Skip to main content
Log in

Connectivity and cortical architecture

Konnektivität und kortikale Architektur

  • Review article
  • Published:
e-Neuroforum

Abstract

Brain regions of the cerebral cortex differ in their cytoarchitecture as well as in the intrinsic connectivity within an area and the organization of macroscopic connections between different cortical areas. Nonetheless, it is not clear which rules underlie the relationship of cellular and fiber architecture, and how the characteristic cortical micro- and macro-connectivity are related to each other. In order to identify principles of cortical connectivity, we systematically investigate various parameters of cortical architecture and their relation to the organization of anatomical connections among cortical areas. Characteristic parameters of cortical architecture include the differential density and distribution of neurons and neuron types across the layers of cortical areas, as well as the regional distribution of different receptors of neurotransmitter systems. The cytoarchitectonic characterization of the brain is a classic approach of neuroanatomy, which recently has been supplemented by new techniques for labeling specific neural components as well as novel optical and analytical approaches. However, the systematic quantitative acquisition of architectonic and morphological parameters of the human brain has only just begun. It is a fundamental challenge to gather and quantify the extremely extensive and detailed histological data (“big data”) by novel image processing techniques. This challenge is taken up in the BigBrain project. Extensive anatomical data already exist for a number of animal models, for example, the brains of nonhuman primates, the cat or the mouse. However, for each single parameter it has to be demonstrated how far these data can be generalized across species. Previous analyses support the notion that the regionally specific cytoarchitecture of the cerebral cortex is closely linked to the existence and the laminar projection patterns of cortico-cortical connections. These results imply systematic relationships between the patterns of macroscopic connections among cortical areas and the regionally specific intrinsic circuitry within cortical areas. Such relations are the basis of generic models of multiscale cortical connectivity, which reflect essential anatomical and functional properties of mammalian cortical organization.

Zusammenfassung

Die zelluläre Architektur (Zytoarchitektur) der Areale der Großhirnrinde unterscheidet sich regional, ebenso wie die Verschaltungen innerhalb eines Areals und die Verbindungen zwischen den Arealen. Weitgehend unbekannt sind jedoch die genauen Regeln, nach denen die zelluläre und Faserbahnarchitektur zueinander in Beziehung stehen, und es fehlen Befunde, welche die charakteristische Organisation von kortikaler Mikro- und Makrokonnektivität umfassend erklären. Um Organisationsprinzipien kortikaler Konnektivität zu identifizieren, wurden systematisch unterschiedliche Parameter kortikaler Architektur und ihre Beziehung zur Organisation von anatomischen Verbindungen zwischen kortikalen Arealen untersucht. Charakteristische Parameter kortikaler Architektur sind zum Beispiel die unterschiedliche Dichte und Verteilung von Neuronen und Neuronentypen in den verschiedenen Schichten kortikaler Areale sowie die regionale Verteilung unterschiedlicher Rezeptoren von Neurotransmittersystemen. Die zytoarchitektonische Charakterisierung des Gehirns ist ein klassischer Ansatz der Neuroanatomie, der in den letzten Jahren durch neue Markierungstechniken sowie optische und analytische Verfahren ergänzt wurde. Dennoch steht die systematische, quantitative Erfassung von architektonischen und morphologischen Parametern für das menschliche Gehirn noch am Anfang. Es ist eine große Herausforderung, die extrem umfangreichen und detaillierten histologischen Daten („big data“) mittels neuartiger bildverarbeitender Techniken zu erfassen und zu quantifizieren. Diese Aufgabe wird beispielsweise im BigBrain-Projekt in Angriff genommen. Umfangreiche anatomische Daten existieren bereits für die Gehirne von nichtmenschlichen Primaten, der Katze oder der Maus, jedoch stellt sich für jeden einzelnen Parameter die Frage der Übertragbarkeit von Erkenntnissen zwischen den Spezies. Bereits vorliegende Analysen legen nahe, dass die regional spezifische Zytoarchitektur der Großhirnrinde eng mit der Existenz und den laminaren Projektionsmustern kortikaler Verbindungen verknüpft ist. Diese Ergebnisse implizieren systematische Beziehungen zwischen den Mustern makroskopischer Verbindungen zwischen verschiedenen kortikalen Arealen und den regional spezifischen intrinsischen Schaltkreisen innerhalb von kortikalen Arealen. Solche Regelmäßigkeiten sind die Basis für generische Modelle globaler kortikaler Konnektivität, welche essenzielle anatomische und funktionelle Eigenschaften der kortikalen Organisation des Säugetiergehirns abbilden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 1 (Continued)
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amunts K, Zilles K (2015) Architectonic mapping of the human brain beyond Brodmann. Neuron 88:1086–1107

    Article  CAS  PubMed  Google Scholar 

  2. Amunts K, Lepage C, Borgeat L, Mohlberg H, Dickscheid T, Rousseau M, Bludau S, Bazin P, Lewis L, Oros-Peusquens A, Shah N, Lippert T, Zilles K, Evans A (2013) BigBrain – an ultra-high resolution 3D human brain model. Science 340:1472–1475

    Article  CAS  PubMed  Google Scholar 

  3. Axer M, Grässel D, Kleiner M, Dammers J, Dickscheid T, Reckfort J, Hütz T, Eiben B, Pietrzyk U, Zilles K, Amunts K (2011) High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging. Front Neuroinform 5:34

    PubMed  PubMed Central  Google Scholar 

  4. Barbas H (1986) Pattern in the laminar origin of corticocortical connections. J Comp Neurol 252:415–422

    Article  CAS  PubMed  Google Scholar 

  5. Barbas H (2015) General cortical and special prefrontal connections: principles from structure to function. Annu Rev Neurosci 38:269–289

    Article  CAS  PubMed  Google Scholar 

  6. Barbas H, Hilgetag CC, Saha S, Dermon CR, Suski JL (2005) Parallel organization of contralateral and ipsilateral prefrontal cortical projections in the rhesus monkey. BMC Neurosci 6:32

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barbas H, Rempel-Clower N (1997) Cortical structure predicts the pattern of corticocortical connections. Cereb Cortex 7:635–646

    Article  CAS  PubMed  Google Scholar 

  8. Bastos AM, Vezoli J, Bosman CA, Schoffelen JM, Oostenveld R, Dowdall JR, De Weerd P, Kennedy H, Fries P (2015) Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85:390–401

    Article  CAS  PubMed  Google Scholar 

  9. Beul SF, Grant S, Hilgetag CC (2015a) A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Struct Funct 220:3167–3184

    Article  PubMed  Google Scholar 

  10. Beul SF, Hilgetag CC (2015b) Towards a “canonical” agranular cortical microcircuit. Front Neuroanat 8:165

    Article  PubMed  PubMed Central  Google Scholar 

  11. Beul SF, Barbas H, Hilgetag CC (2016) A predictive structural model of the primate connectome. https://arxiv.org/abs/1511.07222

    Google Scholar 

  12. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. J. A. Barth, Leipzig

    Google Scholar 

  13. Caspers S, Axer M, Caspers J, Jockwitz C, Jütten K, Reckfort J, Grässel D, Amunts K, Zilles K (2015) Target sites for transcallosal fibers in human visual cortex – a combined diffusion and polarized light imaging study. Cortex 72:40–53

    Article  PubMed  Google Scholar 

  14. Evans AC, Janke AL, Collins DL, Baillet S (2012) Brain templates and atlases. Neuroimage 62:911–922

    Article  PubMed  Google Scholar 

  15. Galuske RA, Schlote W, Bratzke H, Singer W (2000) Interhemispheric asymmetries of the modular structure in human temporal cortex. Science 289:1946–1949

    Article  CAS  PubMed  Google Scholar 

  16. Ghashghaei HT, Hilgetag CC, Barbas H (2007) Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 34:905–923

    Article  CAS  PubMed  Google Scholar 

  17. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature. doi:10.1038/nature18933

    PubMed  Google Scholar 

  18. Goulas A, Uyhlings H, Hilgetag CC (2016a) Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse. Brain Struct Funct. doi:10.1007/s00429-016-1277-y

    Google Scholar 

  19. Goulas A, Werner R, Beul S, Säring D, van den Heuvel M, Triarhou LC, Hilgetag CC (2016b) Cytoarchitectonic similarity is a wiring principle of the human connectome. bioRXiv. doi:10.1101/068254

    Google Scholar 

  20. Hilgetag CC, Barbas H (2006) Role of mechanical factors in the morphology of the primate cerebral cortex. Plos Comput Biol 2:e22

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hilgetag CC, Grant S (2010) Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex. Neuroimage 51:1006–1017

    Article  PubMed  Google Scholar 

  22. Hilgetag CC, Medalla M, Beul SF, Barbas H (2016) The primate connectome in context: principles of connections of the cortical visual system. Neuroimage 134:685–702

    Article  PubMed  Google Scholar 

  23. Kunkel S, Potjans TC, Morrison A, Diesmann M (2009) Simulating macroscale brain circuits with micro scale resolution. 2nd INCF Congress of Neuroinformatics, Prague.

    Google Scholar 

  24. Michalareas G, Vezoli J, van Pelt S, Schoffelen JM, Kennedy H, Fries P (2016) Alpha- beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89:384–397

    Article  CAS  PubMed  Google Scholar 

  25. Nieuwenhuys R, Broere CA, Cerliani L (2015) A new myeloarchitectonic map of the human neocortex based on data from the Vogt-Vogt school. Brain Struct Funct 220:2551–2273

    Article  PubMed  Google Scholar 

  26. Nieuwenhuys R, Broere CAJ (2016) A map of the human neocortex showing the estimated overall myelin content of the individual architectonic areas based on the studies of Adolf Hopf. Brain Struct Funct. doi:10.1007/s00429-016-1228-7

    PubMed  Google Scholar 

  27. Reckfort J, Wiese H, Pietrzyk U, Zilles K, Amunts K, Axer M (2015) A multiscale approach for the reconstruction of the fiber architecture of the human brain based on 3D-PLI. Front Neuroanat 9:118

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen VJ (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653

    Article  PubMed  Google Scholar 

  29. Schmidt M, Bakker R, Shen K, Bezgin G, Hilgetag CC, Diesmann M, van Albada SJ (2016) Full-density multi-scale account of structure and dynamics of macaque visual cortex. http://arxiv.org/abs/1511.09364

    Google Scholar 

  30. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425

    Article  PubMed  Google Scholar 

  31. Sporns O (2010) Networks of the Brain. MIT Press, Cambridge

    Google Scholar 

  32. van Albada SJ, Helias M, Diesmann M (2015) Scalability of asynchronous networks is limited by one-to-one mapping between effective connectivity and correlations. PLOS Comput Biol 11:e1004490

    Article  PubMed  PubMed Central  Google Scholar 

  33. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786

    Article  PubMed  Google Scholar 

  34. von Economo C (2009) Cellular structure of the human cerebral cortex. Karger, Basel

    Google Scholar 

  35. Zamora-López G, Zhou C, Kurths J (2010) Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front Neuroinform 4:1

    PubMed  PubMed Central  Google Scholar 

  36. Zeineh MM, Palomero-Gallagher N, Axer M, Gräβel D, Goubran M, Wree A, Woods R, Amunts K, Zilles K (2016) Direct visualization and mapping of the spatial course of fiber tracts at microscopic resolution in the human hippocampus. Cereb Cortex. doi:10.1093/cercor/bhw010

    PubMed  Google Scholar 

  37. Zilles K, Amunts K (2009) Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurol 22:331–339

    Article  PubMed  Google Scholar 

  38. Zilles K, Amunts K (2010) Centenary of Brodmann’s map – conception and fate. Nat Rev Neurosci 11:139–145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research of C.C.H. is supported by the German Research Council (DFG SFB 936/A1, Z3 and TRR 169/A2). K.A. is supported by the European Union Seventh Framework Program (FP7/2007–2013) under grant agreement no. 604102 (Human Brain Project), as well as by the National Institutes of Health (R01 MH092311) for research on the vervet monkey brain.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claus C. Hilgetag or Katrin Amunts.

Ethics declarations

Conflict of interest

C.C. Hilgetag and K. Amunts state that they have no competing interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilgetag, C.C., Amunts, K. Connectivity and cortical architecture. e-Neuroforum 7, 56–63 (2016). https://doi.org/10.1007/s13295-016-0028-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13295-016-0028-0

Keywords

Schlüsselwörter

Navigation