Skip to main content
Log in

SIRT1 Activation Promotes Long-Term Functional Recovery After Subarachnoid Hemorrhage in Rats

  • Original work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

An increase in sirtuin 1 (SIRT1) reportedly attenuates early brain injury, delayed cerebral ischemia, and short-term neurologic deficits in rodent models of subarachnoid hemorrhage (SAH). This study investigates the effect of resveratrol, a SIRT1 activator, on long-term functional recovery in a clinically relevant rat model of SAH.

Methods

Thirty male Wistar rats were subjected to fresh arterial blood injection into the prechiasmatic space and randomized to receive 7 days of intraperitoneal resveratrol (20 mg/kg) or vehicle injections. Body weight and rotarod performance were measured on days 0, 3, 7, and 34 post SAH. The neurologic score was assessed 7 and 34 days post SAH. Morris water maze performance was evaluated 29–33 days post SAH. Brain SIRT1 activity and CA1 neuronal survival were also assessed.

Results

Blood pressure rapidly increased in all SAH rats, and no between-group differences in blood pressure, blood gases, or glucose were detected. SAH induced weight loss during the first 7 days, which gradually recovered in both groups. Neurologic score and rotarod performance were significantly improved after resveratrol treatment at 34 days post SAH (p = 0.01 and 0.04, respectively). Latency to find the Morris water maze hidden platform was shortened (p = 0.02). In the resveratrol group, more CA1 neurons survived following SAH (p = 0.1). An increase in brain SIRT1 activity was confirmed in the resveratrol group (p < 0.05).

Conclusions

Treatment with resveratrol for 1 week significantly improved the neurologic score, rotarod performance, and latency to find the Morris water maze hidden platform 34 days post SAH. These findings indicate that SIRT1 activation warrants further investigation as a mechanistic target for SAH therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A, Altucci L. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenet. 2016;8:61.

    Article  Google Scholar 

  2. Pillarisetti S. A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases. Recent Pat Cardiovasc Drug Discov. 2008;3:156–64.

    Article  CAS  PubMed  Google Scholar 

  3. Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004;73:417–35.

    Article  CAS  PubMed  Google Scholar 

  4. Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol. 2003;23:3173–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grimm AA, Brace CS, Wang T, Stormo GD, Imai S. A nutrient-sensitive interaction between Sirt1 and HNF-1alpha regulates Crp expression. Aging Cell. 2011;10:305–17.

    Article  CAS  PubMed  Google Scholar 

  6. Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, Permutt MA, Imai S. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005;2:105–17.

    Article  CAS  PubMed  Google Scholar 

  7. Imai S. Is Sirt1 a miracle bullet for longevity? Aging Cell. 2007;6:735–7.

    Article  CAS  PubMed  Google Scholar 

  8. Imai S. SIRT1 and caloric restriction: an insight into possible trade-offs between robustness and frailty. Curr Opin Clin Nutr Metab Care. 2009;12:350–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Imai S. From heterochromatin islands to the NAD World: a hierarchical view of aging through the functions of mammalian Sirt1 and systemic NAD biosynthesis. Biochim Biophys Acta. 2009;1790:997–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Imai S, The NAD. World: a new systemic regulatory network for metabolism and aging–Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys. 2009;53:65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Imai S. “Clocks” in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim Biophys Acta. 2010;1804:1584–90.

    Article  CAS  PubMed  Google Scholar 

  12. Imai S. Dissecting systemic control of metabolism and aging in the NAD World: the importance of SIRT1 and NAMPT-mediated NAD biosynthesis. FEBS Lett. 2011;585:1657–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Imai S. A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis. Pharmacol Res. 2010;62:42–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Imai S, Yoshino J. The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes Obes Metab. 2013;15(Suppl 3):26–33.

    Article  CAS  PubMed  Google Scholar 

  15. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107:149–59.

    Article  CAS  PubMed  Google Scholar 

  16. Ramsey KM, Mills KF, Satoh A, Imai S. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell. 2008;7:78–88.

    Article  CAS  PubMed  Google Scholar 

  17. Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324:651–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Satoh A, Brace CS, Ben-Josef G, West T, Wozniak DF, Holtzman DM, Herzog ED, Imai S. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci. 2010;30:10220–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Satoh A, Stein L, Imai S. The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Handb Exp Pharmacol. 2011;206:125–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, Yamada KA, Imai S. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013;18:416–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang T, Zhang X, Bheda P, Revollo JR, Imai S, Wolberger C. Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat Struct Mol Biol. 2006;13:661–2.

    Article  CAS  PubMed  Google Scholar 

  22. Yoshino J, Conte C, Fontana L, Mittendorfer B, Imai S, Schechtman KB, Gu C, Kunz I, Rossi Fanelli F, Patterson BW, et al. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab. 2012;16:658–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14:528–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004;305:1010–3.

    Article  CAS  PubMed  Google Scholar 

  25. Li XH, Chen C, Tu Y, Sun HT, Zhao ML, Cheng SX, Qu Y, Zhang S. Sirt1 promotes axonogenesis by deacetylation of Akt and inactivation of GSK3. Mol Neurobiol. 2013;48:490–9.

    Article  CAS  PubMed  Google Scholar 

  26. Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem. 2006;281:21745–54.

    Article  CAS  PubMed  Google Scholar 

  27. Qian C, Jin J, Chen J, Li J, Yu X, Mo H, Chen G. SIRT1 activation by resveratrol reduces brain edema and neuronal apoptosis in an experimental rat subarachnoid hemorrhage model. Mol Med Rep. 2017;16:9627–35.

    Article  CAS  PubMed  Google Scholar 

  28. Li Z, Han X. Resveratrol alleviates early brain injury following subarachnoid hemorrhage: possible involvement of the AMPK/SIRT1/autophagy signaling pathway. Biol Chem. 2018;399:1339–50.

    Article  CAS  PubMed  Google Scholar 

  29. Diwan D, Vellimana AK, Aum DJ, Clarke J, Nelson JW, Lawrence M, Han BH, Gidday JM, Zipfel GJ. Sirtuin 1 mediates protection against delayed cerebral ischemia in subarachnoid hemorrhage in response to hypoxic postconditioning. J Am Heart Assoc. 2021;10: e021113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clarke JV, Brier LM, Rahn RM, Diwan D, Yuan JY, Bice AR, Imai SI, Vellimana AK, Culver JP, Zipfel GJ. SIRT1 mediates hypoxic postconditioning- and resveratrol-induced protection against functional connectivity deficits after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2022;42:1210–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vellimana AK, Aum DJ, Diwan D, Clarke JV, Nelson JW, Lawrence M, Han BH, Gidday JM, Zipfel GJ. SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage. Exp Neurol. 2020;334: 113484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen J, Li M, Zhu X, Chen Y, Zhang C, Shi W, Chen Q, Wang Y. Anterior communicating artery aneurysms: anatomical considerations and microsurgical strategies. Front Neurol. 2020;11:1020.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sasaki T, Hoffmann U, Kobayashi M, Sheng H, Ennaceur A, Lombard FW, Warner DS. Long-term cognitive deficits after subarachnoid hemorrhage in rats. Neurocrit Care. 2016;25:293–305.

    Article  PubMed  Google Scholar 

  34. Prunell GF, Mathiesen T, Diemer NH, Svendgaard NA. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 2003;52:165–175; discussion 175–166

  35. Prunell GF, Mathiesen T, Svendgaard NA. A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. NeuroReport. 2002;13:2553–6.

    Article  PubMed  Google Scholar 

  36. Prunell GF, Mathiesen T, Svendgaard NA. Experimental subarachnoid hemorrhage: cerebral blood flow and brain metabolism during the acute phase in three different models in the rat. Neurosurgery. 2004;54:426–436; discussion 427–436

  37. Takata K, Sheng H, Borel CO, Laskowitz DT, Warner DS, Lombard FW. Simvastatin treatment duration and cognitive preservation in experimental subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2009;21:326–33.

    Article  PubMed  Google Scholar 

  38. Parra A, McGirt MJ, Sheng H, Laskowitz DT, Pearlstein RD, Warner DS. Mouse model of subarachnoid hemorrhage associated cerebral vasospasm: methodological analysis. Neurol Res. 2002;24:510–6.

    Article  PubMed  Google Scholar 

  39. Takata K, Sheng H, Borel CO, Laskowitz DT, Warner DS, Lombard FW. Long-term cognitive dysfunction following experimental subarachnoid hemorrhage: new perspectives. Exp Neurol. 2008;213:336–44.

    Article  CAS  PubMed  Google Scholar 

  40. Buunk AM, Groen RJM, Veenstra WS, Metzemaekers JDM, van der Hoeven JH, van Dijk JMC, Spikman JM. Cognitive deficits after aneurysmal and angiographically negative subarachnoid hemorrhage: Memory, attention, executive functioning, and emotion recognition. Neuropsychology. 2016;30:961–9.

    Article  PubMed  Google Scholar 

  41. Beeckmans K, Crunelle CL, Van den Bossche J, Dierckx E, Michiels K, Vancoillie P, Hauman H, Sabbe B. Cognitive outcome after surgical clipping versus endovascular coiling in patients with subarachnoid hemorrhage due to ruptured anterior communicating artery aneurysm. Acta Neurol Belg. 2020;120:123–32.

    Article  PubMed  Google Scholar 

  42. Buunk AM, Spikman JM, Metzemaekers JDM, van Dijk JMC, Groen RJM. Return to work after subarachnoid hemorrhage: the influence of cognitive deficits. PLoS ONE. 2019;14: e0220972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma N, Feng X, Wu Z, Wang D, Liu A. Cognitive impairments and risk factors after ruptured anterior communicating artery aneurysm treatment in low-grade patients without severe complications: a multicenter retrospective study. Front Neurol. 2021;12: 613785.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mohanty M, Dhandapani S, Gupta SK, Shahid AH, Patra DP, Sharma A, Mathuriya SN. Cognitive impairments after clipping of ruptured anterior circulation aneurysms. World Neurosurg. 2018;117:e430–7.

    Article  PubMed  Google Scholar 

  45. Li Y, Yang H, Ni W, Gu Y. Effects of deferoxamine on blood-brain barrier disruption after subarachnoid hemorrhage. PLoS ONE. 2017;12: e0172784.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kreiter KT, Copeland D, Bernardini GL, Bates JE, Peery S, Claassen J, Du YE, Stern Y, Connolly ES, Mayer SA. Predictors of cognitive dysfunction after subarachnoid hemorrhage. Stroke. 2002;33:200–8.

    Article  PubMed  Google Scholar 

  47. Duan H, Li L, Shen S, Ma Y, Yin X, Liu Z, Yuan C, Wang Y, Zhang J. Hydrogen sulfide reduces cognitive impairment in rats after subarachnoid hemorrhage by ameliorating neuroinflammation mediated by the TLR4/NF-kappaB pathway in microglia. Front Cell Neurosci. 2020;14:210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dong Y, Li Y, Feng D, Wang J, Wen H, Liu D, Zhao D, Liu H, Gao G, Yin Z, et al. Protective effect of HIF-1alpha against hippocampal apoptosis and cognitive dysfunction in an experimental rat model of subarachnoid hemorrhage. Brain Res. 2013;1517:114–21.

    Article  CAS  PubMed  Google Scholar 

  49. Geraghty JR, Lara-Angulo MN, Spegar M, Reeh J, Testai FD. Severe cognitive impairment in aneurysmal subarachnoid hemorrhage: Predictors and relationship to functional outcome. J Stroke Cerebrovasc Dis. 2020;29: 105027.

    Article  PubMed  PubMed Central  Google Scholar 

  50. McBride DW, Blackburn SL, Peeyush KT, Matsumura K, Zhang JH. The role of thromboinflammation in delayed cerebral ischemia after subarachnoid hemorrhage. Front Neurol. 2017;8:555.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Clarke JV, Suggs JM, Diwan D, Lee JV, Lipsey K, Vellimana AK, Zipfel GJ. Microvascular platelet aggregation and thrombosis after subarachnoid hemorrhage: a review and synthesis. J Cereb Blood Flow Metab. 2020;40:1565–75.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Santos GA, Petersen N, Zamani AA, Du R, LaRose S, Monk A, Sorond FA, Tan CO. Pathophysiologic differences in cerebral autoregulation after subarachnoid hemorrhage. Neurology. 2016;86:1950–6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lidington D, Wan H, Bolz SS. Cerebral autoregulation in subarachnoid hemorrhage. Front Neurol. 2021;12: 688362.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sugimoto K, Chung DY. Spreading depolarizations and subarachnoid hemorrhage. Neurotherapeutics. 2020;17:497–510.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Leng LZ, Fink ME, Iadecola C. Spreading depolarization: a possible new culprit in the delayed cerebral ischemia of subarachnoid hemorrhage. Arch Neurol. 2011;68:31–6.

    Article  PubMed  Google Scholar 

  56. Rowland MJ, Garry P, Ezra M, Corkill R, Baker I, Jezzard P, Westbrook J, Douaud G, Pattinson KTS. Early brain injury and cognitive impairment after aneurysmal subarachnoid haemorrhage. Sci Rep. 2021;11:23245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vellimana AK, Diwan D, Clarke J, Gidday JM, Zipfel GJ. SIRT1 Activation: a potential strategy for harnessing endogenous protection against delayed cerebral ischemia after subarachnoid hemorrhage. Neurosurgery. 2018;65:1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhang XS, Wu Q, Wu LY, Ye ZN, Jiang TW, Li W, Zhuang Z, Zhou ML, Zhang X, Hang CH. Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats. Cell Death Dis. 2016;7: e2416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peng Y, Jin J, Fan L, Xu H, He P, Li J, Chen T, Ruan W, Chen G. Rolipram attenuates early brain injury following experimental subarachnoid hemorrhage in rats: possibly via regulating the SIRT1/NF-kappaB pathway. Neurochem Res. 2018;43:785–95.

    Article  CAS  PubMed  Google Scholar 

  60. Zhao L, Liu H, Yue L, Zhang J, Li X, Wang B, Lin Y, Qu Y. Melatonin attenuates early brain injury via the melatonin receptor/Sirt1/NF-kappaB signaling pathway following subarachnoid hemorrhage in mice. Mol Neurobiol. 2017;54:1612–21.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou XM, Zhang X, Zhang XS, Zhuang Z, Li W, Sun Q, Li T, Wang CX, Zhu L, Shi JX, et al. SIRT1 inhibition by sirtinol aggravates brain edema after experimental subarachnoid hemorrhage. J Neurosci Res. 2014;92:714–22.

    Article  CAS  PubMed  Google Scholar 

  62. Abozaid OAR, Sallam MW, El-Sonbaty S, Aziza S, Emad B, Ahmed ESA. Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of Alzheimer’s disease by regulating Sirt1/miRNA-134/GSK3beta expression. Biol Trace Elem Res. 2022;6:66.

    Google Scholar 

  63. Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou PVT, Martins N, Sharifi-Rad J. Resveratrol: a double-edged sword in health benefits. Biomedicines. 2018;6:66.

    Article  Google Scholar 

  64. Faghihzadeh F, Hekmatdoost A, Adibi P. Resveratrol and liver: a systematic review. J Res Med Sci. 2015;20:797–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project was funded by US Public Health Service National Institutes of Health grant 1R01NS091603 (principal investigator: GJZ).

Author information

Authors and Affiliations

Authors

Contributions

DC, XQ, and HS performed animal surgery, treatment, and behavioral tests. XL performed histologic work and collected data. DD performed SIRT1 measurements. DSW and HS performed data analysis. GJZ and DSW received the National Institutes of Health grant. HS, DSW, and GJZ wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Huaxin Sheng.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest to declare.

Ethical approval/informed consent

The authors confirm that this study adheres to ethical guidelines and was approved by the Duke University Institutional Animal Care and Use Committee (IACUC).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, D., Li, X., Qu, X. et al. SIRT1 Activation Promotes Long-Term Functional Recovery After Subarachnoid Hemorrhage in Rats. Neurocrit Care 38, 622–632 (2023). https://doi.org/10.1007/s12028-022-01614-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-022-01614-z

Keywords

Navigation