Skip to main content
Log in

α-Methyl artoflavanocoumarin from Juniperus chinensis exerts anti-diabetic effects by inhibiting PTP1B and activating the PI3K/Akt signaling pathway in insulin-resistant HepG2 cells

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Diabetes mellitus is one of the greatest global health issues and much research effort continues to be directed toward identifying novel therapeutic agents. Insulin resistance is a challenging integrally related topic and molecules capable of overcoming it are of considerable therapeutic interest in the context of type 2 diabetes mellitus (T2DM). Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling transduction and is regarded a novel therapeutic target in T2DM. Here, we investigated the inhibitory effect of α-methyl artoflavanocoumarin (MAFC), a natural flavanocoumarin isolated from Juniperus chinensis, on PTP1B in insulin-resistant HepG2 cells. MAFC was found to potently inhibit PTP1B with an IC50 of 25.27 ± 0.14 µM, and a kinetics study revealed MAFC is a mixed type PTP1B inhibitor with a K i value of 13.84 µM. Molecular docking simulations demonstrated MAFC can bind to catalytic and allosteric sites of PTP1B. Furthermore, MAFC significantly increased glucose uptake and decreased the expression of PTP1B in insulin-resistant HepG2 cells, down-regulated the phosphorylation of insulin receptor substrate (IRS)-1 (Ser307), and dose-dependently enhanced the protein levels of IRS-1, phosphorylated phosphoinositide 3-kinase (PI3K), Akt, and ERK1. These results suggest that MAFC from J. chinensis has therapeutic potential in T2DM by inhibiting PTP1B and activating insulin signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ala PJ, Gonneville L, Hillman M, Becker-Pasha M, Yue EW, Douty B, Wayl B, Polam P, Crawley ML, McLaughlin E, Sparks RB, Glass B, Takvorian A, Combs AP, Burn TC, Hollis GF, Wynn R (2006) Structural insights into the design of nonpeptidic isothiazolidinone-containing inhibitors of protein-tyrosine phosphatase 1B. J Biol Chem 281:38013–38021

    Article  CAS  PubMed  Google Scholar 

  • Badr JM, Shaala LA, Youssef DTA (2013) Loranthin: A new polyhydroxylated flavanocoumarin from Plicosepalus acacia with significant free radical scavenging and antimicrobial activity. Phytochem Lett 6:113–117

    Article  CAS  Google Scholar 

  • Baskaran SK, Goswami N, Selvaraj S, Muthusamy VS (2012) Molecular dynamics approach to probe the allosteric inhibition of PTP1B by chlorogenic acid and cichoric acid. J Chem Inf Model 52:2004–2012

    Article  CAS  PubMed  Google Scholar 

  • Bharatham K, Bharatham N, Kwon YJ, Lee KW (2008) Molecular dynamics simulation study of PTP1B with allosteric inhibitor and its application in receptor based pharmacophore modeling. J Comput Aided Mol Des 22:925–933

    Article  CAS  PubMed  Google Scholar 

  • Cerón-Romero L, Paoli P, Camici G, Flores-Morales V, Rios MY, Ramírez-Espinosa JJ, Hidalgo-Figueroa S, Navarrete-Vázquez G, Estrada-Soto S (2016) In vitro and in silico PTP-1B inhibition and in vivo antidiabetic activity of semisynthetic moronic acid derivatives. Bioorg Med Chem Lett 26:2018–2022

    Article  PubMed  Google Scholar 

  • Cornish-Bowden A (1974) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J 137:143–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui L, Na M, Oh H, Bae EY, Jeong DG, Ryu SE, Kim S, Kim BY, Oh WK, Ahn JS (2006) Protein tyrosine phosphatase 1B inhibitors from Morus root bark. Bioorg Med Chem Lett 16:1426–1429

    Article  CAS  PubMed  Google Scholar 

  • de Koning EJ, Bonner-Weir S, Rabelink TJ (2008) Preservation of beta-cell function by targeting beta-cell mass. Trends Pharmacol Sci 29:218–227

    Article  PubMed  Google Scholar 

  • Dixon M (1953) The determination of enzyme inhibitor constants. Biochem J 55:170–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elchebly M, Payette P, Michaliszyn E, Cremlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283:1544–1548

    Article  CAS  PubMed  Google Scholar 

  • He RJ, Yu ZH, Zhang RY, Zhang ZY (2014) Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharm Sin 35:1227–1246

    Article  CAS  Google Scholar 

  • Jeong SY, Nguyen PH, Zhao BT, Ali MY, Choi JS, Min BS, Woo MH (2015) Chemical constituents of Euonymus alatus (Thunb.) Sieb. and their PTP1B and α-glucosidase inhibitory activities. Phytother Res 29:1540–1548

    Article  CAS  PubMed  Google Scholar 

  • Jiang CS, Liang LF, Guo YW (2012) Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades. Acta Pharmacol Sin 33:1217–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson TO, Ermolieff J, Jirousek MR (2002) Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat Rev Drug Discov 1:696–709

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Jung HA, Min BS, Choi JS (2015) Anticholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory compounds from the heartwood of Juniperus chinensis. Chem Pharm Bull 63:955–960

    Article  CAS  PubMed  Google Scholar 

  • Jung HA, Ali MY, Choi JS (2016a) Promising inhibitory effects of anthraquinones, naphthopyrone, and naphthalene glycosides, from Cassia obtusifolia on α-glucosidase and human protein tyrosine phosphatases 1B. Molecules 22:1–15

    Article  Google Scholar 

  • Jung HA, Bhakta HK, Min BS, Choi JS (2016b) Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibition PTP1B. Arch Pharm Res 39:1454–1464

    Article  CAS  PubMed  Google Scholar 

  • Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46:3–19

    Article  CAS  PubMed  Google Scholar 

  • Kenner KA, Anyanwu E, Olefsky JM, Kusari J (1996) Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J Biol Chem 271:19810–19816

    Article  CAS  PubMed  Google Scholar 

  • Khalaf RA (2016) Exploring natural products as a source for antidiabetic lead compounds and possible lead optimization. Curr Top Med Chem 16:2549–2561

    Article  PubMed  Google Scholar 

  • Khan MF, Azad CS, Kumar A, Saini M, Narula AK, Jain S (2016) Novel imbricatolic acid derivatives as protein tyrosine phosphatase-1B inhibitors: design, synthesis, biological evaluation and molecular docking. Bioorg Med Chem Lett 26:1988–1992

    Article  CAS  PubMed  Google Scholar 

  • Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Stricker-Krongrad A, Shulman GI, Neel BG, Kahn BB (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 20:5479–5489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim JP, Song YC, Kim JW, Ku CH, Eun J, Leem KH, Kim DK (2002) Free radical scavengers from the heartwood of Juniperus chinensis. Arch Pharm Res 25:449–452

    Article  CAS  PubMed  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Liu ZQ, Liu T, Chen C, Li MY, Wang ZY, Chen RS, Wei GX, Wang XY, Luo DQ (2015) Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice. Toxicol Appl Pharmacol 285:61–70

    Article  CAS  PubMed  Google Scholar 

  • Maeda A, Kai K, Ishii M, Ishii T, Akagawa M (2014) Safranal, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves glucose tolerance in diabetic KK-Ay mice. Mol Nutr Food Res 58:1177–1189

    Article  CAS  PubMed  Google Scholar 

  • Maldini M, Di Micco S, Montoro P, Darra E, Mariotto S, Bifulco G, Pizza C, Piacente S (2013) Flavanocoumarins from Guazuma ulmifolia bark and evaluation of their affinity. Phytochemistry 86:64–71

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Pantidos N, Boath A, Lund V, Conner S, McDougall GJ (2014) Phenolic-rich extracts from the edible seaweed, Ascophyllum nodosum, inhibit α-amylase and α-glucosidase: potential anti-hyperglycemic effects. J Funct Foods 10:201–209

    Article  CAS  Google Scholar 

  • Panzhinskiy E, Ren J, Nair S (2013) Pharmacological inhibition of protein tyrosine phosphatase 1B: a promising strategy for the treatment of obesity and type 2 diabetes mellitus. Curr Med Chem 20:2609–2625

    Article  CAS  PubMed  Google Scholar 

  • Qin N, Li CB, Jin MN, Shi LH, Duan HQ, Niu WY (2011) Synthesis and biological activity of novel tiliroside derivants. Eur J Med Chem 46:5189–5195

    Article  CAS  PubMed  Google Scholar 

  • Ross SA, Gulve EA, Wang M (2004) Chemistry and biochemistry of type 2 diabetes. Chem Rev 104:1255–1282

    Article  CAS  PubMed  Google Scholar 

  • Szczepankiewicz BG, Liu G, Hajduk PJ, Abad-Zapatero C, Pei Z, Xin Z, Lubben TH, Trevillyan JM, Stashko MA, Ballaron SJ, Liang H, Huang F, Hutchins CW, Fesik SW, Jirousek MR (2003) Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy. J Am Chem Soc 125:4087–4096

    Article  CAS  PubMed  Google Scholar 

  • Takada M, Sumi M, Maeda A, Watanabe F, Kamiya T, Ishii T, Nakano M, Akagawa M (2012) Pyrroloquinoline quinone, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves impaired glucose tolerance in diabetic KK-A(y) mice. Biochem Biophys Res Commun 428:315–320

    Article  CAS  PubMed  Google Scholar 

  • Tang WJ, Zhang YL, Xiao QP, Huang C, Jin Y, Li J (2013) Four flavanocoumarins from the leaves of Litsea coreana Levl. Chem Biodivers 10:1128–1132

    Article  CAS  PubMed  Google Scholar 

  • Ti HH, Lin LD, Ding WB, Wei XY (2012) A new flavan 3-ol from Artocarpus nitidus subsp. Lingnanensis. J Asian Nat Prod Res 14:555–558

    Article  CAS  PubMed  Google Scholar 

  • Verma M, Gupta SJ, Chaudhary A, Garg VK (2016) Protein tyrosine phosphatase 1B inhibitors as antidiabetic agents-A brief review. Bioorg Chem 70:267–283

    Article  PubMed  Google Scholar 

  • Wang LJ, Jiang B, Wu N, Wang SY, Shi DY (2015) Natural and semisynthetic protein tyrosine phosphatase 1B (PTP1B) inhibitors as anti-diabetic agents. RSC Adv 5:48822–48834

    Article  CAS  Google Scholar 

  • Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF Diabetes Atlas: global estimates of the prevalence of diabetes for 2011and 2030. Diabetes Res Clin Pract 94:311–321

    Article  PubMed  Google Scholar 

  • Wiesmann C, Barr KJ, Kung J, Zhu J, Erlanson DA, Shen W, Fahr BJ, Zhong M, Taylor L, Randal M, McDowell RS, Hansen SK (2004) Allosteric inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 11:730–737

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Wang W, Su H, Xing D, Pan Y, Du L (2006) Effect of ethanolic extracts of Ananas comosus L. leaves on insulin sensitivity in rats and HepG2. Comp Biochem Physiol C 143:429–435

    Article  Google Scholar 

  • Xu F, Wang F, Wang Z, Lv W, Wang W, Wang Y (2016) Glucose uptake activities of bis (2,3-dibromo-4,5-dihydroxybenzyl)ether, a novel marine natural product form red alga Odonthalia corymbifera with protein tyrosine phosphatase 1B inhibition, in vitro and in vivo. Plos One 11:e0147748.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin JP, Tang CL, Gao LX, Ma WP, Li JY, Li J, Nan FJ (2014) Design and synthesis of paracaseolide A analogues as selective protein tyrosine phosphatase 1B inhibitors. Org Biomol Chem 12:3441–3445

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Xian Y, Li G, Wang D, Zhou H, Wang X (2017) One new flavanocoumarin from the thorns of Gleditsia sinensis. Nat Prod Res 31:275–280

    Article  CAS  PubMed  Google Scholar 

  • Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y, Kim YB, Elmquist JK, Tartaglia LA, Kahn BB, Neel BG (2002) PTP1B regulates leptin signal transduction in vivo. Dev Cell 2:489–495

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Salituro G, Szalkowski D, Li Z, Zhang Y, Royo I, Vilella D, Diez MT, Pelaez F, Ruby C, Kendall RL, Mao X, Griffin P, Calaycay J, Zierath JR, Heck JV, Smith RG, Moller DE (1999) Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284:974–977

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from Pukyong National University (2017). We also thank Aging Tissue Bank for providing research information.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Ah Jung or Jae Sue Choi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, H.J., Seong, S.H., Ali, M.Y. et al. α-Methyl artoflavanocoumarin from Juniperus chinensis exerts anti-diabetic effects by inhibiting PTP1B and activating the PI3K/Akt signaling pathway in insulin-resistant HepG2 cells. Arch. Pharm. Res. 40, 1403–1413 (2017). https://doi.org/10.1007/s12272-017-0992-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-017-0992-0

Keywords

Navigation