Skip to main content
Log in

Insulin releasing effect of some pure compounds from Moringa oleifera on mice islets

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The anti-diabetic activity of extracts, fractions and compounds of Moringa oleifera have been reported; however, several constituents from this well known medicinal plant are not yet screened for bio-perspecting role for diabetes. Current studies demonstrated the anti-diabetic properties of five chemical constituents of the plant viz, 4-hydroxyphenylacetonitrite (1), fluoropyrazine (3), methyl-4-hydroxybenzoate (4), vanillin (5), and 4-α-L-rhamnopyranosyloxybenzyl isothiocyanate (6) along with one related compound 3,4-dihydroxy benzonitrile (2) for the first time in vitro and in vivo. Furthermore, the mechanism of action of compounds was predicted by utilizing molecular docking with protein kinase A (PKA) and exchange protein activated by cAMP (Epac2A). The structure of compounds was elucidated by UV, IR, MS, and 1H NMR. The compounds 1, 35 induced significant insulin secretion at stimulatory (16.7 mM) glucose, but not at basal (3 mM) glucose concentration, and compound 3 seems to be the most active. Compounds 1, 35 showed dose-dependent insulin secretory activity with optimum response at 200 μM. In silico studies revealed that compound 3 has a noticeable electrostatic and hydrophobic interaction with protein kinase A (PKA). In vitro studies also showed that there was significant reduction of compounds 13 mediated insulin secretion in the presence of PKA inhibitor suggesting that there is a possible role of PKA signaling pathway on insulin secretion. Upon oral administration of 1, 35 to diabetic rats, compounds 1 and 3 significantly reduced blood glucose level in diabetic rats in a dose- and time-dependent manner. The oral glucose tolerance test in diabetic rats showed that compound 3 significantly enhanced plasma insulin and improved beta-cell function. In cytotoxicity assay, compounds 1, 35 did not show any toxic effect upto 200 μM. The insulin releasing characteristic of different constituents from M. oleifera conceivably correlate the lowering of blood glucose in in vivo diabetic rats by triggering glucose-induced insulin secretion from pancreatic islets possibly by PKA-mediated insulin secretory pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alkhalidy H, Moore W, Zhang Y, McMillan R, Wang A, Ali M, Suh KS, Zhen W, Cheng Z, Jia Z, Hulver M, Liu D (2015) Small molecule kaempferol promotes insulin sensitivity and preserved pancreatic β-cell mass in middle-aged obese diabetic mice. J Diabetes Res. https://doi.org/10.1155/2015/532984

  • Bockus LB, Humphries KM (2015) cAMP-dependent protein kinase (PKA) signaling is impaired in the diabetic heart J Biol Chem 290:29250–29258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruystens JG, Wu J, Fortezzo A, Kornev AP, Blumenthal DK, Taylor SS (2014) PKA RIα homodimer structure reveals an intermolecular interface with implications for cooperative cAMP binding and caney complex disease. Structure 22:59–69

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Wild C, Zhou X, Ye N, Cheng X, Zhou J (2014) Recent advances in the discovery of small molecules targeting exchange proteins directly activated by cAMP (EPAC). J Med Chem 57:3651–3665

    Article  CAS  PubMed  Google Scholar 

  • Chen X-r, Zhu B-l, Zhang C-l, Chen Q-x, Wang Q (2008) Effects of 3,4-dihydroxybenzonitrile on mushroom tyrosinase and some microbe. Xiamen DaxueXuebao, ZiranKexueban 47(5):714–717

    CAS  Google Scholar 

  • Costa-Lotufo LV, Khan MTH, Ather A, Wilke DV, Jimenez PC, Pessoa C, de Moraes MEA, de Moraes MO (2005) Studies of the anticancer potential of plants used in Bangladeshi folk medicine. J Ethnopharm 99:21–30

    Article  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dechandt CRP, Siqueria JT, de-Souza DLP, Araujo LCJ, da-Silva VC, Junior P-S, Andrade CMB, Kawashita NH, Baviera AM (2013) Combretum lanceolatum flowers extract shows antidiabetic activity through activation of AMPK by quercetin. Braz J Pharm 23:291–300

    Article  CAS  Google Scholar 

  • Ezeamuzie IC, Ambakederemo AW, Shode FO, Ekweblem SC (1996) Antiinflammatory effects of Moringa oleifera root extract. Pharm Biol 34:207–212

    Article  Google Scholar 

  • Fahey JW (2005) Moringa oleifera: a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties-part 1. Tree LifeJournal 1:5–10

    Google Scholar 

  • Faizi S, Siddiqui BS, Saleem R, Aftab K, Shaheen F, Gilani AH (1998) Hypotensive constituents from the pods of Moringa oleifera. Planta Med 64:225–228

    Article  CAS  PubMed  Google Scholar 

  • Francis JA, Jayaprakasam B, Olson LK, Nair MG (2004) Insulin secretagogues from Moringa oleifera with cyclooxygenase enzyme and lipid peroxidation inhibitory activities. Helv Chim Acta 87:317–326

    Article  CAS  Google Scholar 

  • Giacoppo S, Galuppo M, De Nicola GR, Iori R, Bramanti P, Mazzon E (2015) 4(á-L-rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that attenuates secondary damage in an experimental model of spinal cord injury. Bioorg Med Chem 23:80–88

    Article  CAS  PubMed  Google Scholar 

  • Hafizur RM, Hameed A, Shukrana M, Raza SA, Chishti S, Kabir N, Siddiqui RA (2015) Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine 22(2):297–300

    Article  CAS  PubMed  Google Scholar 

  • Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Törrönen AR (1999) Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 47:2274–2279

    Article  PubMed  Google Scholar 

  • Kappel VD, Frederico MJ, Postal BG, Mendes CP, Cazarolli LH, Silva FR (2013) The role of calcium in intracellular pathways of rutin in rat pancreatic islets: potential insulin secretagogue effect. Eur J Pharma 702:264–268

    Article  CAS  Google Scholar 

  • Lilly V (2012) Herbal lupeol as potent antidiabetic active principle on Sterptozotoin induced diabetic Wistar rats. Bharathidasan University, Tiruchirappalli, India

    Google Scholar 

  • Lubna, Sumbul S, Saleem R, Noureen N, Sana A, Faizi S (2010) Nasimizine: a rare and new fluorinated pyrazine from root of Moringa oleifera. Poster presented at 12th international symposium on natural product chemistry, ICCBS, University of Karachi, Karachi, 22–25 November 2010

  • Lubna, Sumbul S, Saleem R, Sana A, Abidi L, Noureen N, Bano S, Faizi S (2015) Nazimizinol and nasimizine from Moringa oleifera and Tagetes species: isolation and structure elucidation of fluorine ted pyrazines (in preparation)

  • Maldini M, Maksoud SA, Natella F, Montroo P, Petretto GL, Foddai M, De Nicola GR, Chessa M, Pintore G (2014) Moringa oleifera: study of phenolics and glucosilinolates by mass spectrometry J Mass Spectrom 49:900–910

    Article  CAS  PubMed  Google Scholar 

  • Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, Novelli M, Ribes G (1998) Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47:224–229

    Article  CAS  PubMed  Google Scholar 

  • Mehta LK, Balaraman R, Amin AH, Bafna PA, Gulati OD (2003) Effect of fruits of Moringa oleifera on the lipid profile of normal and hypocholesterolaemic rabbits. J Ethnopharm 86:191–195

    Article  Google Scholar 

  • Meloni A, DeYoung M, Lowe C, Parkes D (2012) GLP-1 receptor activated insulin secretion from pancreatic β-cells: mechanism and glucose dependence. Diabetes Obes Metab 15:15–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Muthukumaran J, Srinivasan S, Venkatesan RS, Ramchandran V, Muruganathan U (2013) Syringic acid, a novel natural phenolic acid, normalizes hyperglycemia with special reference to glycoprotein components in experimental diabetic rats. J Acut Dis 2(4):304–309

    Article  Google Scholar 

  • Nagatsu A, Sugitani T, Mori Y, Okuyama H, Sakakibara J, Mizukami H (2004) Antioxidants from rape (Brassica campestris vir. Japonica hara) oil cake. Nat Prod Res 18:231–239

    Article  CAS  PubMed  Google Scholar 

  • Rahman MH, Hameed A, Shukrana M, Raza SA, Chishti S, Kabir N, Siddiqui RA (2015) Cinnamic acid exerts antidiabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine 22:297–300

    Article  Google Scholar 

  • Rios JL, Francini F, Schinella GR (2015) Natural products for the treatment of type 2 diabetes mellitus. Planta Med 81:975–994

    Article  CAS  PubMed  Google Scholar 

  • Sameermohmood Z, Raji L, Saravanan T, Vaida A, Mohan V, Balasubramanyam M (2010) Gallic acid protects RINm5f β-cells from glucolipotoxicity by its antiapoptotic and insulin-secretagogue actions. Phytother Res 24:S83–S94

    Article  Google Scholar 

  • Schwede F, Bertinetti D, Langerijs CN, Hadders MA, Wienk H, Ellenbroek JH, de Koning EJ, Bos JL, Herberg FW, Genieser HG (2015) Structure-guided design of selective Epac1 and Epac2 agonists. PLoS Biol 13(1):e1002038

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma KR, Adhikari A, Hafizur RM, Hameed A, Raza SA, Kalauni SK, Miyazaki J, Choudhary MI (2015) Potent insulin secretagogue from Scoparia dulcis Linn of nepalese origin. Phytother Res 29:1672–1675

    Article  CAS  PubMed  Google Scholar 

  • Stohs SJ, Hartman MJ (2015) Review of the safety and efficacy of Moringa oleifera. Phytother Res 29:796–804

    Article  CAS  PubMed  Google Scholar 

  • Vongsak B, Sithisarn P, Mangmool S, Thongpraditchote S, Wongkrajang Y, Gritsanapan W (2013) Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind Crop Prod 44:566–571

    Article  CAS  Google Scholar 

  • Wick MM, FitzGerald GB 1987) Antitumor effects of biologic reducing agents related to 3,4-dihydroxybenzylamine: dihydroxybenzaldehyde, dihydroxybenzaldoxime, and dihydroxybenzonitrile J Pharm Sci 76(7):513–515

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu D (2011) Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol 670:325–332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NRPU Research Grant (20-4091/NRPU/R&D/HEC/14/375) to Md. Hafizur Rahman from Higher Education Commission (HEC), Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahman M. Hafizur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafizur, R.M., Maryam, K., Hameed, A. et al. Insulin releasing effect of some pure compounds from Moringa oleifera on mice islets. Med Chem Res 27, 1408–1418 (2018). https://doi.org/10.1007/s00044-018-2157-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-018-2157-1

Keywords

Navigation