Skip to main content

Advertisement

Log in

Targeting polo-like kinase 1 suppresses essential functions of alloreactive T cells

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Acute graft-versus-host disease (aGvHD) is still a major cause of transplant-related mortality after allogeneic stem cell transplantation (ASCT). It requires immunosuppressive treatments that broadly abrogate T cell responses including beneficial ones directed against tumor cells or infective pathogens. Polo-like kinase 1 (PLK1) is overexpressed in many cancer types including leukemia, and clinical studies demonstrated that targeting PLK1 using selective PLK1 inhibitors resulted in inhibition of proliferation and induction of apoptosis predominantly in tumor cells, supporting the feasibility of PLK1 as target for anticancer therapy. Here, we show that activation of alloreactive T cells (Tallo) up-regulate expression of PLK1, suggesting that PLK1 is a potential new candidate for dual therapy of aGvHD and leukemia after ASCT. Inhibition of PLK1, using PLK1-specific inhibitor GSK461364A selectively depletes Tallo by preventing activation and by inducing apoptosis in already activated Tallo, while memory T cells are preserved. Activated Tallo cells which survive exposure to PLK1 undergo inhibition of proliferation by induction of G2/M cell cycle arrest, which is accompanied by accumulation of cell cycle regulator proteins p21WAF/CIP1, p27Kip1, p53 and cyclin B1, whereas abundance of CDK4 decreased. We also show that suppressive effects of PLK1 inhibition on Tallo were synergistically enhanced by concomitant inhibition of molecular chaperone Hsp90. Taken together, our data suggest that PLK1 inhibition represents a reasonable dual strategy to suppress residual tumor growth and efficiently deplete Tallo, and thus provide a rationale to selectively prevent and treat aGvHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

aGvHD:

Acute graft-versus-host disease

allo DC:

Allogeneic dendritic cells

ASCT:

Allogeneic stem cell transplantation

Tallo :

Alloreactive T cells

C-3:

Caspase-3

CFSE:

5-(and 6-)Carboxyfluorescein diacetate succinimidyl ester

CI:

Combination indices

CBA:

Cytometric bead array

DC:

Dendritic cells

DMAG:

17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin

DMSO:

Dimethyl sulfoxide

FL:

Full length

GM-CSF:

Granulocyte macrophage colony-stimulating factor

GSK:

GSK461364 analogue 1

Hsp90:

Heat shock protein 90

IL:

Interleukin

MLR:

Mixed leukocyte reaction

PLK1:

Polo-like kinase 1

PI:

Propidiumiodide

rh:

Recombinant human

TNF:

Tumor necrosis factor

References

  1. Bishop MR, Alyea EP 3rd, Cairo MS, Falkenburg JH, June CH, Kroger N, et al. National Cancer Institute’s First International Workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: summary and recommendations from the organizing committee. Biol Blood Marrow Transplant. 2011;17(4):443–54. doi:10.1016/j.bbmt.2010.12.713.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ho VT, Soiffer RJ. The history and future of T-cell depletion as graft-versus-host disease prophylaxis for allogeneic hematopoietic stem cell transplantation. Blood. 2001;98(12):3192–204.

    Article  CAS  PubMed  Google Scholar 

  3. Seggewiss R, Einsele H. Immune reconstitution after allogeneic transplantation and expanding options for immunomodulation: an update. Blood. 2010;115(19):3861–8. doi:10.1182/blood-2009-12-234096.

    Article  CAS  PubMed  Google Scholar 

  4. Strebhardt K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov. 2010;9(8):643–60. doi:10.1038/nrd3184.

    Article  CAS  PubMed  Google Scholar 

  5. Dauer M, Obermaier B, Herten J, Haerle C, Pohl K, Rothenfusser S, et al. Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J Immunol. 2003;170(8):4069–76.

    Article  CAS  PubMed  Google Scholar 

  6. Berges C, Haberstock H, Fuchs D, Miltz M, Sadeghi M, Opelz G, et al. Proteasome inhibition suppresses essential immune functions of human CD4+ T cells. Immunology. 2008;124(2):234–46. doi:10.1111/j.1365-2567.2007.02761.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dhein J, Walczak H, Westendorp MO, Baumler C, Stricker K, Frank R, et al. Molecular mechanisms of APO-1/Fas(CD95)-mediated apoptosis in tolerance and AIDS. Behring Inst Mitt. 1995;96:13–20.

    CAS  PubMed  Google Scholar 

  8. Stuehler C, Mielke S, Chatterjee M, Duell J, Lurati S, Rueckert F, et al. Selective depletion of alloreactive T cells by targeted therapy of heat shock protein 90: a novel strategy for control of graft-versus-host disease. Blood. 2009;114(13):2829–36. doi:10.1182/blood-2009-06-224600.

    Article  CAS  PubMed  Google Scholar 

  9. Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58(3):621–81. doi:10.1124/pr.58.3.10.

    Article  CAS  PubMed  Google Scholar 

  10. Gilmartin AG, Bleam MR, Richter MC, Erskine SG, Kruger RG, Madden L, et al. Distinct concentration-dependent effects of the polo-like kinase 1-specific inhibitor GSK461364A, including differential effect on apoptosis. Cancer Res. 2009;69(17):6969–77. doi:10.1158/0008-5472.CAN-09-0945.

    Article  CAS  PubMed  Google Scholar 

  11. Olmos D, Barker D, Sharma R, Brunetto AT, Yap TA, Taegtmeyer AB, et al. Phase I study of GSK461364, a specific and competitive polo-like kinase 1 inhibitor, in patients with advanced solid malignancies. Clin Cancer Res. 2011;17(10):3420–30. doi:10.1158/1078-0432.CCR-10-2946.

    Article  CAS  PubMed  Google Scholar 

  12. Hu J, Wang G, Liu X, Zhou L, Jiang M, Yang L. Polo-like kinase 1 (PLK1) is involved in toll-like receptor (TLR)-mediated TNF-alpha production in monocytic THP-1 cells. PLoS ONE. 2013;8(10):e78832. doi:10.1371/journal.pone.0078832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aspalter RM, Eibl MM, Wolf HM. Regulation of TCR-mediated T cell activation by TNF-RII. J Leukoc Biol. 2003;74(4):572–82. doi:10.1189/jlb.0303112.

    Article  CAS  PubMed  Google Scholar 

  14. Ando K, Ozaki T, Yamamoto H, Furuya K, Hosoda M, Hayashi S, et al. Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J Biol Chem. 2004;279(24):25549–61. doi:10.1074/jbc.M314182200.

    Article  CAS  PubMed  Google Scholar 

  15. Yuan C, Wang L, Zhou L, Fu Z. The function of FOXO1 in the late phases of the cell cycle is suppressed by PLK1-mediated phosphorylation. Cell Cycle. 2014;13(5):807–19. doi:10.4161/cc.27727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yuan J, Eckerdt F, Bereiter-Hahn J, Kurunci-Csacsko E, Kaufmann M, Strebhardt K. Cooperative phosphorylation including the activity of polo-like kinase 1 regulates the subcellular localization of cyclin B1. Oncogene. 2002;21(54):8282–92. doi:10.1038/sj.onc.1206011.

    Article  CAS  PubMed  Google Scholar 

  17. He G, Siddik ZH, Huang Z, Wang R, Koomen J, Kobayashi R, et al. Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene. 2005;24(18):2929–43. doi:10.1038/sj.onc.1208474.

    Article  CAS  PubMed  Google Scholar 

  18. Evans RP, Dueck G, Sidhu R, Ghosh S, Toman I, Loree J, et al. Expression, adverse prognostic significance and therapeutic small molecule inhibition of polo-like kinase 1 in multiple myeloma. Leuk Res. 2011;35(12):1637–43. doi:10.1016/j.leukres.2011.07.016.

    Article  CAS  PubMed  Google Scholar 

  19. Imai H, Sugimoto K, Isobe Y, Sasaki M, Yasuda H, Takeuchi K, et al. Absence of tumor-specific over-expression of polo-like kinase 1 (Plk1) in major non-Hodgkin lymphoma and relatively low expression of Plk1 in nasal NK/T cell lymphoma. Int J Hematol. 2009;89(5):673–8. doi:10.1007/s12185-009-0325-2.

    Article  CAS  PubMed  Google Scholar 

  20. Liu L, Zhang M, Zou P. Expression of PLK1 and survivin in diffuse large B-cell lymphoma. Leuk Lymphoma. 2007;48(11):2179–83. doi:10.1080/10428190701615918.

    Article  CAS  PubMed  Google Scholar 

  21. Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8(4):275–83. doi:10.1038/nrm2147.

    Article  CAS  PubMed  Google Scholar 

  22. Yang X, Li H, Zhou Z, Wang WH, Deng A, Andrisani O, et al. Plk1-mediated phosphorylation of Topors regulates p53 stability. J Biol Chem. 2009;284(28):18588–92. doi:10.1074/jbc.C109.001560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu XS, Li H, Song B, Liu X. Polo-like kinase 1 phosphorylation of G2 and S-phase-expressed 1 protein is essential for p53 inactivation during G2 checkpoint recovery. EMBO Rep. 2010;11(8):626–32. doi:10.1038/embor.2010.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene. 2001;20(15):1803–15. doi:10.1038/sj.onc.1204252.

    Article  CAS  PubMed  Google Scholar 

  25. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75(4):817–25.

    Article  CAS  PubMed  Google Scholar 

  26. Ramaswamy S, Nakamura N, Sansal I, Bergeron L, Sellers WR. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell. 2002;2(1):81–91.

    Article  CAS  PubMed  Google Scholar 

  27. Liu P, Kao TP, Huang H. CDK1 promotes cell proliferation and survival via phosphorylation and inhibition of FOXO1 transcription factor. Oncogene. 2008;27(34):4733–44. doi:10.1038/onc.2008.104.

    Article  CAS  PubMed  Google Scholar 

  28. Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW, et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol. 2000;20(24):9138–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Franklin RA, Tordai A, Patel H, Gardner AM, Johnson GL, Gelfand EW. Ligation of the T cell receptor complex results in activation of the Ras/Raf-1/MEK/MAPK cascade in human T lymphocytes. J Clin Invest. 1994;93(5):2134–40. doi:10.1172/JCI117209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alberola-Ila J, Forbush KA, Seger R, Krebs EG, Perlmutter RM. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature. 1995;373(6515):620–3. doi:10.1038/373620a0.

    Article  CAS  PubMed  Google Scholar 

  31. Guan R, Tapang P, Leverson JD, Albert D, Giranda VL, Luo Y. Small interfering RNA-mediated polo-like kinase 1 depletion preferentially reduces the survival of p53-defective, oncogenic transformed cells and inhibits tumor growth in animals. Cancer Res. 2005;65(7):2698–704. doi:10.1158/0008-5472.CAN-04-2131.

    Article  CAS  PubMed  Google Scholar 

  32. Liu X, Erikson RL. Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. Proc Natl Acad Sci USA. 2003;100(10):5789–94. doi:10.1073/pnas.1031523100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu X, Lei M, Erikson RL. Normal cells, but not cancer cells, survive severe Plk1 depletion. Mol Cell Biol. 2006;26(6):2093–108. doi:10.1128/MCB.26.6.2093-2108.2006.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Distler E, Bloetz A, Albrecht J, Asdufan S, Hohberger A, Frey M, et al. Alloreactive and leukemia-reactive T cells are preferentially derived from naive precursors in healthy donors: implications for immunotherapy with memory T cells. Haematologica. 2011;96(7):1024–32. doi:10.3324/haematol.2010.037481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Touzot F, Neven B, Dal-Cortivo L, Gabrion A, Moshous D, Cros G, et al. CD45RA depletion in HLA-mismatched allogeneic hematopoietic stem cell transplantation for primary combined immunodeficiency: a preliminary study. J Allergy Clin Immunol. 2015;135(5):1303-9e1–3. doi:10.1016/j.jaci.2014.08.019.

    Article  Google Scholar 

  36. Chan WK, Suwannasaen D, Throm RE, Li Y, Eldridge PW, Houston J, et al. Chimeric antigen receptor-redirected CD45RA-negative T cells have potent antileukemia and pathogen memory response without graft-versus-host activity. Leukemia. 2015;29(2):387–95. doi:10.1038/leu.2014.174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Teschner D, Distler E, Wehler D, Frey M, Marandiuc D, Langeveld K, et al. Depletion of naive T cells using clinical grade magnetic CD45RA beads: a new approach for GVHD prophylaxis. Bone Marrow Transplant. 2014;49(1):138–44. doi:10.1038/bmt.2013.114.

    Article  CAS  PubMed  Google Scholar 

  38. Lin CC, Su WC, Yen CJ, Hsu CH, Su WP, Yeh KH, et al. A phase I study of two dosing schedules of volasertib (BI 6727), an intravenous polo-like kinase inhibitor, in patients with advanced solid malignancies. Br J Cancer. 2014;110(10):2434–40. doi:10.1038/bjc.2014.195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stadler WM, Vaughn DJ, Sonpavde G, Vogelzang NJ, Tagawa ST, Petrylak DP, et al. An open-label, single-arm, phase 2 trial of the polo-like kinase inhibitor volasertib (BI 6727) in patients with locally advanced or metastatic urothelial cancer. Cancer. 2014;120(7):976–82. doi:10.1002/cncr.28519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Carcer G, do Carmo Avides M, Lallena MJ, Glover DM, Gonzalez C. Requirement of Hsp90 for centrosomal function reflects its regulation of Polo kinase stability. EMBO J. 2001;20(11):2878–84. doi:10.1093/emboj/20.11.2878.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Berges C, Bedke T, Stuehler C, Khanna N, Zehnter S, Kruhm M, et al. Combined PI3K/Akt and Hsp90 targeting synergistically suppresses essential functions of alloreactive T cells and increases Tregs. J Leukoc Biol. 2015;. doi:10.1189/jlb.5A0814-413R.

    PubMed  Google Scholar 

  42. Chatterjee M, Jain S, Stuhmer T, Andrulis M, Ungethum U, Kuban RJ, et al. STAT3 and MAPK signaling maintain overexpression of heat shock proteins 90alpha and beta in multiple myeloma cells, which critically contribute to tumor-cell survival. Blood. 2007;109(2):720–8. doi:10.1182/blood-2006-05-024372.

    Article  CAS  PubMed  Google Scholar 

  43. Castro JE, Prada CE, Loria O, Kamal A, Chen L, Burrows FJ, et al. ZAP-70 is a novel conditional heat shock protein 90 (Hsp90) client: inhibition of Hsp90 leads to ZAP-70 degradation, apoptosis, and impaired signaling in chronic lymphocytic leukemia. Blood. 2005;106(7):2506–12. doi:10.1182/blood-2005-03-1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lancet JE, Gojo I, Burton M, Quinn M, Tighe SM, Kersey K, et al. Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia. 2010;24(4):699–705. doi:10.1038/leu.2009.292.

    Article  CAS  PubMed  Google Scholar 

  45. Cerchietti LC, Lopes EC, Yang SN, Hatzi K, Bunting KL, Tsikitas LA, et al. A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6-dependent B cell lymphomas. Nat Med. 2009;15(12):1369–76. doi:10.1038/nm.2059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. O’Connell BC, O’Callaghan K, Tillotson B, Douglas M, Hafeez N, West KA, et al. HSP90 inhibition enhances antimitotic drug-induced mitotic arrest and cell death in preclinical models of non-small cell lung cancer. PLoS ONE. 2014;9(12):e115228. doi:10.1371/journal.pone.0115228.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Deutsche Forschungsgemeinschaft (KFO 216).

Author contributions

C.B. performed the research, analyzed the data; C.B., M.S.T., H.E. and M.C. designed the research; C.B., M.S.T., H.E. and M.C. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Berges.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berges, C., Chatterjee, M., Topp, M.S. et al. Targeting polo-like kinase 1 suppresses essential functions of alloreactive T cells. Immunol Res 64, 687–698 (2016). https://doi.org/10.1007/s12026-015-8778-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8778-2

Keywords

Navigation