Skip to main content

Advertisement

Log in

The DIADEM Data Sets: Representative Light Microscopy Images of Neuronal Morphology to Advance Automation of Digital Reconstructions

  • Mini-Review
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The comprehensive characterization of neuronal morphology requires tracing extensive axonal and dendritic arbors imaged with light microscopy into digital reconstructions. Considerable effort is ongoing to automate this greatly labor-intensive and currently rate-determining process. Experimental data in the form of manually traced digital reconstructions and corresponding image stacks play a vital role in developing increasingly more powerful reconstruction algorithms. The DIADEM challenge (short for DIgital reconstruction of Axonal and DEndritic Morphology) successfully stimulated progress in this area by utilizing six data set collections from different animal species, brain regions, neuron types, and visualization methods. The original research projects that provided these data are representative of the diverse scientific questions addressed in this field. At the same time, these data provide a benchmark for the types of demands automated software must meet to achieve the quality of manual reconstructions while minimizing human involvement. The DIADEM data underwent extensive curation, including quality control, metadata annotation, and format standardization, to focus the challenge on the most substantial technical obstacles. This data set package is now freely released (http://diademchallenge.org) to train, test, and aid development of automated reconstruction algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ascoli, G. A. (2008). Neuroinformatics grand challenges. Neuroinformatics, 6(1), 1–3.

    Article  PubMed  Google Scholar 

  • Ascoli, G. A., Brown, K. M., Calixto, E., Card, J. P., Galván, E. J., Perez-Rosello, T., et al. (2009). Quantitative morphometry of electrophysiologically identified CA3b interneurons reveals robust local geometry and distinct cell classes. The Journal of Comparative Neurology, 515(6), 677–695.

    Article  PubMed  Google Scholar 

  • Brown, K. M., Donohue, D. E., D’Alessandro, G., & Ascoli, G. A. (2005). A cross-platform freeware tool for digital reconstruction of neuronal arborizations from image stacks. Neuroinformatics, 3(4), 343–360.

    Article  PubMed  Google Scholar 

  • Buckmaster, P. S., & Dudek, F. E. (1999). In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. Journal of Neurophysiology, 81(2), 712–721.

    PubMed  CAS  Google Scholar 

  • Calixto, E., Galván, E. J., Card, J. P., & Barrionuevo, G. (2008). Coincidence detection of convergent perforant path and mossy fibre inputs by CA3 interneurons. The Journal of Physiology, 586(Pt 11), 2695–2712.

    Article  PubMed  CAS  Google Scholar 

  • Canty, A. J., & De Paola, V. (2011). Axonal reconstructions going live. Neuroinformatics. doi:10.1007/s12021-011-9112-3.

  • De Paola, V., Arber, S., & Caroni, P. (2003). AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nature Neuroscience, 6(5), 491–500.

    PubMed  Google Scholar 

  • De Paola, V., Holtmaat, A., Knott, G., Song, S., Wilbrecht, L., Caroni, P., et al. (2006). Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron, 49(6), 861–875.

    Article  PubMed  Google Scholar 

  • Donohue, D. E., & Ascoli, G. A. (2011). Automated reconstruction of neuronal morphology: an overview. Under review upon invitation, Brain Research Reviews.

  • Evers, J. F., Schmitt, S., Sibila, M., & Duch, C. (2005). Progress in functional neuroanatomy: precise automatic geometric reconstruction of neuronal morphology from confocal image stacks. Journal of Neurophysiology, 93(4), 2331–2342.

    Article  PubMed  CAS  Google Scholar 

  • Fares, T., & Stepanyants, A. (2009). Cooperative synapse formation in the neocortex. Proceedings of the National Academy of Sciences, 106(38), 16463–16468.

    Article  CAS  Google Scholar 

  • Feng, G., Mellor, R. H., Bernstein, M., Keller-Peck, C., Nguyen, Q. T., Wallace, M., Nerbonne, J. M., Lichtman, J. W., & Sanes, J. R. (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron, 28(1), 41–51.

    Google Scholar 

  • Fiala, J. C. (2005). Reconstruct: a free editor for serial section microscopy. Journal of Microscopy, 218(Pt 1), 52–61.

    Article  PubMed  CAS  Google Scholar 

  • Gao, Q., Yuan, B., & Chess, A. (2000). Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nature Neuroscience, 3(8), 780–785.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, C. D. (1983). Microcircuitry of the visual cortex. Annual Review of Neuroscience, 6, 217–247.

    Article  PubMed  CAS  Google Scholar 

  • Gillette, T. A., Brown, K. M., & Ascoli, G. A. (2011). The DIADEM metric: comparing multiple reconstructions of the same neuron. Neuroinformatics. doi:10.1007/s12021-011-9117-y.

  • Halavi, M., Polavaram, S., Donohue, D. E., Hamilton, G., Hoyt, J., Smith, K. P., et al. (2008). NeuroMorpho.Org implementation of digital neuroscience: dense coverage and integration with the NIF. Neuroinformatics, 6(3), 241–252.

    Article  PubMed  Google Scholar 

  • Henneman, E., Somjen, G., & Carpenter, D. (1965). Functional significance of cell size in spinal motoneurons. Journal of Neurophysiology, 28(3), 560–580.

    PubMed  CAS  Google Scholar 

  • Hirsch, J. A., Alonso, J. M., Reid, R. C., & Martinez, L. M. (1998a). Synaptic integration in striate cortical simple cells. The Journal of Neuroscience, 18(22), 9517–9528.

    CAS  Google Scholar 

  • Hirsch, J. A., Gallagher, C. A., Alonso, J. M., & Martinez, L. M. (1998b). Ascending projections of simple and complex cells in layer 6 of the cat striate cortex. The Journal of Neuroscience, 18(19), 8086–8094.

    CAS  Google Scholar 

  • Hirsch, J. A., Martinez, L. M., Pillai, C., Alonso, J. M., Wang, Q., & Sommer, F. T. (2003). Functionally distinct inhibitory neurons at the first stage of visual cortical processing. Nature Neuroscience, 6(12), 1300–1308.

    Article  PubMed  CAS  Google Scholar 

  • Holtmaat, A., Bonhoeffer, T., Chow, D. K., Chuckowree, J., De Paola, V., Hofer, S. B., et al. (2009). Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nature Protocols, 4(8), 1128–1144.

    Article  PubMed  CAS  Google Scholar 

  • Jefferis, G. S. X. E., Potter, C. J., Chan, A. M., Marin, E. C., Rohlfing, T., Maurer, C. R., Jr., et al. (2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell, 128(6), 1187–1203.

    Article  PubMed  CAS  Google Scholar 

  • Kaspirzhny, A. V., Gogan, P., Horcholle-Bossavit, G., & Tyc-Dumont, S. (2002). Neuronal morphology data bases: morphological noise and assessment of data quality. Network: Computation in Neural Systems, 13, 357–380.

    Article  Google Scholar 

  • Lee, T., & Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron, 22(3), 451–461.

    Article  PubMed  CAS  Google Scholar 

  • Lichtman, J. W., Livet, J., & Sanes, J. R. (2008). A technicolour approach to the connectome. Nature Reviews Neuroscience, 9, 417–422.

    Article  PubMed  CAS  Google Scholar 

  • Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., et al. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450, 56–62.

    Article  PubMed  CAS  Google Scholar 

  • Losavio, B. E., Liang, Y., Santamaria-Pang, A., Kakadiaris, I. A., Colbert, C. M., & Saggau, P. (2008). Live neuron morphology automatically reconstructed from multiphoton and confocal imaging data. Journal of Neurophysiology, 100, 2422–2429.

    Article  PubMed  Google Scholar 

  • Lu, J. (2011). Neuronal tracing for connectomic studies. Neuroinformatics. doi:10.1007/s12021-011-9101-6.

  • Lu, J., Fiala, J. C., & Lichtman, J. W. (2009a). Semi-automated reconstruction of neural processes from large numbers of fluorescence images. PLoS ONE, 4(5), e5655.

    Article  Google Scholar 

  • Lu, J., Tapia, J. C., White, O. L., & Lichtman, J. W. (2009b). The interscutularis muscle connectome. PLoS Biology, 7(2), e32. Erratum in: PLoS Biology, 7(4), e1000108.

    Article  Google Scholar 

  • Marin, E. C., Jefferis, G. S. X. E., Komiyama, T., Zhu, H., & Luo, L. (2002). Representation of the glomerular olfactory map in the Drosophila brain. Cell, 109(2), 243–255.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, L. M., Alonso, J. M., Reid, R. C., & Hirsch, J. A. (2002). Laminar processing of stimulus orientation in cat visual cortex. The Journal of Physiology, 540(Pt 1), 321–333.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, L. M., Wang, Q., Reid, R. C., Pillai, C., Alonso, J. M., Sommer, F. T., et al. (2005). Receptive field structure varies with layer in the primary visual cortex. Nature Neuroscience, 8(3), 372–379.

    Article  PubMed  CAS  Google Scholar 

  • Meijering, E., Jacob, M., Sarria, J. C. F., Steiner, P., Hirling, H., & Unser, M. (2004). Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry, 58A(2), 167–176.

    Article  Google Scholar 

  • Peng, H., Ruan, Z., Atasoy, D., & Sternson, S. (2010). Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model. Bioinformatics, 26(12), i38–i46.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, A., Ehlenberger, D. B., Hof, P. R., & Wearne, S. L. (2009). Three-dimensional neuron tracing by voxel scooping. Journal of Neuroscience Methods, 184(1), 169–175.

    Article  PubMed  Google Scholar 

  • Scorcioni, R., Lazarewicz, M. T., & Ascoli, G. A. (2004). Quantitative morphometry of hippocampal pyramidal cells: differences between anatomical classes and reconstructing laboratories. The Journal of Comparative Neurology, 473(2), 177–193.

    Article  PubMed  Google Scholar 

  • Scorcioni, R., Polavaram, S., & Ascoli, G. A. (2008). L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 3(5), 866–876.

    Article  PubMed  CAS  Google Scholar 

  • Snider, J., Pillaim, A., & Stevens, C. F. (2010). A universal property of axonal and dendritic arbors. Neuron, 66(1), 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Sugihara, I. (2011). Bright field neuronal preparation optimized for automatic computerized reconstruction, a case with cerebellar climbing fibers. Neuroinformatics. doi:10.1007/s12021-011-9099-9.

  • Sugihara, I., Wu, H., & Shinoda, Y. (1999). Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. The Journal of Comparative Neurology, 414(2), 131–148.

    Article  PubMed  CAS  Google Scholar 

  • Torben-Nielsen, B., & Stiefel, K. M. (2009). Systematic mapping between dendritic function and structure. Network, 20(2), 69–105.

    Article  PubMed  Google Scholar 

  • Volman, V., Levine, H., Ben-Jacob, E., & Sejnowski, T. J. (2009). Locally balanced dendritic integration by short-term synaptic plasticity and active dendritic conductances. Journal of Neurophysiology, 102(6), 3234–3250.

    Article  PubMed  CAS  Google Scholar 

  • Vosshall, L. B., Wong, A. M., & Axel, R. (2000). An Olfactory Sensory Map in the Fly Brain. Cell, 102(2), 147–159.

    Article  PubMed  CAS  Google Scholar 

  • Wittner, L., Henze, D. A., Záborszky, L., & Buzsáki, G. (2007). Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo. Brain Structure and Function, 212(1), 75–83.

    Article  PubMed  Google Scholar 

Download references

Information Sharing Statement

The DIADEM data sets are freely available at http://diademchallenge.org.

Acknowledgements

The corresponding author’s lab is supported in part by NIH R01 grant 39600. Todd A. Gillette is acknowledged for help and advice throughout the DIADEM data set organization process. Figure 4 illustration was created with V3D (http://penglab.janelia.org/proj/v3d).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio A. Ascoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, K.M., Barrionuevo, G., Canty, A.J. et al. The DIADEM Data Sets: Representative Light Microscopy Images of Neuronal Morphology to Advance Automation of Digital Reconstructions. Neuroinform 9, 143–157 (2011). https://doi.org/10.1007/s12021-010-9095-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-010-9095-5

Keywords

Navigation