Skip to main content

Advertisement

Log in

Metabolic and bone effects of high-fat diet in adult zebrafish

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

An increase of visceral fat affects human bone health causing fragility, mechanical strength reduction, and increased propensity to fractures because of impaired bone matrix microstructure and aberrant bone cell function. Adult Danio rerio (zebrafish) represents a powerful model to study both metabolic diseases and bone metabolism. The aim of this study was to generate an obese adult zebrafish by high-fat diet and evaluate metabolic and bone tissue effects. Fish blood glucose and insulin levels were found to be altered in high-fat diet fish revealing a failure in β-cells insulin production. Blood analysis of adipokines revealed significant alterations in adiponectin and leptin levels that are common in human and other obesity animal models. Advanced glycation end products (AGEs), derived from hyperglycemia condition, were found to be altered too. All these alterations were associated with an impaired bone metabolism. The scales of high-fat diet fish shown bone resorption lacunae associated with an intense osteoclastic tartrate-resistant acid phosphatase (TRAP) activity, whereas alkaline phosphatase (ALP) decreased. These data suggest that an imbalance of fat metabolism alters energy metabolism generating an osteoporosis-like phenotype in adult zebrafish scales. The zebrafish obesity model can contribute to elucidate in vivo the molecular mechanisms of metabolic changes in human obese patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.A. Greco, A. Lenzi, S. Migliaccio, The obesity of bone. Ther. Adv. Endocrinol. Metab. 6(6), 273–286 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. J. Ye, Mechanisms of insulin resistance in obesity. Front. Med. 7(1), 14–24 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  3. J.J. Cao, Effects of obesity on bone metabolism. J. Orthop. Surg. Res. 6, 30 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  4. K. Wongdee, N. Charoenphandhu, Update on type 2 diabetes-related osteoporosis. World J. Diabetes 6(5), 673–678 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  5. B. Roy, M.E. Curtis, L.S. Fears, S.N. Nahashon, H.M. Fentress, Molecular mechanisms of obesity-induced osteoporosis and muscle atrophy. Front. Physiol. 7, 439 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  6. S.K. Wong, K.Y. Chin, F.H. Suhaimi, F. Ahmad, S. Ima-Nirwana, The relationship between metabolic syndrome and osteoporosis: a review. Nutrients 8, 347 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  7. G.V. Halade, A. El Jamali, P.J. Williams, R.J. Fajardo, G. Fernandes, Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss mice. Exp. Gerontol. 46(1), 43–52 (2011)

    Article  PubMed  CAS  Google Scholar 

  8. A. Seth, D.L. Stemple, I. Barroso, The emerging use of zebrafish to model metabolic disease. Dis. Model. Mech. 6(5), 1080–1088 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. M. Mariotti, M. Carnovali, G. Banfi, Danio rerio: the Janus of the bone from embryo to scale. Clinical cases in mineral and bone. Metabolism 12(2), 188–194 (2015)

    Google Scholar 

  10. M. Westerfield, The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio). (University of Oregon Press, Eugene, 2007).

  11. S. Meguro, T. Hasumura, T. Hase, Body fat accumulation in zebrafish is induced by a diet rich in fat and reduced by supplementation with green tea extract. PLoS ONE 10(3), e0120142 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. S. Leibold, M. Hammerschmidt, Long-term hyperphagia and caloric restriction caused by low-or high-density husbandry have differential effects on zebrafish postembryonic development, somatic growth, fat accumulation and reproduction. PLoS ONE 10(3), e0120776 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. S.C. Eames, L.H. Philipson, V.E. Prince, M.D. Kinkel, Blood sugar measurement in zebrafish reveals dynamic of glucose homeostasis. Zebrafish 7, 205–213 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. K.M. Capiotti, R. Antonioli Jr, L. Wilges Kist, M. Reis Bogo, C.D. Bonan, R. Souza Da Silva, Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. Comp. Biochem. Physiol. B 171, 58–65 (2014)

    Article  PubMed  CAS  Google Scholar 

  15. T. Oka, Y. Nishimura, L. Zang, M. Hirano, Y. Shimada, Z. Wang, N. Umemoto, J. Kuroyanagi, N. Nishimura, T. Tanaka, Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 10, 21 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. T. Gupta, M.C. Mullins, Dissection of organs from the adult zebrafish. J. Vis. Exp. 37, 1717 (2010)

    Google Scholar 

  17. M. Carnovali, L. Luzi, G. Banfi, M. Mariotti, Chronic hyperglycaemia affects bone metabolism in adult zebrafish scale model. Endocrine 54, 808–817 (2016)

    Article  PubMed  CAS  Google Scholar 

  18. S. Pasqualetti, G. Banfi, M. Mariotti, Osteoblast and osteoclast behavior in zebrafish cultured scales. Cell Tissue Res. 350(1), 69–75 (2012).

    Article  PubMed  CAS  Google Scholar 

  19. P. Perrson, Y. Takagi, B.T. Björnsson, Tartrate resistant acid phosphatases as a marker for scale resorption in rainbow trout, Oncorhynchus mykiss: effects of estradiol-17β treatment and refeeding. Fish Physiol. Biochem. 14(4), 329–339 (1995).

    Article  Google Scholar 

  20. K. Kitamura, K. Takahira, M. Inari et al. Zebrafish scales respond differently to in vitro dynamic and static acceleration: analysis of interaction between osteoblasts and osteoclasts. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 166(1), 74–80 (2013)

    Article  PubMed  CAS  Google Scholar 

  21. N. Suzuki, J.A. Danks, Y. Maruyama et al. Parathyroid hormone 1 (1-34) acts on the scales and involves calcium metabolism in goldfish. Bone 48(5), 1186–1193 (2011)

    Article  PubMed  CAS  Google Scholar 

  22. K. Landgraf, S. Schuster, A. Meusel, A. Garten, T. Riemer, D. Schleinitz, W. Kiess, A. Körner, Short-term overfeeding of zebrafish with normal or high-fat diet as a model for the development of metabolically healthy versus unhealthy obesity. BMC Physiol. 17, 4 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. M. Mania, L. Maruccio, F. Russo, F. Abbate, L. Castaldo, L. D’Angelo, P. de Girolamo, M.C. Guerrera, C. Lucini, M. Madrigrano, M. Levanti, A. Germanà, Expression and distribution of leptin and its receptors in the digestive tractof DIO (diet-induced obese) zebrafish. Ann. Anat. 212, 37–47 (2017)

    Article  PubMed  CAS  Google Scholar 

  24. L. Zang, Y. Shimada, N. Nishimura, Development of a novel zebrafish model for type 2 diabetes mellitus. Sci. Rep. 7, 1461 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. A. Tingaud-Sequeira, A. Knoll-Gellida, M. André, P.J. Babin, Vitellogenin expression in white adipose tissue in female teleost fish. Biol. Reprod. 86(2), 38 (2012)

    Article  PubMed  CAS  Google Scholar 

  26. T.J. Kieffer, F. Joel Habener, The adipoinsular axis: effects of leptin on pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab. 278, E1–E14 (2000)

    Article  PubMed  CAS  Google Scholar 

  27. K.D. Niswender, M.A. Magnuson, Obesity and β cell: lessons from leptin. J. Clin. Invest. 117, 2753–2756 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. D. Han, Y. Yamamoto, S. Munesue, S. Motoyoshi, H. Saito, M.T. Win, T. Watanabe, K. Tsuneyama, H. Yamamoto, Induction of receptor for advanced glycation end products by insufficient leptin action triggers pancreatic β-cell failure in type 2 diabetes. Genes Cells 18, 302–314 (2013).

    Article  PubMed  CAS  Google Scholar 

  29. N. Lin, H. Zhang, Q. Su, Advanced glycation end-products induce injury to pancreatic beta cells through oxidative stress. Diabetes Metab. 38(3), 250–257 (2012)

    Article  PubMed  CAS  Google Scholar 

  30. G.A. Balsan, J.L. da Costa Vieira, A. Marcadenti de Oliveira, V.L. Portal, Relationship between adiponectin, obesity and insulin resistance. Rev. Assoc. Med. Bras. 61(1), 72–80 (2015)

    Article  PubMed  Google Scholar 

  31. F. Wannenes, V. Papa, E. Greco et al., Abdominal fat and sarcopenia in women significantly alter osteoblasts homeostasis in vitro by a WNT/ β -catenin dependent mechanism. Int. J. Endocrinol. 2014, 278316 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. K. Oshima, A. Nampei, M. Matsuda, M. Iwaki, A. Fukuhara, J. Hashimoto, H. Yoshikawa, I. Shimomura, Adiponectin increase bone mass by suppressing osteoclast and activating osteoblasts. Biochem. Biophys. Res. Commun. 331(2), 520–526 (2005)

    Article  PubMed  CAS  Google Scholar 

  33. Q. Tu, J. Zhang, L.Q. Dong, E. Saunders, E. Luo, J. Tang, J. Chen, Adiponectin inhibits osteoclastogenesis and bone resorption via APPL1-mediated suppression of Akt1. J. Biol. Chem. 286(14), 12542–12553 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. S.S. Kohli, V.S. Kohli, Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian J. Endocrinol. Metab. 15(3), 175–181 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. G.V. Halade, M.M. Rahman, P.J. Williams, G. Fernandes, High fat diet-induced animal model of age-associated obesity and osteoporosis. J. Nutr. Biochem. 21(12), 1162–1169 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Q. Wang, X. Li, M. Wang., L.L. Zhao, H. Li, H. Xie, Z.Y. Lu, Adiponectin exerts its negative effect on bone metabolism via OPG/RANKL pathway: an in vivo study. Endocrine 47(3), 845–853 (2014)

    Article  PubMed  CAS  Google Scholar 

  37. N. Napoli, R. Strollo, A. Paladini, S.I. Briganti, P. Pozzilli, S. Epstein, The alliance of mesenchymal stem cells, bone, and diabetes. Int. J. Endocrinol. 2014, 690783 (2014)

    PubMed  PubMed Central  Google Scholar 

  38. D. Alsop, M.M. Vijayan, Molecular programming of the corticosteroid stress axis during zebrafish development. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 153(1), 49–54 (2009)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ricerca Corrente funds of the Ministero della Salute (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Mariotti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carnovali, M., Luzi, L., Terruzzi, I. et al. Metabolic and bone effects of high-fat diet in adult zebrafish. Endocrine 61, 317–326 (2018). https://doi.org/10.1007/s12020-017-1494-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-017-1494-z

Keywords

Navigation