Skip to main content

Advertisement

Log in

Melatonin Attenuates Early Brain Injury via the Melatonin Receptor/Sirt1/NF-κB Signaling Pathway Following Subarachnoid Hemorrhage in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Melatonin (Mel) has been reported to alleviate early brain injury (EBI) following subarachnoid hemorrhage (SAH). The activation of silent information regulator 1 (Sirt1), a histone deacetylase, has been suggested to be beneficial in SAH. However, the precise role of Sirt1 in Mel-mediated protection against EBI following SAH has not been elucidated. The present study aims to evaluate the role of melatonin receptor/Sirt1/nuclear factor-kappa B (NF-κB) in this process. The endovascular perforation SAH model was used in male C57BL/6J mice, and melatonin was administrated intraperitoneally (150 mg/kg). The mortality, SAH grade, neurological score, brain water content, and neuronal apoptosis were evaluated. The expression of Sirt1, acetylated-NF-κB (Ac-NF-κB), Bcl-2, and Bax were detected by western blot. To study the underlying mechanisms, melatonin receptor (MR) antagonist luzindole and Sirt1 small interfering RNA (siRNA) were administrated to different groups. The results suggest that Mel improved the neurological deficits and reduced the brain water content and neuronal apoptosis. In addition, Mel enhanced the expression of Sirt1 and Bcl-2 and decreased the expression of Ac-NF-κB and Bax. However, the protective effects of Mel were abolished by luzindole or Sirt1 siRNA. In conclusion, our results demonstrate that Mel attenuates EBI following SAH via the MR/Sirt1/NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. van Gijn J, Kerr RS, Rinkel GJ (2007) Subarachnoid haemorrhage. Lancet 369(9558):306–318. doi:10.1016/S0140-6736(07)60153-6

    Article  PubMed  Google Scholar 

  2. Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, Zhang J, Tang J et al (2014) Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol 115:64–91. doi:10.1016/j.pneurobio.2013.09.002

    Article  PubMed  Google Scholar 

  3. Sehba FA, Hou J, Pluta RM, Zhang JH (2012) The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 97(1):14–37. doi:10.1016/j.pneurobio.2012.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  4. Altay O, Suzuki H, Hasegawa Y, Caner B, Krafft PR, Fujii M, Tang J, Zhang JH (2012) Isoflurane attenuates blood–brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke J Cereb Circ 43(9):2513–2516. doi:10.1161/STROKEAHA.112.661728

    Article  CAS  Google Scholar 

  5. Nornes H, Magnaes B (1972) Intracranial pressure in patients with ruptured saccular aneurysm. J Neurosurg 36(5):537–547. doi:10.3171/jns.1972.36.5.0537

    Article  CAS  PubMed  Google Scholar 

  6. Asano T, Sano K (1977) Pathogenetic role of no-reflow phenomenon in experimental subarachnoid hemorrhage in dogs. J Neurosurg 46(4):454–466. doi:10.3171/jns.1977.46.4.0454

    Article  CAS  PubMed  Google Scholar 

  7. Friedrich V, Flores R, Muller A, Bi W, Peerschke EI, Sehba FA (2011) Reduction of neutrophil activity decreases early microvascular injury after subarachnoid haemorrhage. J Neuroinflammation 8:103. doi:10.1186/1742-2094-8-103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li J, Chen J, Mo H, Chen J, Qian C, Yan F, Gu C, Hu Q et al (2015) Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury after subarachnoid hemorrhage. Mol Neurobiol. doi:10.1007/s12035-015-9318-8

    Google Scholar 

  9. Cai J, Cao S, Chen J, Yan F, Chen G, Dai Y (2015) Progesterone alleviates acute brain injury via reducing apoptosis and oxidative stress in a rat experimental subarachnoid hemorrhage model. Neurosci Lett 600:238–243. doi:10.1016/j.neulet.2015.06.023

    Article  CAS  PubMed  Google Scholar 

  10. Zhang ZY, Yang MF, Wang T, Li DW, Liu YL, Zhang JH, Sun BL (2015) Cysteamine alleviates early brain injury via reducing oxidative stress and apoptosis in a rat experimental subarachnoid hemorrhage model. Cell Mol Neurobiol 35(4):543–553. doi:10.1007/s10571-014-0150-x

    Article  CAS  PubMed  Google Scholar 

  11. Yang YQ, Li H, Zhang XS, Li W, Huang LT, Yu Z, Jiang TW, Chen Q et al (2015) Inhibition of SENP3 by lentivirus induces suppression of apoptosis in experimental subarachnoid hemorrhage in rats. Brain Res 1622:270–278. doi:10.1016/j.brainres.2015.06.032

    Article  CAS  PubMed  Google Scholar 

  12. Liu F, Chen Y, Hu Q, Li B, Tang J, He Y, Guo Z, Feng H et al (2015) MFGE8/Integrin beta3 pathway alleviates apoptosis and inflammation in early brain injury after subarachnoid hemorrhage in rats. Exp Neurol. doi:10.1016/j.expneurol.2015.04.016

    Google Scholar 

  13. Li JG, Lin JJ, Wang ZL, Cai WK, Wang PN, Jia Q, Zhang AS, Wu GY et al (2015) Melatonin attenuates inflammation of acute pulpitis subjected to dental pulp injury. Am J Transl Res 7(1):66–78

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shim DW, Shin HJ, Han JW, Ji YE, Jang CH, Koppula S, Kang TB, Lee KH (2015) A novel synthetic derivative of melatonin, 5-hydroxy-2′-isobutyl-streptochlorin (HIS), inhibits inflammatory responses via regulation of TRIF-dependent signaling and inflammasome activation. Toxicol Appl Pharmacol. doi:10.1016/j.taap.2015.02.006

    PubMed  Google Scholar 

  15. Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51(1):1–16. doi:10.1111/j.1600-079X.2011.00916.x

    Article  CAS  PubMed  Google Scholar 

  16. Amin AH, El-Missiry MA, Othman AI (2015) Melatonin ameliorates metabolic risk factors, modulates apoptotic proteins, and protects the rat heart against diabetes-induced apoptosis. Eur J Pharmacol 747:166–173. doi:10.1016/j.ejphar.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  17. El-Missiry MA, Othman AI, Al-Abdan MA, El-Sayed AA (2014) Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis. J Neurol Sci 347(1–2):251–256. doi:10.1016/j.jns.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  18. Luchetti F, Canonico B, Betti M, Arcangeletti M, Pilolli F, Piroddi M, Canesi L, Papa S et al (2010) Melatonin signaling and cell protection function. FASEB J Off Publ Fed Am Soc Exp Biol 24(10):3603–3624. doi:10.1096/fj.10-154450

    CAS  Google Scholar 

  19. Ayer RE, Sugawara T, Chen W, Tong W, Zhang JH (2008) Melatonin decreases mortality following severe subarachnoid hemorrhage. J Pineal Res 44(2):197–204. doi:10.1111/j.1600-079X.2007.00508.x

    Article  CAS  PubMed  Google Scholar 

  20. Ersahin M, Toklu HZ, Cetinel S, Yuksel M, Yegen BC, Sener G (2009) Melatonin reduces experimental subarachnoid hemorrhage-induced oxidative brain damage and neurological symptoms. J Pineal Res 46(3):324–332. doi:10.1111/j.1600-079X.2009.00664.x

    Article  CAS  PubMed  Google Scholar 

  21. Aladag MA, Turkoz Y, Parlakpinar H, Ozen H, Egri M, Unal SC (2009) Melatonin ameliorates cerebral vasospasm after experimental subarachnoidal haemorrhage correcting imbalance of nitric oxide levels in rats. Neurochem Res 34(11):1935–1944. doi:10.1007/s11064-009-9979-7

    Article  CAS  PubMed  Google Scholar 

  22. Fang Q, Chen G, Zhu W, Dong W, Wang Z (2009) Influence of melatonin on cerebrovascular proinflammatory mediators expression and oxidative stress following subarachnoid hemorrhage in rabbits. Mediat Inflamm 2009:426346. doi:10.1155/2009/426346

    Article  Google Scholar 

  23. Chen J, Qian C, Duan H, Cao S, Yu X, Li J, Gu C, Yan F et al (2015) Melatonin attenuates neurogenic pulmonary edema via the regulation of inflammation and apoptosis after subarachnoid hemorrhage in rats. J Pineal Res. doi:10.1111/jpi.12278

    PubMed Central  Google Scholar 

  24. Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101(45):15998–16003. doi:10.1073/pnas.0404184101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Z, Zhang L, Liang Y, Zhang C, Xu Z, Zhang L, Fuji R, Mu W et al (2015) Cyclic AMP mimics the anti-ageing effects of calorie restriction by up-regulating sirtuin. Sci Rep 5:12012. doi:10.1038/srep12012

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hernandez-Jimenez M, Hurtado O, Cuartero MI, Ballesteros I, Moraga A, Pradillo JM, McBurney MW, Lizasoain I et al (2013) Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke J Cereb Circ 44(8):2333–2337. doi:10.1161/STROKEAHA.113.001715

    Article  CAS  Google Scholar 

  27. Zheng Y, Hu Q, Manaenko A, Zhang Y, Peng Y, Xu L, Tang J, Tang J et al (2015) 17beta-Estradiol attenuates hematoma expansion through estrogen receptor alpha/silent information regulator 1/nuclear factor-kappa b pathway in hyperglycemic intracerebral hemorrhage mice. Stroke J Cereb Circ 46(2):485–491. doi:10.1161/STROKEAHA.114.006372

    Article  CAS  Google Scholar 

  28. Zhou XM, Zhang X, Zhang XS, Zhuang Z, Li W, Sun Q, Li T, Wang CX et al (2014) SIRT1 inhibition by sirtinol aggravates brain edema after experimental subarachnoid hemorrhage. J Neurosci Res 92(6):714–722. doi:10.1002/jnr.23359

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Wang L, Wu C, Hu Q, Gu C, Yan F, Li J, Yan W et al (2014) Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. J Pineal Res 56(1):12–19. doi:10.1111/jpi.12086

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, Ma C, Meng CJ, Zhu GQ, Sun XB, Huo L, Zhang J, Liu HX et al (2012) Melatonin activates the Nrf2-ARE pathway when it protects against early brain injury in a subarachnoid hemorrhage model. J Pineal Res 53(2):129–137. doi:10.1111/j.1600-079X.2012.00978.x

    Article  CAS  PubMed  Google Scholar 

  31. Hasegawa Y, Suzuki H, Altay O, Zhang JH (2011) Preservation of tropomyosin-related kinase B (TrkB) signaling by sodium orthovanadate attenuates early brain injury after subarachnoid hemorrhage in rats. Stroke J Cereb Circ 42(2):477–483. doi:10.1161/STROKEAHA.110.597344

    Article  CAS  Google Scholar 

  32. Yu L, Sun Y, Cheng L, Jin Z, Yang Y, Zhai M, Pei H, Wang X et al (2014) Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: role of SIRT1. J Pineal Res 57(2):228–238. doi:10.1111/jpi.12161

    Article  CAS  PubMed  Google Scholar 

  33. Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J (2014) NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol 75(2):209–219. doi:10.1002/ana.24070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu L, Fujimoto M, Kawakita F, Nakano F, Imanaka-Yoshida K, Yoshida T, Suzuki H (2015) Anti-vascular endothelial growth factor treatment suppresses early brain injury after subarachnoid hemorrhage in mice. Mol Neurobiol. doi:10.1007/s12035-015-9386-9

    Google Scholar 

  35. Sugawara T, Ayer R, Jadhav V, Zhang JH (2008) A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods 167(2):327–334. doi:10.1016/j.jneumeth.2007.08.004

    Article  PubMed  Google Scholar 

  36. Garcia JH, Liu KF, Ho KL (1995) Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke J Cereb Circ 26(4):636–642, discussion 643

    Article  CAS  Google Scholar 

  37. Zhao L, An R, Yang Y, Yang X, Liu H, Yue L, Li X, Lin Y et al (2015) Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling. J Pineal Res 59(2):230–239. doi:10.1111/jpi.12254

    Article  CAS  PubMed  Google Scholar 

  38. Leibowitz A, Volkov A, Voloshin K, Shemesh C, Barshack I, Grossman E (2015) Melatonin prevents kidney injury in a high salt diet induced hypertension model by decreasing oxidative stress. J Pineal Res. doi:10.1111/jpi.12287

    PubMed  Google Scholar 

  39. Liu S, Guo Y, Yuan Q, Pan Y, Wang L, Liu Q, Wang F, Wang J et al (2015) Melatonin prevents neural tube defects in the offspring of diabetic pregnancy. J Pineal Res. doi:10.1111/jpi.12282

    PubMed Central  Google Scholar 

  40. Yang Y, Jiang S, Dong Y, Fan C, Zhao L, Yang X, Li J, Di S et al (2015) Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J Pineal Res 58(1):61–70. doi:10.1111/jpi.12193

    Article  CAS  PubMed  Google Scholar 

  41. Chen J, Chen G, Li J, Qian C, Mo H, Gu C, Yan F, Yan W et al (2014) Melatonin attenuates inflammatory response-induced brain edema in early brain injury following a subarachnoid hemorrhage: a possible role for the regulation of pro-inflammatory cytokines. J Pineal Res 57(3):340–347. doi:10.1111/jpi.12173

    Article  CAS  PubMed  Google Scholar 

  42. Reppert SM (1997) Melatonin receptors: molecular biology of a new family of G protein-coupled receptors. J Biol Rhythm 12(6):528–531

    Article  CAS  Google Scholar 

  43. Hardeland R (2009) Melatonin: signaling mechanisms of a pleiotropic agent. BioFactors 35(2):183–192. doi:10.1002/biof.23

    Article  CAS  PubMed  Google Scholar 

  44. Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, Sparso T, Holmkvist J, Marchand M, Delplanque J, Lobbens S et al (2009) A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet 41(1):89–94. doi:10.1038/ng.277

    Article  CAS  PubMed  Google Scholar 

  45. Bonnefond A, Clement N, Fawcett K, Yengo L, Vaillant E, Guillaume JL, Dechaume A, Payne F, Roussel R, Czernichow S, Hercberg S, Hadjadj S, Balkau B, Marre M, Lantieri O, Langenberg C, Bouatia-Naji N, Meta-Analysis of G, Insulin-Related Traits C, Charpentier G, Vaxillaire M, Rocheleau G, Wareham NJ, Sladek R, McCarthy MI, Dina C, Barroso I, Jockers R, Froguel P (2012) Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nature genetics 44 (3):297–301. doi:10.1038/ng.1053

  46. Wu YH, Ursinus J, Zhou JN, Scheer FA, Ai-Min B, Jockers R, van Heerikhuize J, Swaab DF (2013) Alterations of melatonin receptors MT1 and MT2 in the hypothalamic suprachiasmatic nucleus during depression. J Affect Disord 148(2–3):357–367. doi:10.1016/j.jad.2012.12.025

    Article  CAS  PubMed  Google Scholar 

  47. Sande PH, Dorfman D, Fernandez DC, Chianelli M, Dominguez Rubio AP, Franchi AM, Silberman DM, Rosenstein RE et al (2014) Treatment with melatonin after onset of experimental uveitis attenuates ocular inflammation. Br J Pharmacol 171(24):5696–5707. doi:10.1111/bph.12873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ozdemir G, Ergun Y, Bakaris S, Kilinc M, Durdu H, Ganiyusufoglu E (2014) Melatonin prevents retinal oxidative stress and vascular changes in diabetic rats. Eye 28(8):1020–1027. doi:10.1038/eye.2014.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J (2010) International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 62(3):343–380. doi:10.1124/pr.110.002832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baba K, Benleulmi-Chaachoua A, Journe AS, Kamal M, Guillaume JL, Dussaud S, Gbahou F, Yettou K et al (2013) Heteromeric MT1/MT2 melatonin receptors modulate photoreceptor function. Sci Signal 6(296):ra89. doi:10.1126/scisignal.2004302

    Article  PubMed  Google Scholar 

  51. Brydon L, Roka F, Petit L, de Coppet P, Tissot M, Barrett P, Morgan PJ, Nanoff C et al (1999) Dual signaling of human Mel1a melatonin receptors via G(i2), G(i3), and G(q/11) proteins. Mol Endocrinol 13(12):2025–2038. doi:10.1210/mend.13.12.0390

    Article  CAS  PubMed  Google Scholar 

  52. Nosjean O, Nicolas JP, Klupsch F, Delagrange P, Canet E, Boutin JA (2001) Comparative pharmacological studies of melatonin receptors: MT1, MT2 and MT3/QR2. Tissue distribution of MT3/QR2. Biochem Pharmacol 61(11):1369–1379

    Article  CAS  PubMed  Google Scholar 

  53. Karbownik M, Reiter RJ (2000) Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proceed Soc Exp Biol Med Soc Exp Biol Med 225(1):9–22

    Article  CAS  Google Scholar 

  54. Reiter RJ, Tan DX, Mayo JC, Sainz RM, Leon J, Czarnocki Z (2003) Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol 50(4):1129–1146

    CAS  PubMed  Google Scholar 

  55. Cardinali DP, Pagano ES, Scacchi Bernasconi PA, Reynoso R, Scacchi P (2013) Melatonin and mitochondrial dysfunction in the central nervous system. Horm Behav 63(2):322–330. doi:10.1016/j.yhbeh.2012.02.020

    Article  CAS  PubMed  Google Scholar 

  56. Takuma K, Yan SS, Stern DM, Yamada K (2005) Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer’s disease. J Pharmacol Sci 97(3):312–316

    Article  CAS  PubMed  Google Scholar 

  57. Schwartz C, Ballinger MA, Andrews MT (2015) Melatonin receptor signaling contributes to neuroprotection upon arousal from torpor in thirteen-lined ground squirrels. Am J Physiol Regul Integ Comp Physiol 00292:02015. doi:10.1152/ajpregu.00292.2015

    Google Scholar 

  58. Tocharus C, Puriboriboon Y, Junmanee T, Tocharus J, Ekthuwapranee K, Govitrapong P (2014) Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor. Neuroscience 275:314–321. doi:10.1016/j.neuroscience.2014.06.026

    Article  CAS  PubMed  Google Scholar 

  59. Wongprayoon P, Govitrapong P (2015) Melatonin attenuates methamphetamine-induced neuroinflammation through the melatonin receptor in the SH-SY5Y cell line. Neurotoxicology 50:122–130. doi:10.1016/j.neuro.2015.08.008

    Article  CAS  PubMed  Google Scholar 

  60. Wu YH, Zhou JN, Van Heerikhuize J, Jockers R, Swaab DF (2007) Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol Aging 28(8):1239–1247. doi:10.1016/j.neurobiolaging.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  61. Etain B, Dumaine A, Bellivier F, Pagan C, Francelle L, Goubran-Botros H, Moreno S, Deshommes J et al (2012) Genetic and functional abnormalities of the melatonin biosynthesis pathway in patients with bipolar disorder. Hum Mol Genet 21(18):4030–4037. doi:10.1093/hmg/dds227

    Article  CAS  PubMed  Google Scholar 

  62. Adi N, Mash DC, Ali Y, Singer C, Shehadeh L, Papapetropoulos S (2010) Melatonin MT1 and MT2 receptor expression in Parkinson’s disease. Med Sci Monit Int Med J Exp Clin Res 16(2):BR61–67

    CAS  Google Scholar 

  63. Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, Abulwerdi G, Minor RK, Vlasuk GP et al (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell reports 6(5):836–843. doi:10.1016/j.celrep.2014.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ran M, Li Z, Yang L, Tong L, Zhang L, Dong H (2015) Calorie restriction attenuates cerebral ischemic injury via increasing SIRT1 synthesis in the rat. Brain Res 1610:61–68. doi:10.1016/j.brainres.2015.03.043

    Article  CAS  PubMed  Google Scholar 

  65. Cho SH, Chen JA, Sayed F, Ward ME, Gao F, Nguyen TA, Krabbe G, Sohn PD et al (2015) SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1beta. J Neurosci Off J Soc Neurosci 35(2):807–818. doi:10.1523/JNEUROSCI.2939-14.2015

    Article  Google Scholar 

  66. Bederson JB, Connolly ES Jr, Batjer HH, Dacey RG, Dion JE, Diringer MN, Duldner JE Jr, Harbaugh RE et al (2009) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke J Cereb Circ 40(3):994–1025. doi:10.1161/STROKEAHA.108.191395

    Article  Google Scholar 

  67. Broderick JP, Brott TG, Duldner JE, Tomsick T, Leach A (1994) Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke J Cereb Circ 25(7):1342–1347

    Article  CAS  Google Scholar 

  68. Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA (2002) Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke J Cereb Circ 33(5):1225–1232

    Article  Google Scholar 

  69. Cheng G, Wei L, Zhi-Dan S, Shi-Guang Z, Xiang-Zhen L (2009) Atorvastatin ameliorates cerebral vasospasm and early brain injury after subarachnoid hemorrhage and inhibits caspase-dependent apoptosis pathway. BMC Neurosci 10:7. doi:10.1186/1471-2202-10-7

    Article  PubMed  PubMed Central  Google Scholar 

  70. Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke J Cereb Circ 40(5):e331–339. doi:10.1161/STROKEAHA.108.531632

    Article  Google Scholar 

  71. Kalle AM, Mallika A, Badiger J, Alinakhi, Talukdar P, Sachchidanand (2010) Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells. Biochem Biophys Res Commun 401(1):13–19. doi:10.1016/j.bbrc.2010.08.118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (81222015, 81571215), the New Century Talent Supporting Project supported by Chinese Education Ministry (NCET-12-1004), and Leading Talents of Middle-Age and Young in S&T Innovation supported by Chinese Science and Technology Ministry (2013RA2181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qu.

Ethics declarations

Conflict of Interest

None declared

Additional information

Lei Zhao, Haixiao Liu, and Liang Yue contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Liu, H., Yue, L. et al. Melatonin Attenuates Early Brain Injury via the Melatonin Receptor/Sirt1/NF-κB Signaling Pathway Following Subarachnoid Hemorrhage in Mice. Mol Neurobiol 54, 1612–1621 (2017). https://doi.org/10.1007/s12035-016-9776-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9776-7

Keywords

Navigation