Skip to main content

Advertisement

Log in

Rivulet: 3D Neuron Morphology Tracing with Iterative Back-Tracking

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The digital reconstruction of single neurons from 3D confocal microscopic images is an important tool for understanding the neuron morphology and function. However the accurate automatic neuron reconstruction remains a challenging task due to the varying image quality and the complexity in the neuronal arborisation. Targeting the common challenges of neuron tracing, we propose a novel automatic 3D neuron reconstruction algorithm, named Rivulet, which is based on the multi-stencils fast-marching and iterative back-tracking. The proposed Rivulet algorithm is capable of tracing discontinuous areas without being interrupted by densely distributed noises. By evaluating the proposed pipeline with the data provided by the Diadem challenge and the recent BigNeuron project, Rivulet is shown to be robust to challenging microscopic imagestacks. We discussed the algorithm design in technical details regarding the relationships between the proposed algorithm and the other state-of-the-art neuron tracing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. http://diademchallenge.org/

  2. http://alleninstitute.org/bigneuron/about/

References

  • Adalsteinsson, D, & Sethian, JA (1995). A fast level set method for propagating interfaces. Journal of Computational Physics, 118(2), 269–277.

    Article  Google Scholar 

  • Alexander, AL, Lee, JE, Lazar, M, & Field, AS (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316–329.

    Article  PubMed  PubMed Central  Google Scholar 

  • Basu, S, & Racoceanu, D (2014). Reconstructing neuronal morphology from microscopy stacks using fast marching. In 2014 IEEE international conference on image processing (ICIP) (pp 3597–3601).

  • Brown, KM, Barrionuevo, G, Canty, AJ, De Paola, V, Hirsch, JA, Jefferis, GS, Lu, J, Snippe, M, Sugihara, I, & Ascoli, GA (2011). The DIADEM data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions. Neuroinformatics, 9(2–3), 143–157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cesar, R Jr, & Costa, L (1999). Computer-vision-based extraction of neural dendrograms. Journal of Neuroscience Methods, 93(2), 121–131.

    Article  PubMed  Google Scholar 

  • Chen, H, Xiao, H, Liu, T, & Peng, H (2015). Smarttracing: self-learning-based neuron reconstruction. Brain Informatics, 2(3), 135–144.

    Article  PubMed Central  Google Scholar 

  • Feng, L, Zhao, T, & Kim, J (2015). NeuTube 1.0: a new design for efficient neuron reconstruction software based on the swc format. eNeuro, 2(1), ENEURO–0049.

    Article  PubMed Central  Google Scholar 

  • Frangi, AF, Niessen, WJ, Vincken, KL, & Viergever, MA (1998). Multiscale vessel enhancement filtering. In Medical image computing and computer-assisted interventation (MICCAI) (pp. 130–137). Springer.

  • González, G, Türetken, E, Fleuret, F, & Fua, P (2010). Delineating trees in noisy 2D images and 3D image-stacks. In 2010 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2799–2806). IEEE.

  • Hassouna, MS, & Farag, AA (2007). Multistencils fast marching methods: a highly accurate solution to the eikonal equation on cartesian domains. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9), 1563–1574.

    Article  PubMed  Google Scholar 

  • Jameson, A, Schmidt, W, & Turkel, E (1981). Numerical solutions of the euler equations by finite volume methods using runge-kutta time-stepping schemes. AIAA paper 1259:1981.

  • Krissian, K, Malandain, G, Ayache, N, Vaillant, R, & Trousset, Y (2000). Model-based detection of tubular structures in 3D images. Computer Vision and Image Understanding, 80(2), 130–171.

    Article  Google Scholar 

  • Leandro, J, Cesar, R Jr, & Costa, LF (2009). Automatic contour extraction from 2D neuron images. Journal of Neuroscience Methods, 177(2), 497–509.

    Article  CAS  PubMed  Google Scholar 

  • Long, F, Zhou, J, & Peng, H (2012). Visualization and analysis of 3D microscopic images. PLoS Computational Biology, 8(6), e1002519–e1002519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming, X, Li, A, Wu, J, Yan, C, Ding, W, Gong, H, Zeng, S, & Liu, Q (2013). Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling. PLoS ONE, 8(12), e84557.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee, A, & Stepanyants, A (2012). Automated reconstruction of neural trees using front re-initialization. In SPIE medical imaging, International society for optics and photonics (pp. 83,141I–83,141I).

  • Mukherjee, S, Condron, B, & Acton, ST (2015). Tubularity flow field—a technique for automatic neuron segmentation. IEEE Transactions on Image Processing, 24(1), 374–389.

    Article  PubMed  Google Scholar 

  • Parekh, R, & Ascoli, GA (2013). Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron, 77(6), 1017–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawley, JB. (2006). Handbook of biological confocal microscopy, (pp. 20–42). Boston: Springer US , chap Fundamental Limits in Confocal Microscopy.

    Book  Google Scholar 

  • Peng, H, Ruan, Z, Long, F, Simpson, JH, & Myers, EW (2010). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28(4), 348–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H, Long, F, & Myers, G (2011). Automatic 3D neuron tracing using all-path pruning. Bioinformatics, 27(13), i239–i247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H, Bria, A, Zhou, Z, Iannello, G, & Long, F (2014). Extensible visualization and analysis for multidimensional images using Vaa3D. Nature Protocols, 9(1), 193–208.

    Article  CAS  PubMed  Google Scholar 

  • Peng, H, Hawrylycz, M, Roskams, J, Hill, S, Spruston, N, Meijering, E, & Ascoli, G (2015a). BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron, 87(2), 252–256.

  • Peng, H, Meijering, E, & Ascoli, G (2015b). From DIADEM to BigNeuron. Neuroinformatics, 13(3), 259–260.

  • Santamaría-Pang, A, Hernandez-Herrera, P, Papadakis, M, Saggau, P, & Kakadiaris, IA (2015). Automatic morphological reconstruction of neurons from multiphoton and confocal microscopy images using 3D tubular models. Neuroinformatics, 13(3), 297–320.

    Article  PubMed  Google Scholar 

  • Sethian, JA. (1999). Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science (Vol. 3). Cambridge: Cambridge University Press.

    Google Scholar 

  • Tsitsiklis, JN (1995). Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control, 40(9), 1528–1538.

    Article  Google Scholar 

  • Türetken, E, González, G, Blum, C, & Fua, P (2011). Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. Neuroinformatics, 9(2–3), 279– 302.

    Article  PubMed  Google Scholar 

  • Van Uitert, R, & Bitter, I (2007). Subvoxel precise skeletons of volumetric data based on fast marching methods. Medical Physics, 34(2), 627–638.

    Article  PubMed  Google Scholar 

  • Wang, Y, Narayanaswamy, A, Tsai, CL, & Roysam, B (2011). A broadly applicable 3-D neuron tracing method based on open-curve snake. Neuroinformatics, 9(2–3), 193–217.

    Article  PubMed  Google Scholar 

  • Wearne, S, Rodriguez, A, Ehlenberger, D, Rocher, A, Henderson, S, & Hof, P (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136 (3), 661–680.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, H, & Peng, H (2013). APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics, 29(11), 1448– 1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J, Gonzalez-Bellido, PT, & Peng, H (2013). A distance-field based automatic neuron tracing method. BMC Bioinformatics, 14(1), 93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan, X, Trachtenberg, JT, Potter, SM, & Roysam, B (2009). MDL constrained 3D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images. Neuroinformatics, 7 (4), 213–232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, D, Liu, S, Liu, S, Feng, D, Peng, H, & Cai, W (2016). Reconstruction of 3D neuron morphology using Rivulet back-tracking. In The IEEE international symposium on biomedical imaging: from nano to macro. IEEE.

  • Zhao, T, Xie, J, Amat, F, Clack, N, Ahammad, P, Peng, H, Long, F, & Myers, E (2011). Automated reconstruction of neuronal morphology based on local geometrical and global structural models. Neuroinformatics, 9(2–3), 247–261.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z, Sorensen, S, Zeng, H, Hawrylycz, M, & Peng, H (2014). Adaptive image enhancement for tracing 3D morphologies of neurons and brain vasculatures. Neuroinformatics, 13(2), 153–166.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siqi Liu or Weidong Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhang, D., Liu, S. et al. Rivulet: 3D Neuron Morphology Tracing with Iterative Back-Tracking. Neuroinform 14, 387–401 (2016). https://doi.org/10.1007/s12021-016-9302-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-016-9302-0

Keywords

Navigation