Skip to main content
Log in

Antidiabetic compounds 8a, 8b, 8k, and 9h enhance insulin secretion: activity and mechanism

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

This study primarily investigated the effects of hypoglycemic compounds (Imeglimin derivatives) on insulin secretion in type 2 diabetes mellitus (T2DM), and further explored the possible mechanism underlying these effects.

Methods

Firstly, Metformin was used as the initiating compound to synthesize three sets of derivatives which contained Imeglimin structure core. At the cellular level, we screened compounds with better effect on the activity of insulin receptor tyrosine protein kinase (IFcTPK) after the islet β cells were treated with the compounds of different concentrations. The insulin secretion was assessed using radioimmunoassay and the cytotoxicity to islet β cells was evaluated by means of MTT assay following treatment with the compounds. The Ca2+-related mechanism by which these compounds promote insulin secretion was elucidated with whole cell recordings from current-clamp mode.

Results

Totally, 48 synthesized compounds were generated, wherein 10 compounds could increase the activity of IFcTPK in HIT-T15 cells better among these compounds. The modified Imeglimin, especially in the structure of hydrophilic hydroxyl or piperidine rings, could improve the activity of the compound to promote insulin secretion. Furthermore, the compounds 8a, 8b, 8k, and 9h revealed high insulin secretion-promoting activity. These compounds enhanced insulin secretion in islet β cells by repressing the ATP-sensitive K(+) and voltage-gated K+ pathway.

Conclusions

Our findings indicate that the hypoglycemic compounds 8a, 8b, 8k, and 9h confer better promotive effect on insulin secretion, which provides a reference for the development of drugs with better hypoglycemic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated/analyzed during the current study are available.

Abbreviations

IFcTPK:

insulin receptor tyrosine protein kinase

T2DM:

Type 2 diabetes mellitus

TPK:

tyrosine protein kinase

PBS:

phosphate-buffered saline

ANOVA:

analysis of variance

TLC:

thin layer chromatography

References

  1. R.A. DeFronzo, E. Ferrannini, L. Groop, R.R. Henry, W.H. Herman, J.J. Holst, F.B. Hu, C.R. Kahn, I. Raz, G.I. Shulman, D.C. Simonson, M.A. Testa, R. Weiss, Type 2 diabetes mellitus. Nat. Rev. Dis. Prim. 1, 15019 (2015). https://doi.org/10.1038/nrdp.2015.19

    Article  PubMed  Google Scholar 

  2. G. Ning, Decade in review-type 2 diabetes mellitus: at the centre of things. Nat. Rev. Endocrinol. 11(11), 636–638 (2015). https://doi.org/10.1038/nrendo.2015.147

    Article  CAS  PubMed  Google Scholar 

  3. A.A. Tahrani, A.H. Barnett, C.J. Bailey, Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat. Rev. Endocrinol. 12, 566–592 (2016). https://doi.org/10.1038/nrendo.2016.86

    Article  CAS  PubMed  Google Scholar 

  4. R.F. Rocha, T. Rodrigues, A.C.O. Menegatti, G.J.L. Bernardes, H. Terenzi, The antidiabetic drug lobeglitazone has the potential to inhibit PTP1B activity. Bioorg. Chem. 100, 103927 (2020). https://doi.org/10.1016/j.bioorg.2020.103927

    Article  CAS  PubMed  Google Scholar 

  5. D.M. Irwin, Variation in the rates of evolution of the insulin and glucagon hormone and receptor genes in rodents. Gene 728, 144296 (2020). https://doi.org/10.1016/j.gene.2019.144296

    Article  CAS  PubMed  Google Scholar 

  6. T.D. Olver, Z.I. Grunewald, T. Ghiarone, R.M. Restaino, A.R.K. Sales, L.K. Park, P.K. Thorne, R.R. Ganga, C.A. Emter, P.W.R. Lemon, J.K. Shoemaker, C. Manrique-Acevedo, L.A. Martinez-Lemus, J. Padilla, Persistent insulin signaling coupled with restricted PI3K activation causes insulin-induced vasoconstriction. Am. J. Physiol. Heart Circ. Physiol. 317, H1166–H1172 (2019). https://doi.org/10.1152/ajpheart.00464.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J.L. Tarry-Adkins, C.E. Aiken, S.E. Ozanne, Neonatal, infant, and childhood growth following metformin versus insulin treatment for gestational diabetes: a systematic review and meta-analysis. PLoS Med. 16, e1002848 (2019). https://doi.org/10.1371/journal.pmed.1002848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S.J. Pilla, J.R. Dotimas, N.M. Maruthur, J.M. Clark, H.C. Yeh, Changes in metformin use and other antihyperglycemic therapies after insulin initiation in patients with type 2 diabetes. Diabetes Res. Clin. Pr. 139, 221–229 (2018). https://doi.org/10.1016/j.diabres.2018.02.032

    Article  CAS  Google Scholar 

  9. R. Yendapally, D. Sikazwe, S.S. Kim, S. Ramsinghani, R. Fraser-Spears, A.P. Witte, B. La-Viola, A review of phenformin, metformin, and imeglimin. Drug Dev. Res. (2020). https://doi.org/10.1002/ddr.21636

  10. G. Vial, M.A. Chauvin, N. Bendridi, A. Durand, E. Meugnier, A.M. Madec, N. Bernoud-Hubac, J.P. Pais de Barros, E. Fontaine, C. Acquaviva, S. Hallakou-Bozec, S. Bolze, H. Vidal, J. Rieusset, Imeglimin normalizes glucose tolerance and insulin sensitivity and improves mitochondrial function in liver of a high-fat, high-sucrose diet mice model. Diabetes 64, 2254–2264 (2015). https://doi.org/10.2337/db14-1220

    Article  CAS  PubMed  Google Scholar 

  11. R.J. Perry, R.L. Cardone, M.C. Petersen, D. Zhang, P. Fouqueray, S. Hallakou-Bozec, S. Bolze, G.I. Shulman, K.F. Petersen, R.G. Kibbey, Imeglimin lowers glucose primarily by amplifying glucose-stimulated insulin secretion in high-fat-fed rodents. Am. J. Physiol. Endocrinol. Metab. 311, E461–E470 (2016). https://doi.org/10.1152/ajpendo.00009.2016

    Article  PubMed  PubMed Central  Google Scholar 

  12. J.Y. Cho, J. Choi, J.G. Park, Y.S. Yi, M.J. Hossen, H. Kim, J. Ro, B.C. Cha, E.S. Yoo, J.H. Kim, J. Lee, Alcohol-induced hyperlipidemia is ameliorated by orally administered DWP208, a sodium succinate form of ZYM201. Korean J. Physiol. Pharm. 18, 469–474 (2014). https://doi.org/10.4196/kjpp.2014.18.6.469

    Article  CAS  Google Scholar 

  13. S.Y. Kodera, M. Yoshida, K. Dezaki, T. Yada, T. Murayama, M. Kawakami, M. Kakei, Inhibition of insulin secretion from rat pancreatic islets by dexmedetomidine and medetomidine, two sedatives frequently used in clinical settings. Endocr. J. 60, 337–346 (2013). https://doi.org/10.1507/endocrj.ej12-0308

    Article  CAS  PubMed  Google Scholar 

  14. R. Meng, J. Mahadevan, E. Oseid, S. Vallerie, R.P. Robertson, Silymarin Activates c-AMP phosphodiesterase and stimulates insulin secretion in a glucose-dependent manner in HIT-T15 Cells. Antioxidants 5, (2016). https://doi.org/10.3390/antiox5040047

  15. M.Y. Ali, M. Whiteman, C.M. Low, P.K. Moore, Hydrogen sulphide reduces insulin secretion from HIT-T15 cells by a KATP channel-dependent pathway. J. Endocrinol. 195, 105–112 (2007). https://doi.org/10.1677/JOE-07-0184

    Article  CAS  PubMed  Google Scholar 

  16. Z. Qi, Y. Xu, Z. Liang, S. Li, J. Wang, Y. Wei, B. Dong, Baicalein alters PI3K/Akt/GSK3beta signaling pathway in rats with diabetes-associated cognitive deficits. Int J. Clin. Exp. Med. 8, 1993–2000 (2015)

    PubMed  PubMed Central  Google Scholar 

  17. J. Herrington, Y.P. Zhou, R.M. Bugianesi, P.M. Dulski, Y. Feng, V.A. Warren, M.M. Smith, M.G. Kohler, V.M. Garsky, M. Sanchez, M. Wagner, K. Raphaelli, P. Banerjee, C. Ahaghotu, D. Wunderler, B.T. Priest, J.T. Mehl, M.L. Garcia, O.B. McManus, G.J. Kaczorowski, R.S. Slaughter, Blockers of the delayed-rectifier potassium current in pancreatic beta-cells enhance glucose-dependent insulin secretion. Diabetes 55, 1034–1042 (2006). https://doi.org/10.2337/diabetes.55.04.06.db05-0788

    Article  CAS  PubMed  Google Scholar 

  18. P. Llanos, A. Contreras-Ferrat, G. Barrientos, M. Valencia, D. Mears, C. Hidalgo, Glucose-dependent insulin secretion in pancreatic beta-cell islets from male rats requires Ca2+ release via ROS-stimulated ryanodine receptors. PLoS ONE 10, e0129238 (2015). https://doi.org/10.1371/journal.pone.0129238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Z. Laron, H. Werner, Insulin: a growth hormone and potential oncogene. Pediatr. Endocrinol. Rev. 17, 191–197 (2020). https://doi.org/10.17458/per.vol17.2020.lw.insulinghpotentialoncogene

    Article  PubMed  Google Scholar 

  20. M. Vakilian, Y. Tahamtani, K. Ghaedi, A review on insulin trafficking and exocytosis. Gene 706, 52–61 (2019). https://doi.org/10.1016/j.gene.2019.04.063

    Article  CAS  PubMed  Google Scholar 

  21. Y. Zhao, M. Sun, Metformin rescues Parkin protein expression and mitophagy in high glucose-challenged human renal epithelial cells by inhibiting NF-kappaB via PP2A activation. Life Sci. 246, 117382 (2020). https://doi.org/10.1016/j.lfs.2020.117382

    Article  CAS  PubMed  Google Scholar 

  22. L. Jennings, R. Hambly, R. Hughes, B. Moriarty, B. Kirby, Metformin use in hidradenitis suppurativa. J. Dermatol. Treat. 31, 261–263 (2020). https://doi.org/10.1080/09546634.2019.1592100

    Article  CAS  Google Scholar 

  23. K. Hamano, K. Akita, Y. Takeuchi, T. Suwa, J. Takeda, S. Dodo, Glucose-responsive Insulinoma with Insulin Hypersecretion Suppressed by Metformin. Intern. Med. 58, 3563–3568 (2019). https://doi.org/10.2169/internalmedicine.3318-19

    Article  PubMed  PubMed Central  Google Scholar 

  24. P. Fouqueray, S. Perrimond-Dauchy, S. Bolze, Imeglimin does not induce clinically relevant pharmacokinetic interactions when combined with either metformin or sitagliptin in healthy subjects. Clin. Pharmacokinet. (2020). https://doi.org/10.1007/s40262-020-00886-y

  25. H. Yaribeygi, M. Maleki, T. Sathyapalan, T. Jamialahmadi, A. Sahebkar, Molecular mechanisms by which imeglimin improves glucose homeostasis. J. Diabetes Res. 2020, 8768954 (2020). https://doi.org/10.1155/2020/8768954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. G. Pacini, A. Mari, P. Fouqueray, S. Bolze, M. Roden, Imeglimin increases glucose-dependent insulin secretion and improves beta-cell function in patients with type 2 diabetes. Diabetes Obes. Metab. 17, 541–545 (2015). https://doi.org/10.1111/dom.12452

    Article  CAS  PubMed  Google Scholar 

  27. K. Harada, J. Mizukami, S. Kadowaki, I. Matsuda, T. Watanabe, Y. Oe, Y. Kodama, K. Aoki, K. Suwa, S. Fukuda, S. Yata, T. Inaba, Design and synthesis of novel and potent GPR119 agonists with a spirocyclic structure. Bioorg. Med Chem. Lett. 28, 1228–1233 (2018). https://doi.org/10.1016/j.bmcl.2018.02.044

    Article  CAS  PubMed  Google Scholar 

  28. H.J. Mest, A. Raap, J. Schloos, I. Treinies, M. Paal, U. Giese, V. Koivisto, Glucose-induced insulin secretion is potentiated by a new imidazoline compound. Naunyn Schmiedebergs Arch. Pharm. 364, 47–52 (2001). https://doi.org/10.1007/s002100100415

    Article  CAS  Google Scholar 

  29. G. da Luz, M.J. Frederico, A.J. Castro, A.L. Moraes, F.K. de Carvalho, L. Espindola, E.C. Schmidt, Z.L. Bouzon, M.G. Pizzolatti, F.R. Silva, Triterpene derivative: A potential signaling pathway for the fern-9(11)-ene-2alpha,3beta-diol on insulin secretion in pancreatic islet. Life Sci. 154, 58–65 (2016). https://doi.org/10.1016/j.lfs.2016.04.027

    Article  CAS  PubMed  Google Scholar 

  30. J. Ryu, A.K. Galan, X. Xin, F. Dong, M.A. Abdul-Ghani, L. Zhou, C. Wang, C. Li, B.M. Holmes, L.B. Sloane, S.N. Austad, S. Guo, N. Musi, R.A. DeFronzo, C. Deng, M.F. White, F. Liu, L.Q. Dong, APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor. Cell Rep. 7, 1227–1238 (2014). https://doi.org/10.1016/j.celrep.2014.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. F. Oriente, S. Iovino, S. Cabaro, A. Cassese, E. Longobardi, C. Miele, P. Ungaro, P. Formisano, F. Blasi, F. Beguinot, Prep1 controls insulin glucoregulatory function in liver by transcriptional targeting of SHP1 tyrosine phosphatase. Diabetes 60, 138–147 (2011). https://doi.org/10.2337/db10-0860

    Article  CAS  PubMed  Google Scholar 

  32. E. Choi, S. Kikuchi, H. Gao, K. Brodzik, I. Nassour, A. Yopp, A.G. Singal, H. Zhu, H. Yu, Mitotic regulators and the SHP2-MAPK pathway promote IR endocytosis and feedback regulation of insulin signaling. Nat. Commun. 10, 1473 (2019). https://doi.org/10.1038/s41467-019-09318-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M. Niessen, F. Jaschinski, F. Item, M.P. McNamara, G.A. Spinas, T. Trub, Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells. Exp. Cell. Res. 313, 805–815 (2007). https://doi.org/10.1016/j.yexcr.2006.11.015

    Article  CAS  PubMed  Google Scholar 

  34. B. Thorens, GLUT2, glucose sensing and glucose homeostasis. Diabetologia 58, 221–232 (2015). https://doi.org/10.1007/s00125-014-3451-1

    Article  CAS  PubMed  Google Scholar 

  35. A. Rathinam, L. Pari, Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats. Chem. Biol. Interact. 256, 161–166 (2016). https://doi.org/10.1016/j.cbi.2016.07.009

    Article  CAS  PubMed  Google Scholar 

  36. N. Vedovato, O. Rorsman, K. Hennis, F.M. Ashcroft, P. Proks, Role of the C-terminus of SUR in the differential regulation of beta-cell and cardiac KATP channels by MgADP and metabolism. J. Physiol. 596, 6205–6217 (2018). https://doi.org/10.1113/JP276708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. V. Djokic, S. Jankovic-Raznatovic, R. Novakovic, M. Kostic, J. Rajkovic, M. Labudovic-Borovic, J. Rakocevic, J. Stanisic, M. Djuric, L. Gojkovic-Bukarica, Effect of gestational diabetes mellitus and pregnancy-induced hypertension on human umbilical vein smooth muscle KATP channels. Exp. Mol. Pathol. 111, 104323 (2019). https://doi.org/10.1016/j.yexmp.2019.104323

    Article  CAS  PubMed  Google Scholar 

  38. Y. Sha, Y. Zhang, J. Cao, K. Qian, B. Niu, Q. Chen,, Loureirin B promotes insulin secretion through inhibition of KATP channel and influx of intracellular calcium. J. Cell Biochem. 119, 2012–2021 (2018). https://doi.org/10.1002/jcb.26362

    Article  CAS  PubMed  Google Scholar 

  39. Y. Yang, K. Shimomura, K. Sakuma, Y. Maejima, Y. Iwasaki, J. Galvanovskis, K. Dezaki, M. Nakata, T. Yada, Bupropion can close KATP channel and induce insulin secretion. J. Pediatr. Endocrinol. Metab. 26, 343–346 (2013). https://doi.org/10.1515/jpem-2012-0295

    Article  PubMed  Google Scholar 

  40. C.H. Lee, C.S. Chu, H.J. Tsai, L.Y. Ke, H.C. Lee, J.L. Yeh, C.H. Chen, B.N. Wu, Xanthine-derived KMUP-1 reverses glucotoxicity-activated Kv channels through the cAMP/PKA signaling pathway in rat pancreatic beta cells. Chem. Biol. Interact. 279, 171–176 (2018). https://doi.org/10.1016/j.cbi.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  41. J. Gao, X. Zhong, Y. Ding, T. Bai, H. Wang, H. Wu, Y. Liu, J. Yang, Y. Zhang, Inhibition of voltage-gated potassium channels mediates uncarboxylated osteocalcin-regulated insulin secretion in rat pancreatic beta cells. Eur. J. Pharm. 777, 41–48 (2016). https://doi.org/10.1016/j.ejphar.2016.02.060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the helpful comments on this paper received from the reviewers.

Funding

This work was supported by Qiqihar Science and Technology Bureau (No. SFGG-201940).

Author contributions

Conceived and designed research: L.H. and H.J.; Administrative support: L.H., H.J., and Z.J.; Provided materials or patients: Z.J., F.Y.L., Z.Y.X., S.X.Z., and Z.C.H.; Collected and assembled data: L.H., F.Y.L., Z.Y.X., Z.C.H., and W.F.; Analyzed and interpreted data: L.H. and H.J.; Drafted manuscript: L.H. and H.J.; Approved final version of manuscript: L.H. and H.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, J., Fu, Y. et al. Antidiabetic compounds 8a, 8b, 8k, and 9h enhance insulin secretion: activity and mechanism. Endocrine 71, 365–377 (2021). https://doi.org/10.1007/s12020-020-02537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02537-5

Keywords

Navigation