Skip to main content
Log in

Multiscale Analysis of Neurite Orientation and Spatial Organization in Neuronal Images

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The spatial organization of neurites, the thin processes (i.e., dendrites and axons) that stem from a neuron’s soma, conveys structural information required for proper brain function. The alignment, direction and overall geometry of neurites in the brain are subject to continuous remodeling in response to healthy and noxious stimuli. In the developing brain, during neurogenesis or in neuroregeneration, these structural changes are indicators of the ability of neurons to establish axon-to-dendrite connections that can ultimately develop into functional synapses. Enabling a proper quantification of this structural remodeling would facilitate the identification of new phenotypic criteria to classify developmental stages and further our understanding of brain function. However, adequate algorithms to accurately and reliably quantify neurite orientation and alignment are still lacking. To fill this gap, we introduce a novel algorithm that relies on multiscale directional filters designed to measure local neurites orientation over multiple scales. This innovative approach allows us to discriminate the physical orientation of neurites from finer scale phenomena associated with local irregularities and noise. Building on this multiscale framework, we also introduce a notion of alignment score that we apply to quantify the degree of spatial organization of neurites in tissue and cultured neurons. Numerical codes were implemented in Python and released open source and freely available to the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • 3D-Slicer (2008). http://www.slicer.org/.

  • Al-Kofahi, K.A., Lasek, S., Szarowski, D.H., Pace, C.J., Nagy, G., Turner, J.N., & Roysam, B. (2002). Rapid automated three-dimensional tracing of neurons from confocal image stacks. Trans Info Tech Biomed, 6(2), 171–187.

    Article  Google Scholar 

  • Chothani, P., Mehta, V., & Stepanyants, A. (2011). Automated tracing of neurites from light microscopy stacks of images. Neuroinformatics, 9(2-3), 263–278.

    Article  Google Scholar 

  • Debanne, D., Campanac, E., Bialowas, A., Carlier, E., & Alcaraz, G. (2011). Axon physiology. Physiological Reviews, 91(2), 555–602.

    Article  CAS  PubMed  Google Scholar 

  • Easley, G.R., Labate, D., & Lim, W. (2008). Sparse directional image representations using the discrete shearlet transform. Appl Numer Harmon Anal, 25, 25–46.

    Article  Google Scholar 

  • Geusebroek, J.M., Smeulders, A., & van de Weijer, J. (2003). Fast anisotropic gauss filtering. IEEE Transactions on Image Processing, 12(8), 938–943.

    Article  PubMed  Google Scholar 

  • Günther, M.I., Günther, M., Schneiders, M., Rupp, R., & Blesch, A. (2015). Anglej: a new tool for the automated measurement of neurite growth orientation in tissue sections. Journal of Neuroscience Methods, 251, 143–150.

    Article  PubMed  Google Scholar 

  • Hines, M., & Carnevale, N. (2001). NEURON: a tool for neuroscientists. The Neuroscientist, 7, 123–135.

    Article  CAS  Google Scholar 

  • Jimenez, D., Papadakis, M., Labate, D., & Kakadiaris, I. (2013). Improved automatic centerline tracing for dendritic structures. In IEEE 10th international symposium on biomedical imaging (ISBI), 2013 (pp. 1050–1053).

  • Jimenez, D., Labate, D., Kakadiaris, I.A., & Papadakis, M. (2015a). Improved automatic centerline tracing for dendritic and axonal structures. Neuroinformatics, 13(2), 227–244.

    Article  PubMed  Google Scholar 

  • Jimenez, D., Labate, D., & Papadakis, M. (2016). Directional analysis of 3D tubular structures via isotropic well-localized atoms. Applied and Computational Harmonic Analysis, 40(3), 588–599.

  • Kullback, S. (1997). Information theory and statistics: Dover Publications.

  • Lampert, C.H., & Wirjadi, O. (2006). An optimal nonorthogonal separation of the anisotropic gaussian convolution filter. IEEE Transactions on Image Processing, 15(11), 3501–3513.

    Article  PubMed  Google Scholar 

  • Langhammer, C.G., Previtera, M.L., Sweet, E.S., Sran, S.S., Chen, M., & Firestein, B.L. (2010). Automated sholl analysis of digitized neuronal morphology at multiple scales: whole cell sholl analysis versus sholl analysis of arbor subregions. Cytometry Part A, 77(12), 1160–1168.

    Article  Google Scholar 

  • Ling, H., & Okada, K. (2007). An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(5), 840–853.

    Article  Google Scholar 

  • Lledo, P.M., Alonso, M., & Grubb, M.S. (2006). Adult neurogenesis and functional plasticity in neuronal circuits. Nature Reviews Neuroscience, 7(3), 179–193.

    Article  CAS  PubMed  Google Scholar 

  • Luisi, J., Narayanaswamy, A., Galbreath, Z., & Roysam, B. (2011). The FARSIGHT trace editor: an open source tool for 3-D inspection and efficient pattern analysis aided editing of automated neuronal reconstructions. Neuroinformatics, 9(2-3), 305–315.

    Article  PubMed  Google Scholar 

  • Mahoney, M.J., Chen, R.R., Tan, J., & Saltzman, W.M. (2005). The influence of microchannels on neurite growth and architecture. Biomaterials, 26(7), 771–778.

    Article  CAS  Google Scholar 

  • Milošević, N.T., Ristanović, D., & Stanković, J. (2005). Fractal analysis of the laminar organization of spinal cord neurons. Journal of Neuroscience Methods, 146(2), 198–204.

    Article  PubMed  Google Scholar 

  • Mitchel, J.A., Martin, I.S., & Hoffman-Kim, D. (2013). Neurient: an algorithm for automatic tracing of confluent neuronal images to determine alignment. Journal of Neuroscience Methods, 214(2), 210–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozcan, B., Negi, P., Laezza, F., Papadakis, M., & Labate, D. (2015). Automated detection of soma location and morphology in neuronal network cultures. PloS One, 10(4).

  • Pele, O., & Werman, M. (2009). Fast and robust earth mover’s distances. In IEEE 12th international conference on computer vision 2009, IEEE (pp. 460–467).

  • Peng, H., Long, F., & Myers, G. (2011). Automatic 3D neuron tracing using all-path pruning. Bioinformatics, 27(13), i239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portera-Cailliau, C., Weimer, R.M., De Paola, V., Caroni, P., & Svoboda, K. (2005). Diverse modes of axon elaboration in the developing neocortex. PLoS Biology, 3(8), 1473.

    Article  CAS  Google Scholar 

  • Rossi, F., Gianola, S., & Corvetti, L. (2007). Regulation of intrinsic neuronal properties for axon growth and regeneration. Progress in Neurobiology, 81(1), 1–28.

    Article  CAS  PubMed  Google Scholar 

  • Rubner, Y., Tomasi, C., & Guibas, L.J. (1998). A metric for distributions with applications to image databases. In ICCV (pp. 59–66).

  • Rubner, Y., Tomasi, C., & Guibas, L.J. (2000). The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 40(2), 99–121.

    Article  Google Scholar 

  • Santamaria, A., Colbert, C., Losavio, B., Saggau, P., & Kakadiaris, I. (2007). Automatic morphological reconstruction of neurons from optical images. In Proceeding of the international workshop in microscopic image analysis and applications in biology, Piscataway, NJ.

  • Saxena, S., & Caroni, P. (2007). Mechanisms of axon degeneration: from development to disease. Progress in Neurobiology, 83(3), 174–191.

    Article  CAS  PubMed  Google Scholar 

  • Scorcioni, R., Polavaram, S., & Ascoli, G. (2008). L-measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 3(5), 866–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shavkunov, A.S., Wildburger, N.C., Nenov, M.N., James, T.F., Buzhdygan, T.P., Panova-Elektronova, N.I., Green, T.A., Veselenak, R.L., Bourne, N., & Laezza, F. (2013). The fibroblast growth factor 14voltage-gated sodium channel complex is a new target of glycogen synthase kinase 3 (GSK3). The Journal of Biological Chemistry, 288(27), 19,370–85.

    Article  CAS  Google Scholar 

  • Sholl, D. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of Anatomy, 87(Pt 4), 387.

    CAS  PubMed  Google Scholar 

  • Walsh, J.F., Manwaring, M.E., & Tresco, P.A. (2005). Directional neurite outgrowth is enhanced by engineered meningeal cell-coated substrates. Tissue Engineering, 11(7-8), 1085–1094.

    Article  CAS  PubMed  Google Scholar 

  • Yiu Man Lam, S., & Shi, B. (2007). Recursive anisotropic 2-d gaussian filtering based on a triple-axis decomposition. IEEE Transactions on Image Processing, 16(7), 1925–1930.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetrio Labate.

Ethics declarations

Funding

D.L and M.P. acknowledge partial support of grant NSF-DMS 1320910 and a GEAR 2015 grant from the University of Houston. F.L. acknowledges partial support of grant NIH R01 MH095995.

Conflict of interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Pankaj Singh and Pooran Negi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Negi, P., Laezza, F. et al. Multiscale Analysis of Neurite Orientation and Spatial Organization in Neuronal Images. Neuroinform 14, 465–477 (2016). https://doi.org/10.1007/s12021-016-9306-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-016-9306-9

Keywords

Navigation