNA, and promotes axon extension. J Neurosci 34:66–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iyer A, Zurolo E, Prabowo A et al (2012) MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One 7:e44789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang M, Xiang Y, Wang D et al (2012) Dysregulated expression of miR-146a contributes to age-related dysfunction of macrophages. Aging Cell 11:29–40

    Article  CAS  PubMed  Google Scholar 

  • Karpel R, Sternfeld M, Ginzberg D, Guhl E, Graessmann A, Soreq H (1996) Overexpression of alternative human acetylcholinesterase forms modulates process extensions in cultured glioma cells. J Neurochem 66:114–123

    Article  CAS  PubMed  Google Scholar 

  • Lagos D, Pollara G, Henderson S et al (2010) miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nat Cell Biol 12:513–519

    Article  CAS  PubMed  Google Scholar 

  • Li G, Bauer S, Nowak M et al (2011) Cytokines and epilepsy. Seizure 20:249–256

    Article  PubMed  Google Scholar 

  • Maharshak N, Shenhar-Tsarfaty S, Aroyo N et al (2013) MicroRNA-132 modulates cholinergic signaling and inflammation in human inflammatory bowel disease. Inflamm Bowel Dis 19:1346–1353

    Article  PubMed  Google Scholar 

  • Nahid MA, Satoh M, Chan EK (2011a) MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol 8:388–403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nahid MA, Satoh M, Chan EK (2011b) Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. J Immunol 186:1723–1734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nahid MA, Yao B, Dominguez-Gutierrez PR, Kesavalu L, Satoh M, Chan EK (2013) Regulation of TLR2-mediated tolerance and cross-tolerance through IRAK4 modulation by miR-132 and miR-212. J Immunol 190:1250–1263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11:163–175

    Article  PubMed  Google Scholar 

  • Olivieri F, Rippo MR, Prattichizzo F et al (2013) Toll like receptor signaling in “inflammaging”: microRNA as new players. Immun Ageing 10:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Omran A, Peng J, Zhang C et al (2012) Interleukin-1beta and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia 53:1215–1224

    Article  CAS  PubMed  Google Scholar 

  • Omran A, Ashhab MU, Gan N, Kong H, Peng J, Yin F (2013) Effects of MRP8, LPS, and lenalidomide on the expressions of TNF-alpha, brain-enriched, and inflammation-related microRNAs in the primary astrocyte culture. ScientificWorldJournal 2013:208309

    Article  PubMed Central  PubMed  Google Scholar 

  • O'Neill LA (2009) Boosting the brain's ability to block inflammation via microRNA-132. Immunity 31:854–855

    Article  PubMed  Google Scholar 

  • Parker NR, Correia N, Crossley B, Buckland ME, Howell VM, Wheeler HR (2013) Correlation of microRNA 132 up-regulation with an unfavorable clinical outcome in patients with primary glioblastoma multiforme treated with radiotherapy plus concomitant and adjuvant temozolomide chemotherapy. Transl Oncol 6:742–748

    Article  PubMed Central  PubMed  Google Scholar 

  • Pedersen IM, Otero D, Kao E et al (2009) Onco-miR-155 targets SHIP1 to promote TNFalpha- dependent growth of B cell lymphomas. EMBO Mol Med 1:288–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng J, Omran A, Ashhab MU et al (2013) Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. J Mol Neurosci 50:291–297

    Article  CAS  PubMed  Google Scholar 

  • Quinn SR, O’Neill LA (2011) A trio of microRNAs that control Toll-like receptor signalling. Int Immunol 23:421–425

    Article  CAS  PubMed  Google Scholar 

  • Scott HL, Tamagnini F, Narduzzo KE et al (2012) MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex. Eur J Neurosci 36:2941–2948

    Article  PubMed Central  PubMed  Google Scholar 

  • Seifert G, Schilling K, Steinhäuser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206

    Article  CAS  PubMed  Google Scholar 

  • Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  • Shaked I, Meerson A, Wolf Y et al (2009) MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31:965–973

    Article  CAS  PubMed  Google Scholar 

  • Shaltiel G, Hanan M, Wolf Y et al (2013) Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct 218:59–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sheng JG, Mrak RE, Griffin WS (1994) S100 beta protein expression in Alzheimer disease: potential role in the pathogenesis of neuritic plaques. J Neurosci Res 39:398–404

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Takemiya T, Sugiura H, Yamagata K (2014) Role of inflammatory mediators in the pathogenesis of epilepsy. Mediat Inflamm 2014:901902

    Article  Google Scholar 

  • Sklan EH, Lowenthal A, Korner M et al (2004) Acetylcholinesterase/paraoxonase genotype and expression predict anxiety scores in Health, Risk Factors, Exercise Training, and Genetics study. Proc Natl Acad Sci U S A 101:5512–5517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soreq H, Wolf Y (2011) NeurimmiRs: microRNAs in the neuroimmune interface. Trends Mol Med 17:548–555

    Article  CAS  PubMed  Google Scholar 

  • Sternfeld M, Shoham S, Klein O et al (2000) Excess “read-through” acetylcholinesterase attenuates but the “synaptic” variant intensifies neurodeterioration correlates. Proc Natl Acad Sci U S A 97:8647–8652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103:12481–12486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tili E, Michaille JJ, Cimino A et al (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089

    Article  CAS  PubMed  Google Scholar 

  • Tognini P, Pizzorusso T (2012) MicroRNA212/132 family: molecular transducer of neuronal function and plasticity. Int J Biochem Cell Biol 44:6–10

    Article  CAS  PubMed  Google Scholar 

  • Tracey KJ (2007) Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest 117:289–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vainas T, Stassen FR, Bruggeman CA et al (2006) Synergistic effect of Toll-like receptor 4 and CD14 polymorphisms on the total atherosclerosis burden in patients with peripheral arterial disease. J Vasc Surg 44:326–332

    Article  PubMed  Google Scholar 

  • Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22:797–803

    Article  CAS  PubMed  Google Scholar 

  • Vezzani A, Aronica E, Mazarati A, Pittman QJ (2013) Epilepsy and brain inflammation. Exp Neurol 244:11–21

    Article  CAS  PubMed  Google Scholar 

  • Viemann D, Barczyk K, Vogl T et al (2007) MRP8/MRP14 impairs endothelial integrity and induces a caspase-dependent and -independent cell death program. Blood 109:2453–2460

    Article  CAS  PubMed  Google Scholar 

  • Virtue A, Wang H, Yang XF (2012) MicroRNAs and toll-like receptor/interleukin-1 receptor signaling. J Hematol Oncol 5:66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vogl T, Ludwig S, Goebeler M et al (2004) MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood 104:4260–4268

    Article  CAS  PubMed  Google Scholar 

  • Vogl T, Tenbrock K, Ludwig S et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Li Y, Prandovszky E et al (2014) MicroRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway. Neuroscience 268:128–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yonekawa K, Neidhart M, Altwegg LA et al (2011) Myeloid related proteins activate Toll-like receptor 4 in human acute coronary syndromes. Atherosclerosis 218:486–492

    Article  CAS  PubMed  Google Scholar 

  • Ziegler G, Prinz V, Albrecht MW et al (2009) Mrp-8 and −14 mediate CNS injury in focal cerebral ischemia. Biochim Biophys Acta 1792:1198–1204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was kindly supported by the National Natural Science Foundation of China (Nos. 81371434, 81370771, 81301031) and Hunan Provincial Innovation Foundation for Postgraduate (No. 2501–71380100017). The authors thank Dr. Chao Chen for revising the manuscript. We also thank all members of the laboratory for insightful discussions.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, H., Yin, F., He, F. et al. The Effect of miR-132, miR-146a, and miR-155 on MRP8/TLR4-Induced Astrocyte-Related Inflammation. J Mol Neurosci 57, 28–37 (2015). https://doi.org/10.1007/s12031-015-0574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0574-x

Keywords

Navigation