Skip to main content

Advertisement

Log in

Diagnostic Performance of miR-485-3p in Patients with Parkinson’s Disease and its Relationship with Neuroinflammation

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is one of the most common progressive neurodegenerative diseases. Some microRNAs (miRNAs) play critical roles in the development of many neurological diseases. This study aims to evaluate the clinical significance and biological function of miR-485-3p in the development and progression of PD. The expression of miR-485-3p in serum of PD patients was analyzed by quantitative real-time PCR (qRT-PCR). LPS-treated microglia BV2 cells were used to mimic neuroinflammation in the pathogenesis of PD. The levels of inflammatory cytokines, including IL-1β, IL-6 and TNF-α, were detected by enzyme-linked immunosorbent assay (ELISA). The diagnosis value of miR-485-3p was evaluated by plotting receiver operating characteristic (ROC) curves. A luciferase reporter assay was performed to demonstrate the interaction between miR-485-3p and FBXO45. The results showed that miR-485-3p was significantly up-regulated in serum of PD patients compared with that in both Alzheimer’s disease (AD) and healthy cases, and had diagnostic accuracy for PD screening. The activated microglia BV2 cells induced by LPS also had elevated miR-485-3p, and the knockdown of miR-485-3p inhibited the release of pro-inflammatory cytokines. FBXO protein 45 (FBXO45) served as a potential target of miR-485-3p, which was speculated to mediate the function of miR-485-3p. Our results suggest that the up-regulated expression of miR-485-3p in PD may be a novel diagnostic biomarker for PD. Reducing the expression level of miR-485-3p can inhibit the inflammatory responses of BV2 cells, which indicated that miR-485-3p, as a regulator of neuroinflammation, may have the potential as a therapeutic target in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  • Lotankar, S., Prabhavalkar, K. S., & Bhatt, L. K. (2017). Biomarkers for parkinson’s disease: recent advancement. Neuroscience Bulletin., 33(5), 585–597.

    Article  CAS  Google Scholar 

  • Opara, J., Malecki, A., Malecka, E., & Socha, T. (2017). Motor assessment in Parkinson’s disease. Annals of Agricultural and Environmental Medicine : AAEM., 24(3), 411–415.

    Article  Google Scholar 

  • Schneider, R. B., Iourinets, J., & Richard, I. H. (2017). Parkinson’s disease psychosis: Presentation, diagnosis and management. Neurodegenerative Disease Management., 7(6), 365–376.

    Article  Google Scholar 

  • Samii, A., Nutt, J. G., & Ransom, B. R. (2004). Parkinson’s disease. Lancet, 363(9423), 1783–1793.

    Article  CAS  Google Scholar 

  • Tysnes, O. B., & Storstein, A. (2017). Epidemiology of Parkinson’s disease. Journal of Neural Transmission., 124(8), 901–905.

    Article  Google Scholar 

  • Ho, M. S. (2019). Microglia in Parkinson’s disease. Advances in Experimental Medicine and Biology., 1175, 335–353.

    Article  CAS  Google Scholar 

  • Backes, C., Meese, E., & Keller, A. (2016). Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Molecular Diagnosis & Therapy., 20(6), 509–518.

    Article  CAS  Google Scholar 

  • Vishnoi, A., & Rani, S. (2017). MiRNA biogenesis and regulation of diseases: an overview. Methods in Molecular Biology., 1509, 1–10.

    Article  CAS  Google Scholar 

  • Fyfe, I. (2020). MicroRNAs - diagnostic markers in Parkinson disease? Nature Reviews. Neurology, 16(2), 65.

    Article  Google Scholar 

  • Catanesi, M., d’Angelo, M., Tupone, M. G., Benedetti, E., Giordano, A., Castelli, V., et al. (2020). MicroRNAs Dysregulation and mitochondrial dysfunction in neurodegenerative diseases. International Journal of Molecular Sciences, 21(17), 5986.

    Article  CAS  Google Scholar 

  • Goh, S. Y., Chao, Y. X., Dheen, S. T., Tan, E. K., & Tay, S. S. (2019). Role of MicroRNAs in Parkinson’s Disease. International Journal of Molecular Sciences, 20(22), 5649.

    Article  CAS  Google Scholar 

  • Sole, C., Domingo, S., Ferrer, B., Moline, T., Ordi-Ros, J., & Cortes-Hernandez, J. (2019). MicroRNA expression profiling identifies miR-31 and miR-485-3p as regulators in the pathogenesis of discoid cutaneous lupus. The Journal of Investigative Dermatology., 139(1), 51–61.

    Article  CAS  Google Scholar 

  • Li, B., Bai, L., Shen, P., Sun, Y., Chen, Z., & Wen, Y. (2017). Identification of differentially expressed microRNAs in knee anterior cruciate ligament tissues surgically removed from patients with osteoarthritis. International Journal of Molecular Medicine., 40(4), 1105–1113.

    Article  CAS  Google Scholar 

  • Leggio, L., Vivarelli, S., L’Episcopo, F., Tirolo, C., Caniglia, S., Testa, N., et al. (2017). microRNAs in parkinson’s disease: from pathogenesis to novel diagnostic and therapeutic approaches. International Journal of Molecular Sciences., 18(12), 2698.

    Article  Google Scholar 

  • Joutsa, J., Gardberg, M., Roytta, M., & Kaasinen, V. (2014). Diagnostic accuracy of parkinsonism syndromes by general neurologists. Parkinsonism & Related Disorders., 20(8), 840–844.

    Article  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of department of health and human services task force on alzheimer’s disease. Neurology, 34(7), 939–944.

    Article  CAS  Google Scholar 

  • Beitz, J. M. (2014). Parkinson’s disease: A review. Frontiers in Bioscience., 6, 65–74.

    Article  Google Scholar 

  • Raza, C., Anjum, R., & Shakeel, N. U. A. (2019). Parkinson’s disease: Mechanisms, translational models and management strategies. Life Sciences., 226, 77–90.

    Article  CAS  Google Scholar 

  • Tolosa, E., Wenning, G., & Poewe, W. (2006). The diagnosis of Parkinson’s disease. The Lancet Neurology., 5(1), 75–86.

    Article  Google Scholar 

  • Caggiu, E., Paulus, K., Mameli, G., Arru, G., Sechi, G. P., & Sechi, L. A. (2018). Differential expression of miRNA 155 and miRNA 146a in Parkinson’s disease patients. eNeurologicalSci., 13, 1–4.

    Article  Google Scholar 

  • Zhang, L. M., Wang, M. H., Yang, H. C., Tian, T., Sun, G. F., Ji, Y. F., et al. (2019). Dopaminergic neuron injury in Parkinson’s disease is mitigated by interfering lncRNA SNHG14 expression to regulate the miR-133b/ alpha-synuclein pathway. Aging, 11(21), 9264–9279.

    Article  CAS  Google Scholar 

  • Cho, H. J., Liu, G., Jin, S. M., Parisiadou, L., Xie, C., Yu, J., et al. (2013). MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Human Molecular Genetics., 22(3), 608–620.

    Article  CAS  Google Scholar 

  • Minones-Moyano, E., Porta, S., Escaramis, G., Rabionet, R., Iraola, S., Kagerbauer, B., et al. (2011). MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Human Molecular Genetics., 20(15), 3067–3078.

    Article  CAS  Google Scholar 

  • Yu, L., Li, H., Liu, W., Zhang, L., Tian, Q., Li, H., et al. (2020). MiR-485–3p serves as a biomarker and therapeutic target of Alzheimer’s disease via regulating neuronal cell viability and neuroinflammation by targeting AKT3. Molecular Genetics & Genomic Medicine, 9(1), 1548.

    Google Scholar 

  • Gu, J., Shao, R., Li, M., Yan, Q., & Hu, H. (2020). MiR-485-3p modulates neural stem cell differentiation and proliferation via regulating TRIP6 expression. Journal of Cellular and Molecular Medicine., 24(1), 398–404.

    Article  CAS  Google Scholar 

  • Chung, F. Z., Sahasrabuddhe, A. A., Ma, K., Chen, X., Basrur, V., Lim, M. S., et al. (2014). Fbxo45 inhibits calcium-sensitive proteolysis of N-cadherin and promotes neuronal differentiation. The Journal of Biological Chemistry., 289(41), 28448–28459.

    Article  CAS  Google Scholar 

  • Xu, M., Zhu, C., Zhao, X., Chen, C., Zhang, H., Yuan, H., et al. (2015). Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors. Oncotarget, 6(2), 979–994.

    Article  Google Scholar 

  • Lin, M., Wang, Z. W., & Zhu, X. (2020). FBXO45 is a potential therapeutic target for cancer therapy. Cell Death Discovery., 6, 55.

    Article  CAS  Google Scholar 

  • Saiga, T., Fukuda, T., Matsumoto, M., Tada, H., Okano, H. J., Okano, H., et al. (2009). Fbxo45 forms a novel ubiquitin ligase complex and is required for neuronal development. Molecular and Cellular Biology., 29(13), 3529–3543.

    Article  CAS  Google Scholar 

  • Tada, H., Okano, H. J., Takagi, H., Shibata, S., Yao, I., Matsumoto, M., et al. (2010). Fbxo45, a novel ubiquitin ligase, regulates synaptic activity. The Journal of Biological Chemistry., 285(6), 3840–3849.

    Article  CAS  Google Scholar 

  • Dauer, W., & Przedborski, S. (2003). Parkinson’s disease: Mechanisms and models. Neuron, 39(6), 889–909.

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Qi.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethical approval

The experimental procedures were all in accordance with the guideline of the Ethics Committee of Taizhou Central Hospital (Taizhou University Hospital).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Wang, R., Li, R. et al. Diagnostic Performance of miR-485-3p in Patients with Parkinson’s Disease and its Relationship with Neuroinflammation. Neuromol Med 24, 195–201 (2022). https://doi.org/10.1007/s12017-021-08676-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-021-08676-w

Keywords

Navigation