Skip to main content

Advertisement

Log in

Regulation Mechanisms and Maintenance Strategies of Stemness in Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Stemness pertains to the intrinsic ability of mesenchymal stem cells (MSCs) to undergo self-renewal and differentiate into multiple lineages, while simultaneously impeding their differentiation and preserving crucial differentiating genes in a state of quiescence and equilibrium. Owing to their favorable attributes, including uncomplicated isolation protocols, ethical compliance, and ease of procurement, MSCs have become a focal point of inquiry in the domains of regenerative medicine and tissue engineering. As age increases or ex vivo cultivation is prolonged, the functionality of MSCs decreases and their stemness gradually diminishes, thereby limiting their potential therapeutic applications. Despite the existence of several uncertainties surrounding the comprehension of MSC stemness, considerable advancements have been achieved in the clarification of the potential mechanisms that lead to stemness loss, as well as the associated strategies for stemness maintenance. This comprehensive review provides a systematic overview of the factors influencing the preservation of MSC stemness, the molecular mechanisms governing it, the strategies for its maintenance, and the therapeutic potential associated with stemness. Finally, we underscore the obstacles and prospective avenues in present investigations, providing innovative perspectives and opportunities for the preservation and therapeutic utilization of MSC stemness.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data (or sources thereof) relevant to this study are included in the article; further inquiries can be directed to the corresponding author/s.

Abbreviations

MSCs:

Mesenchymal stem cells

BMSCs:

Mesenchymal stem cells derived from bone marrow

ADSCs:

Adipose-derived mesenchymal stem cells

D-ASCs:

Mesenchymal stem cells derived from diabetic patients

UCMSCs:

Mesenchymal stem cells derived from the umbilical cord

WJ-MSCs:

Wharton's jelly mesenchymal stem cells

ABMSCs:

Alveolar bone-derived mesenchymal stromal cells

ROS:

Reactive oxygen species

NHE1:

The sodium/hydrogen exchanger 1

ESCs:

Embryonic stem cells

EPCAM:

Epithelial cell adhesion molecule

EPMC:

Ethyl p-methoxycinnamate

NF-κB:

The nuclear factor κB

HuR:

Human antigen R

snoRNPs:

Nucleolar ribonucleoprotein particles

SNORA7A:

Small nucleolar RNA 7A

DDR:

The DNA damage response

ASA:

Ascorbic acid

DMOG:

Dimethyloxallyl glycine

CREB1:

cAMP response element-binding protein 1

DPSCs:

Dental pulp stem cells

TSA:

Trichostatin A

OGC:

Octanoyl glycol chitosan

NsPEF:

Nanosecond pulsed electric fields

ECM:

The extracellular matrix

dECM:

Decellularized extracellular matrix

MS1:

Mile Sven1

PFB-F-GLU:

Glucosamine-based supramolecular hydrogel

SCDS:

Single-cell-derived spheres

iPSC:

Induced pluripotent stem cell

FGF:

Fibroblast growth factor

References

  1. Huang, G. T., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. Journal of Dental Research, 88, 792–806. https://doi.org/10.1177/0022034509340867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Song, N., Scholtemeijer, M., & Shah, K. (2020). Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential. Trends in Pharmacological Sciences, 41, 653–664. https://doi.org/10.1016/j.tips.2020.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. De Los Angeles, A., Ferrari, F., Xi, R., Fujiwara, Y., Benvenisty, N., Deng, H., Hochedlinger, K., Jaenisch, R., Lee, S., Leitch, H. G., et al. (2015). Hallmarks of pluripotency. Nature, 525, 469–478. https://doi.org/10.1038/nature15515

    Article  CAS  ADS  Google Scholar 

  4. Li, C. Y., Wu, X. Y., Tong, J. B., Yang, X. X., Zhao, J. L., Zheng, Q. F., Zhao, G. B., & Ma, Z. J. (2015). Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Research & Therapy, 6, 55. https://doi.org/10.1186/s13287-015-0066-5

    Article  CAS  Google Scholar 

  5. Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells (Dayton, Ohio), 24, 1294–1301. https://doi.org/10.1634/stemcells.2005-0342

    Article  CAS  PubMed  Google Scholar 

  6. Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., Blake, J., Schwager, C., Eckstein, V., Ansorge, W., et al. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology, 33, 1402–1416. https://doi.org/10.1016/j.exphem.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  7. Sacchetti, B., Funari, A., Remoli, C., Giannicola, G., Kogler, G., Liedtke, S., Cossu, G., Serafini, M., Sampaolesi, M., Tagliafico, E., et al. (2016). No identical “mesenchymal stem cells” at different times and sites: Human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports, 6, 897–913. https://doi.org/10.1016/j.stemcr.2016.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davies, O. G., Cooper, P. R., Shelton, R. M., Smith, A. J., & Scheven, B. A. (2015). A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. Journal of Bone and Mineral Metabolism, 33, 371–382. https://doi.org/10.1007/s00774-014-0601-y

    Article  CAS  PubMed  Google Scholar 

  9. Méndez-Ferrer, S., Michurina, T. V., Ferraro, F., Mazloom, A. R., Macarthur, B. D., Lira, S. A., Scadden, D. T., Ma’ayan, A., Enikolopov, G. N., & Frenette, P. S. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466, 829–834. https://doi.org/10.1038/nature09262

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Winer, J. P., Janmey, P. A., McCormick, M. E., & Funaki, M. (2009). Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Engineering. Part A, 15, 147–154. https://doi.org/10.1089/ten.tea.2007.0388

    Article  CAS  PubMed  Google Scholar 

  11. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689. https://doi.org/10.1016/j.cell.2006.06.044

    Article  CAS  PubMed  Google Scholar 

  12. Tsimbouri, P. M., McMurray, R. J., Burgess, K. V., Alakpa, E. V., Reynolds, P. M., Murawski, K., Kingham, E., Oreffo, R. O., Gadegaard, N., & Dalby, M. J. (2012). Using nanotopography and metabolomics to identify biochemical effectors of multipotency. ACS Nano, 6, 10239–10249. https://doi.org/10.1021/nn304046m

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, D., & Kilian, K. A. (2013). The effect of mesenchymal stem cell shape on the maintenance of multipotency. Biomaterials, 34, 3962–3969. https://doi.org/10.1016/j.biomaterials.2013.02.029

    Article  CAS  PubMed  Google Scholar 

  14. Lee, W. C., Shi, H., Poon, Z., Nyan, L. M., Kaushik, T., Shivashankar, G. V., Chan, J. K., Lim, C. T., Han, J., & Van Vliet, K. J. (2014). Multivariate biophysical markers predictive of mesenchymal stromal cell multipotency. Proceedings of the National Academy of Sciences of the United States of America, 111, E4409-4418. https://doi.org/10.1073/pnas.1402306111

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Yasan, G. T., & Gunel-Ozcan, A. (2024). Hypoxia and hypoxia mimetic agents as potential priming approaches to empower mesenchymal stem cells. Current Stem Cell Research & Therapy, 19, 33–54. https://doi.org/10.2174/1574888x18666230113143234

    Article  CAS  Google Scholar 

  16. Wang, P., Zhu, P., Yu, C., & Wu, J. (2022). The proliferation and stemness of peripheral blood-derived mesenchymal stromal cells were enhanced by hypoxia. Frontiers in Endocrinology, 13, 873662. https://doi.org/10.3389/fendo.2022.873662

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mas-Bargues, C., Sanz-Ros, J., Román-Domínguez, A., Inglés, M., Gimeno-Mallench, L., El Alami, M., Viña-Almunia, J., Gambini, J., Viña, J., & Borrás, C. (2019). Relevance of oxygen concentration in stem cell culture for regenerative medicine. International Journal of Molecular Sciences, 20. https://doi.org/10.3390/ijms20051195

  18. Kim, D. S., Ko, Y. J., Lee, M. W., Park, H. J., Park, Y. J., Kim, D. I., Sung, K. W., Koo, H. H., & Yoo, K. H. (2016). Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells. Cell Stress & Chaperones, 21, 1089–1099. https://doi.org/10.1007/s12192-016-0733-1

    Article  CAS  Google Scholar 

  19. Fehrer, C., Brunauer, R., Laschober, G., Unterluggauer, H., Reitinger, S., Kloss, F., Gülly, C., Gassner, R., & Lepperdinger, G. (2007). Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell, 6, 745–757. https://doi.org/10.1111/j.1474-9726.2007.00336.x

    Article  CAS  PubMed  Google Scholar 

  20. Lord-Dufour, S., Copland, I. B., Levros, L. C., Jr., Post, M., Das, A., Khosla, C., Galipeau, J., Rassart, E., & Annabi, B. (2009). Evidence for transcriptional regulation of the glucose-6-phosphate transporter by HIF-1alpha: Targeting G6PT with mumbaistatin analogs in hypoxic mesenchymal stromal cells. Stem Cells (Dayton, Ohio), 27, 489–497. https://doi.org/10.1634/stemcells.2008-0855

    Article  CAS  PubMed  Google Scholar 

  21. Massa, A., Perut, F., Chano, T., Woloszyk, A., Mitsiadis, T. A., Avnet, S., & Baldini, N. (2017). The effect of extracellular acidosis on the behaviour of mesenchymal stem cells in vitro. European Cells & Materials, 33, 252–267. https://doi.org/10.22203/eCM.v033a19

    Article  CAS  Google Scholar 

  22. Wang, Y., Zhu, G., Wang, J., & Chen, J. (2016). Irradiation alters the differentiation potential of bone marrow mesenchymal stem cells. Molecular Medicine Reports, 13, 213–223. https://doi.org/10.3892/mmr.2015.4539

    Article  CAS  PubMed  Google Scholar 

  23. Lee, J., Jung, E., Hyun, J. W., & Park, D. (2012). Ultraviolet A regulates the stemness of human adipose tissue-derived mesenchymal stem cells through downregulation of the HIF-1α via activation of PGE(2)-cAMP signaling. Journal of Cellular Biochemistry, 113, 3681–3691. https://doi.org/10.1002/jcb.24241

    Article  CAS  PubMed  Google Scholar 

  24. Hou, J., Han, Z. P., Jing, Y. Y., Yang, X., Zhang, S. S., Sun, K., Hao, C., Meng, Y., Yu, F. H., Liu, X. Q., et al. (2013). Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death & Disease, 4, e844. https://doi.org/10.1038/cddis.2013.338

    Article  CAS  Google Scholar 

  25. He, N., Xiao, C., Sun, Y., Wang, Y., Du, L., Feng, Y., Liu, Y., Wang, Q., Ji, K., Wang, J., et al. (2019). Radiation responses of human mesenchymal stem cells derived from different sources. Dose-Response: A Publication of International Hormesis Society, 17, 1559325819893210. https://doi.org/10.1177/1559325819893210

    Article  PubMed  Google Scholar 

  26. Fekete, N., Erle, A., Amann, E. M., Fürst, D., Rojewski, M. T., Langonné, A., Sensebé, L., Schrezenmeier, H., & Schmidtke-Schrezenmeier, G. (2015). Effect of high-dose irradiation on human bone-marrow-derived mesenchymal stromal cells. Tissue Engineering. Part C, Methods, 21, 112–122. https://doi.org/10.1089/ten.TEC.2013.0766

    Article  CAS  PubMed  Google Scholar 

  27. Hamm, L. L., Nakhoul, N., & Hering-Smith, K. S. (2015). Acid-base homeostasis. Clinical Journal of the American Society of Nephrology: CJASN, 10, 2232–2242. https://doi.org/10.2215/cjn.07400715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Charruyer, A., & Ghadially, R. (2018). Influence of pH on skin stem cells and their differentiation. Current Problems in Dermatology, 54, 71–78. https://doi.org/10.1159/000489520

    Article  PubMed  Google Scholar 

  29. Fayyazpour, P., Alizadeh, E., Hosseini, V., Kalantary-Charvadeh, A., Niafar, M., Sadra, V., Norouzi, Z., Saebnazar, A., Mehdizadeh, A., & Darabi, M. (2022). Fatty acids of type 2 diabetic serum decrease the stemness properties of human adipose-derived mesenchymal stem cells. Journal of Cellular Biochemistry, 123, 1157–1170. https://doi.org/10.1002/jcb.30270

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y., Li, Y., Nan, L. P., Wang, F., Zhou, S. F., Wang, J. C., Feng, X. M., & Zhang, L. (2020). The effect of high glucose on the biological characteristics of nucleus pulposus-derived mesenchymal stem cells. Cell Biochemistry and Function, 38, 130–140. https://doi.org/10.1002/cbf.3441

    Article  CAS  PubMed  Google Scholar 

  31. Dentelli, P., Barale, C., Togliatto, G., Trombetta, A., Olgasi, C., Gili, M., Riganti, C., Toppino, M., & Brizzi, M. F. (2013). A diabetic milieu promotes OCT4 and NANOG production in human visceral-derived adipose stem cells. Diabetologia, 56, 173–184. https://doi.org/10.1007/s00125-012-2734-7

    Article  CAS  PubMed  Google Scholar 

  32. Wu, S. H., Yu, J. H., Liao, Y. T., Liu, K. H., Chiang, E. R., Chang, M. C., & Wang, J. P. (2022). Comparison of the infant and adult adipose-derived mesenchymal stem cells in proliferation, senescence, anti-oxidative ability and differentiation potential. Tissue Engineering and Regenerative Medicine, 19, 589–601. https://doi.org/10.1007/s13770-022-00431-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weng, Z., Wang, Y., Ouchi, T., Liu, H., Qiao, X., Wu, C., Zhao, Z., Li, L., & Li, B. (2022). Mesenchymal stem/stromal cell senescence: Hallmarks, mechanisms, and combating strategies. Stem Cells Translational Medicine, 11, 356–371. https://doi.org/10.1093/stcltm/szac004

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fafián-Labora, J., Fernández-Pernas, P., Fuentes, I., De Toro, J., Oreiro, N., Sangiao-Alvarellos, S., Mateos, J., & Arufe, M. C. (2015). Influence of age on rat bone-marrow mesenchymal stem cells potential. Scientific Reports, 5, 16765. https://doi.org/10.1038/srep16765

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Alves-Paiva, R. M., do Nascimento, S., De Oliveira, D., Coa, L., Alvarez, K., Hamerschlak, N., Okamoto, O. K., Marti, L. C., Kondo, A. T., Kutner, J. M., et al. (2022). senescence state in mesenchymal stem cells at low passages: Implications in clinical use. Frontiers in Cell and Developmental Biology, 10, 858996. https://doi.org/10.3389/fcell.2022.858996

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lu, G. M., Rong, Y. X., Liang, Z. J., Hunag, D. L., Ma, Y. F., Luo, Z. Z., Wu, F. X., Liu, X. H., Liu, Y., Mo, S., et al. (2020). Landscape of transcription and expression regulated by DNA methylation related to age of donor and cell passage in adipose-derived mesenchymal stem cells. Aging, 12, 21186–21201. https://doi.org/10.18632/aging.103809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fu, W. L., Li, J., Chen, G., Li, Q., Tang, X., & Zhang, C. H. (2015). Mesenchymal stem cells derived from peripheral blood retain their pluripotency, but undergo senescence during long-term culture. Tissue Engineering. Part C, Methods, 21, 1088–1097. https://doi.org/10.1089/ten.TEC.2014.0595

    Article  CAS  PubMed  Google Scholar 

  38. Go, M. J., Takenaka, C., & Ohgushi, H. (2008). Forced expression of Sox2 or Nanog in human bone marrow derived mesenchymal stem cells maintains their expansion and differentiation capabilities. Experimental Cell Research, 314, 1147–1154. https://doi.org/10.1016/j.yexcr.2007.11.021

    Article  CAS  PubMed  Google Scholar 

  39. Liu, T. M., Wu, Y. N., Guo, X. M., Hui, J. H., Lee, E. H., & Lim, B. (2009). Effects of ectopic Nanog and Oct4 overexpression on mesenchymal stem cells. Stem Cells and Development, 18, 1013–1022. https://doi.org/10.1089/scd.2008.0335

    Article  CAS  PubMed  Google Scholar 

  40. Park, J., Jun, E. K., Son, D., Hong, W., Jang, J., Yun, W., Yoon, B. S., Song, G., Kim, I. Y., & You, S. (2019). Overexpression of Nanog in amniotic fluid-derived mesenchymal stem cells accelerates dermal papilla cell activity and promotes hair follicle regeneration. Experimental & Molecular Medicine, 51, 1–15. https://doi.org/10.1038/s12276-019-0266-7

    Article  CAS  Google Scholar 

  41. Yoon, D. S., Kim, Y. H., Jung, H. S., Paik, S., & Lee, J. W. (2011). Importance of Sox2 in maintenance of cell proliferation and multipotency of mesenchymal stem cells in low-density culture. Cell Proliferation, 44, 428–440. https://doi.org/10.1111/j.1365-2184.2011.00770.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo, X., Tang, Y., Zhang, P., Li, S., Chen, Y., Qian, B., Shen, H., & Zhao, N. (2019). Effect of ectopic high expression of transcription factor OCT4 on the “stemness” characteristics of human bone marrow-derived mesenchymal stromal cells. Stem Cell Research & Therapy, 10, 160. https://doi.org/10.1186/s13287-019-1263-4

    Article  CAS  Google Scholar 

  43. Pierantozzi, E., Gava, B., Manini, I., Roviello, F., Marotta, G., Chiavarelli, M., & Sorrentino, V. (2011). Pluripotency regulators in human mesenchymal stem cells: Expression of NANOG but not of OCT-4 and SOX-2. Stem Cells and Development, 20, 915–923. https://doi.org/10.1089/scd.2010.0353

    Article  CAS  PubMed  Google Scholar 

  44. Lengner, C. J., Camargo, F. D., Hochedlinger, K., Welstead, G. G., Zaidi, S., Gokhale, S., Scholer, H. R., Tomilin, A., & Jaenisch, R. (2007). Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell, 1, 403–415. https://doi.org/10.1016/j.stem.2007.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, G., Yang, L., Zhang, W., & Wei, X. (2015). All the tested human somatic cells express both Oct4A and its pseudogenes but express Oct4A at much lower levels compared with its pseudogenes and human embryonic stem cells. Stem Cells and Development, 24, 1546–1557. https://doi.org/10.1089/scd.2014.0552

    Article  CAS  PubMed  Google Scholar 

  46. Han, S. M., Han, S. H., Coh, Y. R., Jang, G., Chan Ra, J., Kang, S. K., Lee, H. W., & Youn, H. Y. (2014). Enhanced proliferation and differentiation of Oct4- and Sox2-overexpressing human adipose tissue mesenchymal stem cells. Experimental & Molecular Medicine, 46, e101. https://doi.org/10.1038/emm.2014.28

    Article  CAS  Google Scholar 

  47. Huang, C. E., Hu, F. W., Yu, C. H., Tsai, L. L., Lee, T. H., Chou, M. Y., & Yu, C. C. (2014). Concurrent expression of Oct4 and Nanog maintains mesenchymal stem-like property of human dental pulp cells. International Journal of Molecular Sciences, 15, 18623–18639. https://doi.org/10.3390/ijms151018623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kuan, I. I., Lee, C. C., Chen, C. H., Lu, J., Kuo, Y. S., & Wu, H. C. (2019). The extracellular domain of epithelial cell adhesion molecule (EpCAM) enhances multipotency of mesenchymal stem cells through EGFR-LIN28-LET7 signaling. The Journal of Biological Chemistry, 294, 7769–7786. https://doi.org/10.1074/jbc.RA119.007386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ai, H., Qin, H., Li, J., Niu, C., Song, Z., Bao, Y., Sun, L., Zheng, L., & Li, Y. (2020). Ethyl-p-methoxycinnamate enhances oct4 expression and reinforces pluripotency through the NF-κB signaling pathway. Biochemical Pharmacology, 177, 113984. https://doi.org/10.1016/j.bcp.2020.113984

    Article  CAS  PubMed  Google Scholar 

  50. Ei, Z. Z., Mutirangura, A., Arunmanee, W., & Chanvorachote, P. (2023). The role of box a of HMGB1 in enhancing stem cell properties of human mesenchymal cells: A novel approach for the pursuit of anti-aging therapy. In Vivo (Athens, Greece), 37, 2006–2017. https://doi.org/10.21873/invivo.13298

    Article  CAS  PubMed  Google Scholar 

  51. Lu, Y., Qu, H., Qi, D., Xu, W., Liu, S., Jin, X., Song, P., Guo, Y., Jia, Y., Wang, X., et al. (2019). OCT4 maintains self-renewal and reverses senescence in human hair follicle mesenchymal stem cells through the downregulation of p21 by DNA methyltransferases. Stem Cell Research & Therapy, 10, 28. https://doi.org/10.1186/s13287-018-1120-x

    Article  CAS  ADS  Google Scholar 

  52. Tsai, C. C., Su, P. F., Huang, Y. F., Yew, T. L., & Hung, S. C. (2012). Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Molecular Cell, 47, 169–182. https://doi.org/10.1016/j.molcel.2012.06.020

    Article  CAS  PubMed  Google Scholar 

  53. Yannarelli, G., Pacienza, N., Cuniberti, L., Medin, J., Davies, J., & Keating, A. (2013). Brief report: The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells (Dayton, Ohio), 31, 215–220. https://doi.org/10.1002/stem.1262

    Article  CAS  PubMed  Google Scholar 

  54. Surh, Y. J., Kundu, J. K., & Na, H. K. (2008). Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Medica, 74, 1526–1539. https://doi.org/10.1055/s-0028-1088302

    Article  CAS  PubMed  Google Scholar 

  55. Yuan, Z., Zhang, J., Huang, Y., Zhang, Y., Liu, W., Wang, G., Zhang, Q., Wang, G., Yang, Y., Li, H., et al. (2017). NRF2 overexpression in mesenchymal stem cells induces stem-cell marker expression and enhances osteoblastic differentiation. Biochemical and Biophysical Research Communications, 491, 228–235. https://doi.org/10.1016/j.bbrc.2017.07.083

    Article  CAS  PubMed  Google Scholar 

  56. Yoon, D. S., Choi, Y., & Lee, J. W. (2016). Cellular localization of NRF2 determines the self-renewal and osteogenic differentiation potential of human MSCs via the P53-SIRT1 axis. Cell Death & Disease, 7, e2093. https://doi.org/10.1038/cddis.2016.3

    Article  CAS  Google Scholar 

  57. Chueaphromsri, P., Kunhorm, P., Phonchai, R., Chaicharoenaudomrung, N., & Noisa, P. (2023). Cordycepin enhances SIRT1 expression and maintains stemness of human mesenchymal stem cells. In Vivo (Athens, Greece), 37, 596–610. https://doi.org/10.21873/invivo.13118

    Article  CAS  PubMed  Google Scholar 

  58. Yoon, D. S., Choi, Y., Jang, Y., Lee, M., Choi, W. J., Kim, S. H., & Lee, J. W. (2014). SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells (Dayton, Ohio), 32, 3219–3231. https://doi.org/10.1002/stem.1811

    Article  CAS  PubMed  Google Scholar 

  59. Latorre, E., Carelli, S., Caremoli, F., Giallongo, T., Colli, M., Canazza, A., Provenzani, A., Di Giulio, A. M., & Gorio, A. (2016). Human antigen R binding and regulation of SOX2 mRNA in human mesenchymal stem cells. Molecular Pharmacology, 89, 243–252. https://doi.org/10.1124/mol.115.100701

    Article  CAS  PubMed  Google Scholar 

  60. Seo, E., Basu-Roy, U., Gunaratne, P. H., Coarfa, C., Lim, D. S., Basilico, C., & Mansukhani, A. (2013). SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo-adipo lineage. Cell Reports, 3, 2075–2087. https://doi.org/10.1016/j.celrep.2013.05.029

    Article  CAS  PubMed  Google Scholar 

  61. Mansukhani, A., Ambrosetti, D., Holmes, G., Cornivelli, L., & Basilico, C. (2005). Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. The Journal of Cell Biology, 168, 1065–1076. https://doi.org/10.1083/jcb.200409182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Squillaro, T., Severino, V., Alessio, N., Farina, A., Di Bernardo, G., Cipollaro, M., Peluso, G., Chambery, A., & Galderisi, U. (2015). De-regulated expression of the BRG1 chromatin remodeling factor in bone marrow mesenchymal stromal cells induces senescence associated with the silencing of NANOG and changes in the levels of chromatin proteins. Cell Cycle (Georgetown, Tex.), 14, 1315–1326. https://doi.org/10.4161/15384101.2014.995053

    Article  CAS  PubMed  Google Scholar 

  63. Jiang, Y., Liu, F., Zou, F., Zhang, Y., Wang, B., Zhang, Y., Lian, A., Han, X., Liu, Z., Liu, X., et al. (2019). PBX homeobox 1 enhances hair follicle mesenchymal stem cell proliferation and reprogramming through activation of the AKT/GLYCOGEN synthase kinase signaling pathway and suppression of apoptosis. Stem Cell Research & Therapy, 10, 268. https://doi.org/10.1186/s13287-019-1382-y

    Article  CAS  Google Scholar 

  64. Gartel, A. L., & Tyner, A. L. (1999). Transcriptional regulation of the p21((WAF1/CIP1)) gene. Experimental Cell Research, 246, 280–289. https://doi.org/10.1006/excr.1998.4319

    Article  CAS  PubMed  Google Scholar 

  65. Pitrone, M., Pizzolanti, G., Coppola, A., Tomasello, L., Martorana, S., Pantuso, G., & Giordano, C. (2019). Knockdown of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in human adipose stem cells. International Journal of Molecular Sciences, 20. https://doi.org/10.3390/ijms20102580

  66. Kim, P. H., Na, S. S., Lee, B., Kim, J. H., & Cho, J. Y. (2015). Stanniocalcin 2 enhances mesenchymal stem cell survival by suppressing oxidative stress. BMB Reports, 48, 702–707. https://doi.org/10.5483/bmbrep.2015.48.12.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sánchez-Aragó, M., García-Bermúdez, J., Martínez-Reyes, I., Santacatterina, F., & Cuezva, J. M. (2013). Degradation of IF1 controls energy metabolism during osteogenic differentiation of stem cells. EMBO Reports, 14, 638–644. https://doi.org/10.1038/embor.2013.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, H. J., Choi, J. H., Jung, J., Kim, J. K., Lee, S. S., & Kim, G. J. (2014). Changes in PTTG1 by human TERT gene expression modulate the self-renewal of placenta-derived mesenchymal stem cells. Cell and Tissue Research, 357, 145–157. https://doi.org/10.1007/s00441-014-1874-0

    Article  CAS  PubMed  Google Scholar 

  69. Mahaira, L. G., Katsara, O., Pappou, E., Iliopoulou, E. G., Fortis, S., Antsaklis, A., Fotinopoulos, P., Baxevanis, C. N., Papamichail, M., & Perez, S. A. (2014). IGF2BP1 expression in human mesenchymal stem cells significantly affects their proliferation and is under the epigenetic control of TET1/2 demethylases. Stem Cells and Development, 23, 2501–2512. https://doi.org/10.1089/scd.2013.0604

    Article  CAS  PubMed  Google Scholar 

  70. Zhou, P., Wu, G., Zhang, P., Xu, R., Ge, J., Fu, Y., Zhang, Y., Du, Y., Ye, J., Cheng, J., et al. (2016). SATB2-Nanog axis links age-related intrinsic changes of mesenchymal stem cells from craniofacial bone. Aging, 8, 2006–2011. https://doi.org/10.18632/aging.101041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, G., Xu, R., Zhang, P., Xiao, T., Fu, Y., Zhang, Y., Du, Y., Ye, J., Cheng, J., & Jiang, H. (2018). Estrogen regulates stemness and senescence of bone marrow stromal cells to prevent osteoporosis via ERβ-SATB2 pathway. Journal of Cellular Physiology, 233, 4194–4204. https://doi.org/10.1002/jcp.26233

    Article  CAS  PubMed  Google Scholar 

  72. Park, S. R., Cho, A., Kim, J. W., Lee, H. Y., & Hong, I. S. (2019). A novel endogenous damage signal, CSF-2, activates multiple beneficial functions of adipose tissue-derived mesenchymal stem cells. Molecular Therapy: The Journal of the American Society of Gene Therapy, 27, 1087–1100. https://doi.org/10.1016/j.ymthe.2019.03.010

    Article  CAS  PubMed  Google Scholar 

  73. Romano, B., Elangovan, S., Erreni, M., Sala, E., Petti, L., Kunderfranco, P., Massimino, L., Restelli, S., Sinha, S., Lucchetti, D., et al. (2019). TNF-stimulated Gene-6 is a key regulator in switching stemness and biological properties of mesenchymal stem cells. Stem Cells (Dayton, Ohio), 37, 973–987. https://doi.org/10.1002/stem.3010

    Article  CAS  PubMed  Google Scholar 

  74. Choi, D. H., Oh, S. Y., Choi, J. K., Lee, K. E., Lee, J. Y., Park, Y. J., Jo, I., & Park, Y. S. (2020). A transcriptomic analysis of serial-cultured, tonsil-derived mesenchymal stem cells reveals decreased integrin α3 protein as a potential biomarker of senescent cells. Stem Cell Research & Therapy, 11, 359. https://doi.org/10.1186/s13287-020-01860-y

    Article  CAS  Google Scholar 

  75. Han, Y. H., Jin, M. H., Jin, Y. H., Yu, N. N., Liu, J., Zhang, Y. Q., Cui, Y. D., Wang, A. G., Lee, D. S., Kim, S. U., et al. (2020). Deletion of peroxiredoxin II inhibits the growth of mouse primary mesenchymal stem cells through induction of the G(0)/G(1) cell-cycle arrest and activation of AKT/GSK3β/β-catenin signaling. In Vivo (Athens, Greece), 34, 133–141. https://doi.org/10.21873/invivo.11754

    Article  CAS  PubMed  Google Scholar 

  76. Lin, M., Liu, X., Zheng, H., Huang, X., Wu, Y., Huang, A., Zhu, H., Hu, Y., Mai, W., & Huang, Y. (2020). IGF-1 enhances BMSC viability, migration, and anti-apoptosis in myocardial infarction via secreted frizzled-related protein 2 pathway. Stem Cell Research & Therapy, 11, 22. https://doi.org/10.1186/s13287-019-1544-y

    Article  CAS  Google Scholar 

  77. Mekhemar, M., Tölle, J., Dörfer, C., & Fawzy El-Sayed, K. (2020). TLR3 ligation affects differentiation and stemness properties of gingival mesenchymal stem/progenitor cells. Journal of Clinical Periodontology, 47, 991–1005. https://doi.org/10.1111/jcpe.13323

    Article  CAS  PubMed  Google Scholar 

  78. Fei, D., Wang, Y., Zhai, Q., Zhang, X., Zhang, Y., Wang, Y., Li, B., & Wang, Q. (2021). KAT6A regulates stemness of aging bone marrow-derived mesenchymal stem cells through Nrf2/ARE signaling pathway. Stem Cell Research & Therapy, 12, 104. https://doi.org/10.1186/s13287-021-02164-5

    Article  CAS  Google Scholar 

  79. Jauković, A., Kukolj, T., Trivanović, D., Okić-Đorđević, I., Obradović, H., Miletić, M., Petrović, V., Mojsilović, S., & Bugarski, D. (2021). Modulating stemness of mesenchymal stem cells from exfoliated deciduous and permanent teeth by IL-17 and bFGF. Journal of Cellular Physiology, 236, 7322–7341. https://doi.org/10.1002/jcp.30399

    Article  CAS  PubMed  Google Scholar 

  80. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136, 215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Trohatou, O., Zagoura, D., Bitsika, V., Pappa, K. I., Antsaklis, A., Anagnou, N. P., & Roubelakis, M. G. (2014). Sox2 suppression by miR-21 governs human mesenchymal stem cell properties. Stem Cells Translational Medicine, 3, 54–68. https://doi.org/10.5966/sctm.2013-0081

    Article  CAS  PubMed  Google Scholar 

  82. Li, J., Han, Q., Chen, H., Liu, T., Song, J., Hou, M., Wei, L., & Song, H. (2022). Carbon monoxide-releasing molecule-3 enhances osteogenic differentiation of rat bone marrow mesenchymal stem cells via miR-195-5p/Wnt3a pathway. Drug Design, Development and Therapy, 16, 2101–2117. https://doi.org/10.2147/dddt.S367277

    Article  PubMed  PubMed Central  Google Scholar 

  83. Iwata, T., Mizuno, N., Nagahara, T., Kaneda-Ikeda, E., Kajiya, M., Sasaki, S., Takeda, K., Kiyota, M., Yagi, R., Fujita, T., et al. (2022). Cytokines regulate stemness of mesenchymal stem cells via miR-628-5p during periodontal regeneration. Journal of Periodontology, 93, 269–286. https://doi.org/10.1002/jper.21-0064

    Article  CAS  PubMed  Google Scholar 

  84. Cen, Y., Qi, J., Chen, L., Xia, C., Zheng, M., Liu, Y., & Lou, G. (2023). Decreased miR-17-92 cluster correlates with senescence features, disrupted oxidative homeostasis, and impaired therapeutic efficacy of mesenchymal stem cells. American Journal of Physiology. Cell Physiology, 325, C443-c455. https://doi.org/10.1152/ajpcell.00515.2022

    Article  CAS  PubMed  Google Scholar 

  85. Sikora, M., Śmieszek, A., Pielok, A., & Marycz, K. (2023). MiR-21-5p regulates the dynamic of mitochondria network and rejuvenates the senile phenotype of bone marrow stromal cells (BMSCs) isolated from osteoporotic SAM/P6 mice. Stem Cell Research & Therapy, 14, 54. https://doi.org/10.1186/s13287-023-03271-1

    Article  CAS  Google Scholar 

  86. Lopez-Bertoni, H., Lal, B., Li, A., Caplan, M., Guerrero-Cázares, H., Eberhart, C. G., Quiñones-Hinojosa, A., Glas, M., Scheffler, B., Laterra, J., et al. (2015). DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene, 34, 3994–4004. https://doi.org/10.1038/onc.2014.334

    Article  CAS  PubMed  Google Scholar 

  87. Xu, R., Shen, X., Si, Y., Fu, Y., Zhu, W., Xiao, T., Fu, Z., Zhang, P., Cheng, J., & Jiang, H. (2018). MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. Aging Cell, 17, e12794. https://doi.org/10.1111/acel.12794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lasda, E., & Parker, R. (2014). Circular RNAs: Diversity of form and function. RNA (New York, N.Y.), 20, 1829–1842. https://doi.org/10.1261/rna.047126.114

    Article  CAS  PubMed  Google Scholar 

  89. Cherubini, A., Barilani, M., Rossi, R. L., Jalal, M. M. K., Rusconi, F., Buono, G., Ragni, E., Cantarella, G., Simpson, H., Péault, B., et al. (2019). FOXP1 circular RNA sustains mesenchymal stem cell identity via microRNA inhibition. Nucleic Acids Research, 47, 5325–5340. https://doi.org/10.1093/nar/gkz199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jia, W., Chen, W., & Kang, J. (2013). The functions of microRNAs and long non-coding RNAs in embryonic and induced pluripotent stem cells. Genomics, Proteomics & Bioinformatics, 11, 275–283. https://doi.org/10.1016/j.gpb.2013.09.004

    Article  CAS  Google Scholar 

  91. Zhang, H., Xu, R., Li, B., Xin, Z., Ling, Z., Zhu, W., Li, X., Zhang, P., Fu, Y., Chen, J., et al. (2022). LncRNA NEAT1 controls the lineage fates of BMSCs during skeletal aging by impairing mitochondrial function and pluripotency maintenance. Cell Death and Differentiation, 29, 351–365. https://doi.org/10.1038/s41418-021-00858-0

    Article  CAS  PubMed  Google Scholar 

  92. Jiang, L., Shao, C., Wu, Q. J., Chen, G., Zhou, J., Yang, B., Li, H., Gou, L. T., Zhang, Y., Wang, Y., et al. (2017). NEAT1 scaffolds RNA-binding proteins and the microprocessor to globally enhance pri-miRNA processing. Nature Structural & Molecular Biology, 24, 816–824. https://doi.org/10.1038/nsmb.3455

    Article  CAS  Google Scholar 

  93. Rodda, D. J., Chew, J. L., Lim, L. H., Loh, Y. H., Wang, B., Ng, H. H., & Robson, P. (2005). Transcriptional regulation of nanog by OCT4 and SOX2. The Journal of Biological Chemistry, 280, 24731–24737. https://doi.org/10.1074/jbc.M502573200

    Article  CAS  PubMed  Google Scholar 

  94. Henras, A. K., Dez, C., & Henry, Y. (2004). RNA structure and function in C/D and H/ACA s(no)RNPs. Current Opinion in Structural Biology, 14, 335–343. https://doi.org/10.1016/j.sbi.2004.05.006

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, Y., Xu, C., Gu, D., Wu, M., Yan, B., Xu, Z., Wang, Y., & Liu, H. (2017). H/ACA box small nucleolar RNA 7A promotes the self-renewal of human umbilical cord mesenchymal stem cells. Stem Cells (Dayton, Ohio), 35, 222–235. https://doi.org/10.1002/stem.2490

    Article  CAS  PubMed  Google Scholar 

  96. Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., von Kriegsheim, A., Hebestreit, H. F., Mukherji, M., Schofield, C. J., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science (New York, N.Y.), 292, 468–472. https://doi.org/10.1126/science.1059796

    Article  CAS  PubMed  ADS  Google Scholar 

  97. Park, I. H., Kim, K. H., Choi, H. K., Shim, J. S., Whang, S. Y., Hahn, S. J., Kwon, O. J., & Oh, I. H. (2013). Constitutive stabilization of hypoxia-inducible factor alpha selectively promotes the self-renewal of mesenchymal progenitors and maintains mesenchymal stromal cells in an undifferentiated state. Experimental & Molecular Medicine, 45, e44. https://doi.org/10.1038/emm.2013.87

    Article  CAS  Google Scholar 

  98. Irwin, R., LaPres, J. J., Kinser, S., & McCabe, L. R. (2007). Prolyl-hydroxylase inhibition and HIF activation in osteoblasts promotes an adipocytic phenotype. Journal of Cellular Biochemistry, 100, 762–772. https://doi.org/10.1002/jcb.21083

    Article  CAS  PubMed  Google Scholar 

  99. Moriyama, H., Moriyama, M., Ozawa, T., Tsuruta, D., Iguchi, T., Tamada, S., Nakatani, T., Nakagawa, K., & Hayakawa, T. (2018). Notch signaling enhances stemness by regulating metabolic pathways through modifying p53, NF-κB, and HIF-1α. Stem Cells and Development, 27, 935–947. https://doi.org/10.1089/scd.2017.0260

    Article  CAS  PubMed  Google Scholar 

  100. Gharibi, B., Ghuman, M., & Hughes, F. J. (2016). DDIT4 regulates mesenchymal stem cell fate by mediating between HIF1α and mTOR signalling. Scientific Reports, 6, 36889. https://doi.org/10.1038/srep36889

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  101. Zhu, C., Yu, J., Pan, Q., Yang, J., Hao, G., Wang, Y., Li, L., & Cao, H. (2016). Hypoxia-inducible factor-2 alpha promotes the proliferation of human placenta-derived mesenchymal stem cells through the MAPK/ERK signaling pathway. Scientific Reports, 6, 35489. https://doi.org/10.1038/srep35489

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  102. Mao, Q., Liang, X. L., Wu, Y. F., Pang, Y. H., Zhao, X. J., & Lu, Y. X. (2019). ILK promotes survival and self-renewal of hypoxic MSCs via the activation of lncTCF7-Wnt pathway induced by IL-6/STAT3 signaling. Gene Therapy, 26, 165–176. https://doi.org/10.1038/s41434-018-0055-2

    Article  CAS  PubMed  Google Scholar 

  103. Chatterjee, N., & Walker, G. C. (2017). Mechanisms of DNA damage, repair, and mutagenesis. Environmental and Molecular Mutagenesis, 58, 235–263. https://doi.org/10.1002/em.22087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Osakabe, A., Tachiwana, H., Kagawa, W., Horikoshi, N., Matsumoto, S., Hasegawa, M., Matsumoto, N., Toga, T., Yamamoto, J., Hanaoka, F., et al. (2015). Structural basis of pyrimidine-pyrimidone (6–4) photoproduct recognition by UV-DDB in the nucleosome. Scientific Reports, 5, 16330. https://doi.org/10.1038/srep16330

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  105. Alves, H., Munoz-Najar, U., De Wit, J., Renard, A. J., Hoeijmakers, J. H., Sedivy, J. M., Van Blitterswijk, C., & De Boer, J. (2010). A link between the accumulation of DNA damage and loss of multi-potency of human mesenchymal stromal cells. Journal of Cellular and Molecular Medicine, 14, 2729–2738. https://doi.org/10.1111/j.1582-4934.2009.00931.x

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, Y., Marsboom, G., Toth, P. T., & Rehman, J. (2013). Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells. PLoS ONE, 8, e77077. https://doi.org/10.1371/journal.pone.0077077

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  107. Feng, X., Zhang, W., Yin, W., & Kang, Y. J. (2019). The involvement of mitochondrial fission in maintenance of the stemness of bone marrow mesenchymal stem cells. Experimental Biology and Medicine (Maywood, N.J.), 244, 64–72. https://doi.org/10.1177/1535370218821063

    Article  CAS  PubMed  Google Scholar 

  108. Cao, Z., Xie, Y., Yu, L., Li, Y., & Wang, Y. (2020). Hepatocyte growth factor (HGF) and stem cell factor (SCF) maintained the stemness of human bone marrow mesenchymal stem cells (hBMSCs) during long-term expansion by preserving mitochondrial function via the PI3K/AKT, ERK1/2, and STAT3 signaling pathways. Stem Cell Research & Therapy, 11, 329. https://doi.org/10.1186/s13287-020-01830-4

    Article  CAS  Google Scholar 

  109. Zhang, F., Peng, W., Zhang, J., Dong, W., Wu, J., Wang, T., & Xie, Z. (2020). P53 and Parkin co-regulate mitophagy in bone marrow mesenchymal stem cells to promote the repair of early steroid-induced osteonecrosis of the femoral head. Cell Death & Disease, 11, 42. https://doi.org/10.1038/s41419-020-2238-1

    Article  CAS  Google Scholar 

  110. Sbrana, F. V., Cortini, M., Avnet, S., Perut, F., Columbaro, M., De Milito, A., & Baldini, N. (2016). The role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells. Stem Cell Reviews and Reports, 12, 621–633. https://doi.org/10.1007/s12015-016-9690-4

    Article  CAS  PubMed  Google Scholar 

  111. Shi, L., Li, B., Zhang, B., Zhen, C., Zhou, J., & Tang, S. (2019). Mouse embryonic palatal mesenchymal cells maintain stemness through the PTEN-Akt-mTOR autophagic pathway. Stem Cell Research & Therapy, 10, 217. https://doi.org/10.1186/s13287-019-1340-8

    Article  CAS  Google Scholar 

  112. Liao, N., Shi, Y., Zhang, C., Zheng, Y., Wang, Y., Zhao, B., Zeng, Y., Liu, X., & Liu, J. (2019). Antioxidants inhibit cell senescence and preserve stemness of adipose tissue-derived stem cells by reducing ROS generation during long-term in vitro expansion. Stem Cell Research & Therapy, 10, 306. https://doi.org/10.1186/s13287-019-1404-9

    Article  CAS  Google Scholar 

  113. Fujisawa, K., Hara, K., Takami, T., Okada, S., Matsumoto, T., Yamamoto, N., & Sakaida, I. (2018). Evaluation of the effects of ascorbic acid on metabolism of human mesenchymal stem cells. Stem Cell Research & Therapy, 9, 93. https://doi.org/10.1186/s13287-018-0825-1

    Article  CAS  Google Scholar 

  114. Zhou, B., Ge, T., Zhou, L., Jiang, L., Zhu, L., Yao, P., & Yu, Q. (2020). Dimethyloxalyl glycine regulates the HIF-1 signaling pathway in mesenchymal stem cells. Stem Cell Reviews and Reports, 16, 702–710. https://doi.org/10.1007/s12015-019-09947-7

    Article  CAS  PubMed  Google Scholar 

  115. Lee, S., Lim, J., Lee, J. H., Ju, H., Heo, J., Kim, Y., Kim, S., Yu, H. Y., Ryu, C. M., Lee, S. Y., et al. (2020). Ascorbic acid 2-glucoside stably promotes the primitiveness of embryonic and mesenchymal stem cells through ten-eleven translocation- and cAMP-responsive element-binding protein-1-dependent mechanisms. Antioxidants & Redox Signaling, 32, 35–59. https://doi.org/10.1089/ars.2019.7743

    Article  CAS  Google Scholar 

  116. Jung, K., Cho, J. Y., Soh, Y. J., Lee, J., Shin, S. W., Jang, S., Jung, E., Kim, M. H., & Lee, J. (2015). Antagonizing effects of aspartic acid against ultraviolet A-induced downregulation of the stemness of human adipose tissue-derived mesenchymal stem cells. PLoS ONE, 10, e0124417. https://doi.org/10.1371/journal.pone.0124417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee, S. Y., Park, S. H., Kim, M. O., Lim, I., Kang, M., Oh, S. W., Jung, K., Jo, D. G., Cho, I. H., & Lee, J. (2016). Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells. Food and Chemical Toxicology: An international Journal Published for the British Industrial Biological Research Association, 96, 62–69. https://doi.org/10.1016/j.fct.2016.07.023

    Article  CAS  PubMed  Google Scholar 

  118. Park, S. H., Cho, J. Y., Oh, S. W., Kang, M., Lee, S. E., Yoo, J. A., Jung, K., Lee, J., Lee, S. Y., & Lee, J. (2018). Arctigenin protects against ultraviolet-A-induced damage to stemness through inhibition of the NF- κB/MAPK pathway. Chemico-Biological Interactions, 282, 63–68. https://doi.org/10.1016/j.cbi.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  119. Jung, S. H., You, J. E., Choi, S. W., Kang, K. S., Cho, J. Y., Lyu, J., & Kim, P. H. (2021). Polycystin-1 enhances stemmness potential of umbilical cord blood-derived mesenchymal stem cells. International Journal of Molecular Sciences, 22. https://doi.org/10.3390/ijms22094868

  120. Deng, J., Ouyang, P., Li, W., Zhong, L., Gu, C., Shen, L., Cao, S., Yin, L., Ren, Z., Zuo, Z., et al. (2021). Curcumin alleviates the senescence of canine bone marrow mesenchymal stem cells during in vitro expansion by activating the autophagy pathway. International Journal of Molecular Sciences, 22. https://doi.org/10.3390/ijms222111356

  121. Li, J., Xin, Z., & Cai, M. (2019). The role of resveratrol in bone marrow-derived mesenchymal stem cells from patients with osteoporosis. Journal of Cellular Biochemistry, 120, 16634–16642. https://doi.org/10.1002/jcb.28922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Heo, J. S., Kim, H. O., Song, S. Y., Lew, D. H., Choi, Y., & Kim, S. (2016). Poly-L-lysine prevents senescence and augments growth in culturing mesenchymal stem cells ex vivo. BioMed Research International, 2016, 8196078. https://doi.org/10.1155/2016/8196078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Salkın, H., & Basaran, K. E. (2023). Effects of non-steroidal anti-inflammatory drug (ibuprofen) in low and high dose on stemness and biological characteristics of human dental pulp-derived mesenchymal stem cells. Connective Tissue Research, 64, 14–25. https://doi.org/10.1080/03008207.2022.2083613

    Article  CAS  PubMed  Google Scholar 

  124. Lin, J., Xu, R., Shen, X., Jiang, H., & Du, S. (2020). Metformin promotes the osseointegration of titanium implants under osteoporotic conditions by regulating BMSCs autophagy, and osteogenic differentiation. Biochemical and Biophysical Research Communications, 531, 228–235. https://doi.org/10.1016/j.bbrc.2020.06.146

    Article  CAS  PubMed  Google Scholar 

  125. Han, B., Li, J., Li, Z., Guo, L., Wang, S., Liu, P., & Wu, Y. (2013). Trichostatin A stabilizes the expression of pluripotent genes in human mesenchymal stem cells during ex vivo expansion. PLoS ONE, 8, e81781. https://doi.org/10.1371/journal.pone.0081781

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  126. Govarthanan, K., Vidyasekar, P., Gupta, P. K., Lenka, N., & Verma, R. S. (2020). Glycogen synthase kinase 3β inhibitor- CHIR 99021 augments the differentiation potential of mesenchymal stem cells. Cytotherapy, 22, 91–105. https://doi.org/10.1016/j.jcyt.2019.12.007

    Article  CAS  PubMed  Google Scholar 

  127. Khorraminejad-Shirazi, M., Sani, M., Talaei-Khozani, T., Dorvash, M., Mirzaei, M., Faghihi, M. A., Monabati, A., & Attar, A. (2020). AICAR and nicotinamide treatment synergistically augment the proliferation and attenuate senescence-associated changes in mesenchymal stromal cells. Stem Cell Research & Therapy, 11, 45. https://doi.org/10.1186/s13287-020-1565-6

    Article  CAS  Google Scholar 

  128. Lee, K. E., Choi, D. H., Joo, C., Kang, S. W., Huh, K. M., & Park, Y. S. (2021). Octanoyl glycol chitosan enhances the proliferation and differentiation of tonsil-derived mesenchymal stem cells. Carbohydrate Polymers, 264, 117992. https://doi.org/10.1016/j.carbpol.2021.117992

    Article  CAS  PubMed  Google Scholar 

  129. Posa, F., Di Benedetto, A., Cavalcanti-Adam, E. A., Colaianni, G., Porro, C., Trotta, T., Brunetti, G., Lo Muzio, L., Grano, M., & Mori, G. (2018). Vitamin D promotes MSC osteogenic differentiation stimulating cell adhesion and αVβ3 expression. Stem Cells International, 2018, 6958713. https://doi.org/10.1155/2018/6958713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jiang, X., Huang, B., Yang, H., Li, G., Zhang, C., Yang, G., Lin, F., & Lin, G. (2017). TGF-β1 is involved in vitamin D-induced chondrogenic differentiation of bone marrow-derived mesenchymal stem cells by regulating the ERK/JNK pathway. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 42, 2230–2241. https://doi.org/10.1159/000479997

    Article  CAS  PubMed  Google Scholar 

  131. Borojević, A., Jauković, A., Kukolj, T., Mojsilović, S., Obradović, H., Trivanović, D., Živanović, M., Zečević, Ž., Simić, M., Gobeljić, B., et al. (2022). Vitamin D3 stimulates proliferation capacity, expression of pluripotency markers, and osteogenesis of human bone marrow mesenchymal stromal/stem cells, partly through SIRT1 signaling. Biomolecules, 12. https://doi.org/10.3390/biom12020323

  132. Pan, Y., Qin, H., Zheng, L., Guo, Y., & Liu, W. (2022). Disturbance in transcriptomic profile, proliferation and multipotency in human mesenchymal stem cells caused by hexafluoropropylene oxides. Environmental Pollution (Barking, Essex: 1987), 292, 118483. https://doi.org/10.1016/j.envpol.2021.118483

    Article  CAS  PubMed  Google Scholar 

  133. Lu, X., Li, J., Zhou, B., Lu, X., Li, W., & Ouyang, J. (2023). Taohong Siwu Decoction enhances human bone marrow mesenchymal stem cells proliferation, migration and osteogenic differentiation via VEGF-FAK signaling in vitro. Journal of Ethnopharmacology, 307, 116203. https://doi.org/10.1016/j.jep.2023.116203

    Article  CAS  PubMed  Google Scholar 

  134. Liu, M., Xie, D., Zeng, H., Zhai, N., Liu, L., & Yan, H. (2023). Direct-current electric field stimulation promotes proliferation and maintains stemness of mesenchymal stem cells. BioTechniques, 74, 293–301. https://doi.org/10.2144/btn-2022-0112

    Article  CAS  PubMed  Google Scholar 

  135. Voldman, J. (2006). Electrical forces for microscale cell manipulation. Annual Review of Biomedical Engineering, 8, 425–454. https://doi.org/10.1146/annurev.bioeng.8.061505.095739

    Article  CAS  PubMed  Google Scholar 

  136. Li, K., Ning, T., Wang, H., Jiang, Y., Zhang, J., & Ge, Z. (2020). Nanosecond pulsed electric fields enhance mesenchymal stem cells differentiation via DNMT1-regulated OCT4/NANOG gene expression. Stem Cell Research & Therapy, 11. https://doi.org/10.1186/s13287-020-01821-5

  137. Chen, J., Huang, Y., Yang, J., Li, K., Jiang, Y., Heng, B. C., Cai, Q., Zhang, J., & Ge, Z. (2020). Multiple nanosecond pulsed electric fields stimulation with conductive poly(l-lactic acid)/carbon nanotubes films maintains the multipotency of mesenchymal stem cells during prolonged in vitro culture. Journal of Tissue Engineering and Regenerative Medicine, 14, 1136–1148. https://doi.org/10.1002/term.3088

    Article  CAS  PubMed  Google Scholar 

  138. Li, G., Zhu, Q., Wang, B., Luo, R., Xiao, X., Zhang, Y., Ma, L., Feng, X., Huang, J., Sun, X., et al. (2021). Rejuvenation of senescent bone marrow mesenchymal stromal cells by pulsed triboelectric stimulation. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 8, e2100964. https://doi.org/10.1002/advs.202100964

    Article  CAS  PubMed  Google Scholar 

  139. Xiong, Y., He, J., Zhang, W., Zhou, G., Cao, Y., & Liu, W. (2015). Retention of the stemness of mouse adipose-derived stem cells by their expansion on human bone marrow stromal cell-derived extracellular matrix. Tissue Engineering. Part A, 21, 1886–1894. https://doi.org/10.1089/ten.TEA.2014.0539

    Article  CAS  PubMed  Google Scholar 

  140. Naasani, L. I. S., Pretto, L., Zanatelli, C., Paim, T. C., Souza, A. F. D., Pase, P. F., Fernandes, M. D. C., Sévigny, J., & Wink, M. R. (2022). Bioscaffold developed with decellularized human amniotic membrane seeded with mesenchymal stromal cells: Assessment of efficacy and safety profiles in a second-degree burn preclinical model. Biofabrication, 15. https://doi.org/10.1088/1758-5090/ac9ff4

  141. Lee, M. K., Lin, S. P., HuangFu, W. C., Yang, D. S., & Liu, I. H. (2017). Endothelial-derived extracellular matrix ameliorate the stemness deprivation during ex vivo expansion of mouse bone marrow-derived mesenchymal stem cells. PLoS ONE, 12, e0184111. https://doi.org/10.1371/journal.pone.0184111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Li, M., Zhang, T., Jiang, J., Mao, Y., Zhang, A., & Zhao, J. (2019). ECM coating modification generated by optimized decellularization process improves functional behavior of BMSCs. Materials Science & Engineering. C, Materials for Biological Applications, 105, 110039. https://doi.org/10.1016/j.msec.2019.110039

    Article  CAS  Google Scholar 

  143. Zheng, Y., Hong, X., Wang, J., Feng, L., Fan, T., Guo, R., & Zhang, H. (2021). 2D nanomaterials for tissue engineering and regenerative nanomedicines: Recent advances and future challenges. Advanced Healthcare Materials, 10, e2001743. https://doi.org/10.1002/adhm.202001743

    Article  CAS  PubMed  Google Scholar 

  144. Singh, S. K., Singh, A., Kumar, V., Gupta, J., Umrao, S., Kumar, M., Sarma, D. K., Leja, M., Bhandari, M. P., & Verma, V. (2022). Nanosheets based approach to elevate the proliferative and differentiation efficacy of human Wharton's jelly mesenchymal stem cells. International Journal of Molecular Sciences, 23. https://doi.org/10.3390/ijms23105816

  145. Hafizi, M., Hajarizadeh, A., Atashi, A., Kalanaky, S., Fakharzadeh, S., Masoumi, Z., Nazaran, M. H., & Soleimani, M. (2015). Nanochelating based nanocomplex, GFc7, improves quality and quantity of human mesenchymal stem cells during in vitro expansion. Stem Cell Research & Therapy, 6, 226. https://doi.org/10.1186/s13287-015-0216-9

    Article  CAS  Google Scholar 

  146. Kriegel, C., Arecchi, A., Kit, K., McClements, D. J., & Weiss, J. (2008). Fabrication, functionalization, and application of electrospun biopolymer nanofibers. Critical Reviews in Food Science and Nutrition, 48, 775–797. https://doi.org/10.1080/10408390802241325

    Article  CAS  PubMed  Google Scholar 

  147. Pandolfi, L., Furman, N. T., Wang, X., Lupo, C., Martinez, J. O., Mohamed, M., Taraballi, F., & Tasciotti, E. (2017). A nanofibrous electrospun patch to maintain human mesenchymal cell stemness. Journal of Materials Science. Materials in Medicine, 28, 44. https://doi.org/10.1007/s10856-017-5856-0

    Article  CAS  PubMed  Google Scholar 

  148. Tang, H., Wang, X., Zheng, J., Long, Y. Z., Xu, T., Li, D., Guo, X., & Zhang, Y. (2023). Formation of low-density electrospun fibrous network integrated mesenchymal stem cell sheet. Journal of Materials Chemistry B, 11, 389–402. https://doi.org/10.1039/d2tb02029g

    Article  CAS  PubMed  Google Scholar 

  149. Sun, L., Zheng, C., & Webster, T. J. (2017). Self-assembled peptide nanomaterials for biomedical applications: Promises and pitfalls. International Journal of Nanomedicine, 12, 73–86. https://doi.org/10.2147/ijn.S117501

    Article  CAS  PubMed  Google Scholar 

  150. Talloj, S. K., Cheng, B., Weng, J. P., & Lin, H. C. (2018). Glucosamine-based supramolecular nanotubes for human mesenchymal cell therapy. ACS Applied Materials & Interfaces, 10, 15079–15087. https://doi.org/10.1021/acsami.8b03226

    Article  CAS  Google Scholar 

  151. Raik, S., Sharma, P., Kumar, S., Rattan, V., Das, A., Kumar, N., Srinivasan, R., & Bhattacharyya, S. (2023). Three-dimensional spheroid culture of dental pulp-derived stromal cells enhance their biological and regenerative properties for potential therapeutic applications. The International Journal of Biochemistry & Cell Biology, 160, 106422. https://doi.org/10.1016/j.biocel.2023.106422

    Article  CAS  Google Scholar 

  152. Jauković, A., Abadjieva, D., Trivanović, D., Stoyanova, E., Kostadinova, M., Pashova, S., Kestendjieva, S., Kukolj, T., Jeseta, M., Kistanova, E., et al. (2020). Specificity of 3D MSC spheroids microenvironment: Impact on MSC behavior and properties. Stem Cell Reviews and Reports, 16, 853–875. https://doi.org/10.1007/s12015-020-10006-9

    Article  CAS  PubMed  Google Scholar 

  153. Yin, Q., Xu, N., Xu, D., Dong, M., Shi, X., Wang, Y., Hao, Z., Zhu, S., Zhao, D., Jin, H., et al. (2020). Comparison of senescence-related changes between three- and two-dimensional cultured adipose-derived mesenchymal stem cells. Stem Cell Research & Therapy, 11, 226. https://doi.org/10.1186/s13287-020-01744-1

    Article  CAS  Google Scholar 

  154. Zhou, Y., Chen, H., Li, H., & Wu, Y. (2017). 3D culture increases pluripotent gene expression in mesenchymal stem cells through relaxation of cytoskeleton tension. Journal of Cellular and Molecular Medicine, 21, 1073–1084. https://doi.org/10.1111/jcmm.12946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Li, N., Dai, X., Yang, F., Sun, Y., Wu, X., Zhou, Q., Chen, K., Sun, J., Bi, W., Shi, L., et al. (2023). Spontaneous spheroids from alveolar bone-derived mesenchymal stromal cells maintain pluripotency of stem cells by regulating hypoxia-inducible factors. Biological Research, 56, 17. https://doi.org/10.1186/s40659-023-00421-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Thakur, G., Bok, E. Y., Kim, S. B., Jo, C. H., Oh, S. J., Baek, J. C., Park, J. E., Kang, Y. H., Lee, S. L., Kumar, R., et al. (2022). Scaffold-free 3D culturing enhance pluripotency, immunomodulatory factors, and differentiation potential of Wharton’s jelly-mesenchymal stem cells. European Journal of Cell Biology, 101, 151245. https://doi.org/10.1016/j.ejcb.2022.151245

    Article  CAS  PubMed  Google Scholar 

  157. Chan, Y. H., Lee, Y. C., Hung, C. Y., Yang, P. J., Lai, P. C., & Feng, S. W. (2021). Three-dimensional spheroid culture enhances multipotent differentiation and stemness capacities of human dental pulp-derived mesenchymal stem cells by modulating MAPK and NF-kB signaling pathways. Stem Cell Reviews and Reports, 17, 1810–1826. https://doi.org/10.1007/s12015-021-10172-4

    Article  CAS  PubMed  Google Scholar 

  158. Kaminska, A., Wedzinska, A., Kot, M., & Sarnowska, A. (2021). Effect of long-term 3D spheroid culture on WJ-MSC. Cells, 10. https://doi.org/10.3390/cells10040719

  159. Son, Y. B., Bharti, D., Kim, S. B., Jo, C. H., Bok, E. Y., Lee, S. L., Kang, Y. H., & Rho, G. J. (2021). Comparison of pluripotency, differentiation, and mitochondrial metabolism capacity in three-dimensional spheroid formation of dental pulp-derived mesenchymal stem cells. BioMed Research International, 2021, 5540877. https://doi.org/10.1155/2021/5540877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ge, Q., Wang, X., Luo, Y., Zheng, X., & Ma, L. (2021). E7-modified substrates to promote adhesion and maintain stemness of mesenchymal stem cells. Macromolecular Bioscience, 21, e2000384. https://doi.org/10.1002/mabi.202000384

    Article  CAS  PubMed  Google Scholar 

  161. Gerardo, H., Lima, A., Carvalho, J., Ramos, J. R. D., Couceiro, S., Travasso, R. D. M., Pires das Neves, R., & Grãos, M. (2019). Soft culture substrates favor stem-like cellular phenotype and facilitate reprogramming of human mesenchymal stem/stromal cells (hMSCs) through mechanotransduction. Scientific Reports, 9, 9086. https://doi.org/10.1038/s41598-019-45352-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  162. Wang, X., Zheng, X., Duan, Y., Ma, L., & Gao, C. (2019). Defined substrate by aptamer modification with the balanced properties of selective capture and stemness maintenance of mesenchymal stem cells. ACS Applied Materials & Interfaces, 11, 15170–15180. https://doi.org/10.1021/acsami.9b03333

    Article  CAS  Google Scholar 

  163. Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8, 543–557. https://doi.org/10.1038/nmat2442

    Article  CAS  PubMed  ADS  Google Scholar 

  164. Dong, L., Cheng, K., Zhou, Y., Yu, M., Gong, J., Lin, Y., Luo, Q., Wang, Q., Weng, W., & Wang, H. (2017). Surface atomic structure directs the fate of human mesenchymal stem cells. ACS Applied Materials & Interfaces, 9, 15274–15285. https://doi.org/10.1021/acsami.7b02411

    Article  CAS  Google Scholar 

  165. Balikov, D. A., Crowder, S. W., Lee, J. B., Lee, Y., Ko, U. H., Kang, M. L., Kim, W. S., Shin, J. H., & Sung, H. J. (2018). Aging donor-derived human mesenchymal stem cells exhibit reduced reactive oxygen species loads and increased differentiation potential following serial expansion on a PEG-PCL copolymer substrate. International Journal of Molecular Sciences, 19. https://doi.org/10.3390/ijms19020359

  166. Collart-Dutilleul, P. Y., Secret, E., Panayotov, I., Deville de Périère, D., Martín-Palma, R. J., Torres-Costa, V., Martin, M., Gergely, C., Durand, J. O., Cunin, F., et al. (2014). Adhesion and proliferation of human mesenchymal stem cells from dental pulp on porous silicon scaffolds. ACS Applied Materials & Interfaces, 6, 1719–1728. https://doi.org/10.1021/am4046316

    Article  CAS  Google Scholar 

  167. Tang, M., Chen, W., Liu, J., Weir, M. D., Cheng, L., & Xu, H. H. (2014). Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration. Tissue Engineering. Part A, 20, 1295–1305. https://doi.org/10.1089/ten.TEA.2013.0211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sladkova, M., Palmer, M., Öhman, C., Alhaddad, R. J., Esmael, A., Engqvist, H., & de Peppo, G. M. (2016). Fabrication of macroporous cement scaffolds using PEG particles: In vitro evaluation with induced pluripotent stem cell-derived mesenchymal progenitors. Materials Science & Engineering. C, Materials for Biological Applications, 69, 640–652. https://doi.org/10.1016/j.msec.2016.06.075

    Article  CAS  Google Scholar 

  169. Bhuptani, R. S., & Patravale, V. B. (2016). Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells. International Journal of Pharmaceutics, 515, 555–564. https://doi.org/10.1016/j.ijpharm.2016.10.040

    Article  CAS  PubMed  Google Scholar 

  170. Zhang, J., Liu, X., Li, H., Chen, C., Hu, B., Niu, X., Li, Q., Zhao, B., Xie, Z., & Wang, Y. (2016). Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Research & Therapy, 7, 136. https://doi.org/10.1186/s13287-016-0391-3

    Article  CAS  Google Scholar 

  171. Heo, S. J., Szczesny, S. E., Kim, D. H., Saleh, K. S., & Mauck, R. L. (2018). Expansion of mesenchymal stem cells on electrospun scaffolds maintains stemness, mechano-responsivity, and differentiation potential. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 36, 808–815. https://doi.org/10.1002/jor.23772

    Article  CAS  PubMed  Google Scholar 

  172. Mobasseri, R., Tian, L., Soleimani, M., Ramakrishna, S., & Naderi-Manesh, H. (2018). Peptide modified nanofibrous scaffold promotes human mesenchymal stem cell proliferation and long-term passaging. Materials Science & Engineering. C, Materials for Biological Applications, 84, 80–89. https://doi.org/10.1016/j.msec.2017.11.017

    Article  CAS  Google Scholar 

  173. Jamalpoor, Z., Soleimani, M., Taromi, N., & Asgari, A. (2019). Comparative evaluation of morphology and osteogenic behavior of human Wharton’s jelly mesenchymal stem cells on 2D culture plate and 3D biomimetic scaffold. Journal of Cellular Physiology, 234, 23123–23134. https://doi.org/10.1002/jcp.28876

    Article  CAS  PubMed  Google Scholar 

  174. Mousavifard, A., Najafabadi, E. P., Rahnama, M. A., Anbarlou, A., & Atashi, A. (2020). Elevated expression of stemness genes in adipose-derived mesenchymal stem cells cultured on fibrin scaffold. Journal of Biosciences, 45, 81. https://doi.org/10.1007/s12038-020-00050-5

  175. Sayin, E., Baran, E. T., Elsheikh, A., Mudera, V., Cheema, U., & Hasirci, V. (2021). Evaluating oxygen tensions related to bone marrow and matrix for MSC differentiation in 2D and 3D biomimetic lamellar scaffolds. International Journal of Molecular Sciences, 22. https://doi.org/10.3390/ijms22084010

  176. Antebi, B., Zhang, Z., Wang, Y., Lu, Z., Chen, X. D., & Ling, J. (2015). Stromal-cell-derived extracellular matrix promotes the proliferation and retains the osteogenic differentiation capacity of mesenchymal stem cells on three-dimensional scaffolds. Tissue Engineering Part C, Methods, 21, 171–181. https://doi.org/10.1089/ten.TEC.2014.0092

    Article  CAS  PubMed  Google Scholar 

  177. Li, Y., Xue, B., & Cao, Y. (2020). 100th anniversary of macromolecular science viewpoint: Synthetic protein hydrogels. ACS Macro Letters, 9, 512–524. https://doi.org/10.1021/acsmacrolett.0c00109

    Article  CAS  PubMed  Google Scholar 

  178. Hernández-González, A. C., Téllez-Jurado, L., & Rodríguez-Lorenzo, L. M. (2020). Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydrate Polymers, 229, 115514. https://doi.org/10.1016/j.carbpol.2019.115514

    Article  CAS  PubMed  Google Scholar 

  179. Schulz, A., Gepp, M. M., Stracke, F., von Briesen, H., Neubauer, J. C., & Zimmermann, H. (2019). Tyramine-conjugated alginate hydrogels as a platform for bioactive scaffolds. Journal of Biomedical Materials Research. Part A, 107, 114–121. https://doi.org/10.1002/jbm.a.36538

    Article  CAS  PubMed  Google Scholar 

  180. Wu, Y., Zheng, Y., Jin, Z., Li, S., Wu, W., An, C., Guo, J., Zhu, Z., Zhou, T., Zhou, Y., et al. (2022). Controllable manipulation of alginate-gelatin core-shell microcarriers for HUMSCs expansion. International Journal of Biological Macromolecules, 216, 1–13. https://doi.org/10.1016/j.ijbiomac.2022.06.173

    Article  CAS  PubMed  Google Scholar 

  181. Kim, M., Kim, Y. H., & Tae, G. (2013). Human mesenchymal stem cell culture on heparin-based hydrogels and the modulation of interactions by gel elasticity and heparin amount. Acta Biomaterialia, 9, 7833–7844. https://doi.org/10.1016/j.actbio.2013.04.041

    Article  CAS  PubMed  Google Scholar 

  182. Choi, D. H., Lee, K. E., Oh, S. Y., Lee, S. M., Jo, B. S., Lee, J. Y., Park, J. C., Park, Y. J., Park, K. D., Jo, I., et al. (2021). Tonsil-derived mesenchymal stem cells incorporated in reactive oxygen species-releasing hydrogel promote bone formation by increasing the translocation of cell surface GRP78. Biomaterials, 278, 121156. https://doi.org/10.1016/j.biomaterials.2021.121156

    Article  CAS  PubMed  Google Scholar 

  183. Kim, S. J., Park, J., Byun, H., Park, Y. W., Major, L. G., Lee, D. Y., Choi, Y. S., & Shin, H. (2019). Hydrogels with an embossed surface: An all-in-one platform for mass production and culture of human adipose-derived stem cell spheroids. Biomaterials, 188, 198–212. https://doi.org/10.1016/j.biomaterials.2018.10.025

    Article  CAS  PubMed  Google Scholar 

  184. Li, H., Zhu, H., Ge, T., Wang, Z., & Zhang, C. (2021). Mesenchymal stem cell-based therapy for diabetes mellitus: Enhancement strategies and future perspectives. Stem Cell Reviews and Reports, 17, 1552–1569. https://doi.org/10.1007/s12015-021-10139-5

    Article  CAS  PubMed  Google Scholar 

  185. Kahrizi, M. S., Mousavi, E., Khosravi, A., Rahnama, S., Salehi, A., Nasrabadi, N., Ebrahimzadeh, F., & Jamali, S. (2023). Recent advances in pre-conditioned mesenchymal stem/stromal cell (MSCs) therapy in organ failure; a comprehensive review of preclinical studies. Stem Cell Research & Therapy, 14, 155. https://doi.org/10.1186/s13287-023-03374-9

    Article  CAS  Google Scholar 

  186. Jeschke, M. G., Rehou, S., McCann, M. R., & Shahrokhi, S. (2019). Allogeneic mesenchymal stem cells for treatment of severe burn injury. Stem Cell Research & Therapy, 10, 337. https://doi.org/10.1186/s13287-019-1465-9

    Article  Google Scholar 

  187. Margiana, R., Markov, A., Zekiy, A. O., Hamza, M. U., Al-Dabbagh, K. A., Al-Zubaidi, S. H., Hameed, N. M., Ahmad, I., Sivaraman, R., Kzar, H. H., et al. (2022). Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Research & Therapy, 13, 366. https://doi.org/10.1186/s13287-022-03054-0

    Article  CAS  Google Scholar 

  188. Jayankura, M., Schulz, A. P., Delahaut, O., Witvrouw, R., Seefried, L., Berg, B. V., Heynen, G., & Sonnet, W. (2021). Percutaneous administration of allogeneic bone-forming cells for the treatment of delayed unions of fractures: A pilot study. Stem Cell Research & Therapy, 12, 363. https://doi.org/10.1186/s13287-021-02432-4

    Article  CAS  Google Scholar 

  189. Gao, L. R., Chen, Y., Zhang, N. K., Yang, X. L., Liu, H. L., Wang, Z. G., Yan, X. Y., Wang, Y., Zhu, Z. M., Li, T. C., et al. (2015). Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: Double-blind, randomized controlled trial. BMC Medicine, 13, 162. https://doi.org/10.1186/s12916-015-0399-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Shi, W., Xin, Q., Yuan, R., Yuan, Y., Cong, W., & Chen, K. (2021). Neovascularization: The main mechanism of MSCs in ischemic heart disease therapy. Frontiers in Cardiovascular Medicine, 8, 633300. https://doi.org/10.3389/fcvm.2021.633300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. El-Jawhari, J. J., El-Sherbiny, Y., McGonagle, D., & Jones, E. (2021). Multipotent mesenchymal stromal cells in rheumatoid arthritis and systemic lupus erythematosus; from a leading role in pathogenesis to potential therapeutic saviors? Frontiers in Immunology, 12, 643170. https://doi.org/10.3389/fimmu.2021.643170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Heris, R. M., Shirvaliloo, M., Abbaspour-Aghdam, S., Hazrati, A., Shariati, A., Youshanlouei, H. R., Niaragh, F. J., Valizadeh, H., & Ahmadi, M. (2022). The potential use of mesenchymal stem cells and their exosomes in Parkinson’s disease treatment. Stem Cell Research & Therapy, 13, 371. https://doi.org/10.1186/s13287-022-03050-4

    Article  Google Scholar 

  193. Pinjala, P., Tryphena, K. P., Prasad, R., Khatri, D. K., Sun, W., Singh, S. B., Gugulothu, D., Srivastava, S., & Vora, L. (2023). CRISPR/Cas9 assisted stem cell therapy in Parkinson’s disease. Biomaterials Research, 27, 46. https://doi.org/10.1186/s40824-023-00381-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Liu, J., Gao, J., Liang, Z., Gao, C., Niu, Q., Wu, F., & Zhang, L. (2022). Mesenchymal stem cells and their microenvironment. Stem Cell Research & Therapy, 13, 429. https://doi.org/10.1186/s13287-022-02985-y

    Article  CAS  Google Scholar 

  195. Sarsenova, M., Kim, Y., Raziyeva, K., Kazybay, B., Ogay, V., & Saparov, A. (2022). Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Frontiers in Immunology, 13, 1010399. https://doi.org/10.3389/fimmu.2022.1010399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Gomes, A., Coelho, P., Soares, R., & Costa, R. (2021). Human umbilical cord mesenchymal stem cells in type 2 diabetes mellitus: The emerging therapeutic approach. Cell and Tissue Research, 385, 497–518. https://doi.org/10.1007/s00441-021-03461-4

    Article  PubMed  Google Scholar 

  197. Li, M., Jiang, Y., Hou, Q., Zhao, Y., Zhong, L., & Fu, X. (2022). Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: Current status and future prospects. Stem Cell Research & Therapy, 13, 146. https://doi.org/10.1186/s13287-022-02822-2

    Article  Google Scholar 

  198. Liang, J., Wu, M., Chen, C., Mai, M., Huang, J., & Zhu, P. (2020). Roles of reactive oxygen species in cardiac differentiation, reprogramming, and regenerative therapies. Oxidative Medicine and Cellular Longevity, 2020, 2102841. https://doi.org/10.1155/2020/2102841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Yang, G., Fan, X., Liu, Y., Jie, P., Mazhar, M., Liu, Y., Dechsupa, N., & Wang, L. (2023). Immunomodulatory mechanisms and therapeutic potential of mesenchymal stem cells. Stem Cell Reviews and Reports, 19, 1214–1231. https://doi.org/10.1007/s12015-023-10539-9

    Article  PubMed  PubMed Central  Google Scholar 

  200. Tian, S., Zhou, X., Zhang, M., Cui, L., Li, B., Liu, Y., Su, R., Sun, K., Hu, Y., Yang, F., et al. (2022). Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages. Stem Cell Research & Therapy, 13, 330. https://doi.org/10.1186/s13287-022-03010-y

    Article  CAS  Google Scholar 

  201. Han, M., Yang, H., Lu, X., Li, Y., Liu, Z., Li, F., Shang, Z., Wang, X., Li, X., Li, J., et al. (2022). Three-dimensional-cultured MSC-derived exosome-hydrogel hybrid microneedle array patch for spinal cord repair. Nano Letters, 22, 6391–6401. https://doi.org/10.1021/acs.nanolett.2c02259

    Article  CAS  PubMed  ADS  Google Scholar 

  202. Liu, J., Ding, Y., Liu, Z., & Liang, X. (2020). Senescence in mesenchymal stem cells: Functional alterations, molecular mechanisms, and rejuvenation strategies. Frontiers in Cell and Developmental Biology, 8, 258. https://doi.org/10.3389/fcell.2020.00258

    Article  PubMed  PubMed Central  Google Scholar 

  203. Al-Azab, M., Safi, M., Idiiatullina, E., Al-Shaebi, F., & Zaky, M. Y. (2022). Aging of mesenchymal stem cell: Machinery, markers, and strategies of fighting. Cellular & Molecular Biology Letters, 27, 69. https://doi.org/10.1186/s11658-022-00366-0

    Article  Google Scholar 

  204. Zheng, Z., Wang, X., Ouyang, L., Chen, W., Zhang, L., & Cao, Y. (2023). Antioxidants improve the proliferation and efficacy of hUC-MSCs against H(2)O(2)-induced senescence. Antioxidants (Basel, Switzerland), 12. https://doi.org/10.3390/antiox12071334

  205. Cottle, C., Porter, A. P., Lipat, A., Turner-Lyles, C., Nguyen, J., Moll, G., & Chinnadurai, R. (2022). Impact of cryopreservation and freeze-thawing on therapeutic properties of mesenchymal stromal/stem cells and other common cellular therapeutics. Current Stem Cell Reports, 8, 72–92. https://doi.org/10.1007/s40778-022-00212-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Oja, S., Kaartinen, T., Ahti, M., Korhonen, M., Laitinen, A., & Nystedt, J. (2019). The utilization of freezing steps in Mesenchymal Stromal Cell (MSC) manufacturing: Potential impact on quality and cell functionality attributes. Frontiers in Immunology, 10, 1627. https://doi.org/10.3389/fimmu.2019.01627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article is published as open access thanks to the generous financial support of the Central Hospital of Dalian University of Technology Department.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, N.J., H.W., and J.J.; investigation, N.J. and H.W.; visualization, N.J., H.W., and Q.W.; writing—original draft preparation, N.J.; writing—review and editing, N.J. and J.J.; supervision, H.W.; funding acquisition, H.W.; J.J. and N.J. completed literature collection and manuscript writing. Other authors provided some guidance. Notably, J.J. contributed significantly to the improvement of the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jian Jiang or Hong Wang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Tian, X., Wang, Q. et al. Regulation Mechanisms and Maintenance Strategies of Stemness in Mesenchymal Stem Cells. Stem Cell Rev and Rep 20, 455–483 (2024). https://doi.org/10.1007/s12015-023-10658-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10658-3

Keywords

Navigation