Skip to main content

Advertisement

Log in

MSC-Derived Exosomes Ameliorate Intervertebral Disc Degeneration By Regulating the Keap1/Nrf2 Axis

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Bone marrow mesenchymal stem cell derived exosomes (BMSC-exos) are a crucial means of intercellular communication and can regulate a range of biological processes by reducing inflammation, decreasing apoptosis and promoting tissue repair. The process of intervertebral disc degeneration (IVDD) is accompanied by increased reactive oxygen species (ROS) because of a decrease in the expression of Nrf2, a critical transcription factor that resists excessive ROS. Our study demonstrated that BMSC-exos decreased ROS production by inhibiting Keap1 and promoting Nrf2 expression, attenuating the apoptosis, inflammation, and degeneration of nucelus pulposus (NP) cells. BMSC-exos promoted an increase in Nrf2 and nuclear translocation, while NF-κB expression was downregulated during this process. Additionally, the expression of antioxidative proteins was elevated after treatment with BMSC-exos. In vivo, we found more NP tissue retention in the BMSC-exos-treated group, along with more expression of Nrf2 and antioxidant-related proteins. Our findings demonstrated for the first time that BMSC-exos could restore the down-regulated antioxidant response system in degenerating NP cells by modulating the Keap1/Nrf2 axis. BMSC-exos could be used as an immediate ROS modulator in the treatment of intervertebral disc degeneration.

Graphical Abstract

When BMSC-exos were uptaken by NPCs, the expression of Keap1 decreased and this led to increased expression of Nrf2. Nuclear translocation of Nrf2 then promoted the synthesis of antioxidants against ROS and inhibited NF-kB signalling. Cellular inflammation, apoptosis, and ECM-related indicators were further reduced. Together, the process of IVDD was alleviated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data underlying this article will be shared on reasonable request to the corresponding author.

Code Availability

Not applicable.

Abbreviations

BMSC-exos :

Bone marrow mesenchymal stem cell derived exosomes

DAPI :

4′,6-diamidino-2-phenylindole

DHI :

Disc height index

DMEM :

Dulbecco’s modified Eagle’s medium

ECM :

Extracellular matrix

FBS :

Foetal bovine serum

HO-1 :

Heme-oxygenase-1

IVDD :

Intervertebral disc degeneration

Keap1 :

Kelch-like ECH-associated protein 1

NP :

Nucleus pulposus

NQO1 :

NADP(H) quinone oxidoreductase 1

Nrf2 :

Transcription factor nuclear factor erythroid-2 related factor 2

ROS :

Reactive oxygen species

SODs :

Superoxide dismutases

TEM :

Transmission electron microscopy

8-OHdG :

8-Hydroxy-1,2 deoxyguanosine

References

  1. Hoy, D. G., Smith, E., Cross, M., et al. (2014). The global burden of musculoskeletal conditions for 2010: An overview of methods. Annals of the Rheumatic Diseases, 73, 982–989.

    Article  PubMed  Google Scholar 

  2. Luoma, K., Riihimaki, H., Luukkonen, R., Raininko, R., Viikari-Juntura, E., & Lamminen, A. (2000). Low back pain in relation to lumbar disc degeneration. Spine (Phila Pa 1976), 25, 487–492.

    Article  CAS  PubMed  Google Scholar 

  3. Walker, M. H., & Anderson, D. G. (2004). Molecular basis of intervertebral disc degeneration. The Spine Journal: Official Journal of the North American Spine Society, 4, 158S-166S.

    Article  PubMed  Google Scholar 

  4. Dowdell, J., Erwin, M., Choma, T., Vaccaro, A., Iatridis, J., & Cho, S. K. (2017). Intervertebral disk degeneration and repair. Neurosurgery, 80, S46–S54.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Song, J., Chen, Z. H., Zheng, C. J., et al. (2020). Exosome-transported circRNA_0000253 competitively Adsorbs MicroRNA-141-5p and increases IDD. Molecular Therapy Nucleic Acids, 21, 1087–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song, J., Wang, H. L., Song, K. H., et al. (2018). CircularRNA_104670 plays a critical role in intervertebral disc degeneration by functioning as a ceRNA. Experimental & Molecular Medicine, 50, 1–12.

    Article  CAS  Google Scholar 

  7. Feng, C., Yang, M., Lan, M., et al. (2017). ROS: Crucial intermediators in the pathogenesis of intervertebral disc degeneration. Oxidative Medicine and Cellular Longevity, 2017, 5601593.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Suzuki, S., Fujita, N., Hosogane, N., et al. (2015). Excessive reactive oxygen species are therapeutic targets for intervertebral disc degeneration. Arthritis Research & Therapy, 17, 316.

    Article  Google Scholar 

  9. Poveda, L., Hottiger, M., Boos, N., & Wuertz, K. (2009). Peroxynitrite induces gene expression in intervertebral disc cells. Spine (Phila Pa 1976), 34, 1127–1133.

    Article  PubMed  Google Scholar 

  10. Bellezza, I., Giambanco, I., Minelli, A., & Donato, R. (2018). Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica et Biophysica Acta - Molecular Cell Research, 1865, 721–733.

    Article  CAS  PubMed  Google Scholar 

  11. Tonelli, C., Chio, I. I. C., & Tuveson, D. A. (2018). Transcriptional regulation by Nrf2. Antioxidants & Redox Signaling, 29, 1727–1745.

    Article  CAS  Google Scholar 

  12. Cullinan, S. B., Gordan, J. D., Jin, J., Harper, J. W., & Diehl, J. A. (2004). The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: Oxidative stress sensing by a Cul3-Keap1 ligase. Molecular and Cellular Biology, 24, 8477–8486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keleku-Lukwete, N., Suzuki, M., & Yamamoto, M. (2018). An overview of the Advantages of KEAP1-NRF2 system activation during Inflammatory Disease Treatment. Antioxidants & Redox Signaling, 29, 1746–1755.

    Article  CAS  Google Scholar 

  14. Ma, Q. (2013). Role of nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology, 53, 401–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zelko, I. N., Mariani, T. J., & Folz, R. J. (2002). Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine, 33, 337–349.

    Article  CAS  PubMed  Google Scholar 

  16. Lin, J., Chen, J., Zhang, Z., et al. (2019). Luteoloside inhibits IL-1beta-Induced apoptosis and catabolism in nucleus pulposus cells and ameliorates intervertebral disk degeneration. Frontiers in Pharmacology, 10, 868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luo, X., Huan, L., Lin, F., et al. (2021). Ulinastatin ameliorates IL-1beta-induced cell dysfunction in human nucleus pulposus cells via Nrf2/NF-kappaB pathway. Oxidative Medicine and Cellular Longevity, 2021, 5558687.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang, K., Hu, S., Wang, B., Wang, J., Wang, X., & Xu, C. (2019). Genistein protects intervertebral discs from degeneration via Nrf2-mediated antioxidant defense system: An in vitro and in vivo study. Journal of Cellular Physiology. https://doi.org/10.1002/jcp.28301

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lu, M. C., Zhao, J., Liu, Y. T., et al. (2019). CPUY192018, a potent inhibitor of the Keap1-Nrf2 protein-protein interaction, alleviates renal inflammation in mice by restricting oxidative stress and NF-kappaB activation. Redox Biology, 26, 101266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu, J., Li, H. B., Chen, L., et al. (2019). BML-111 accelerates the resolution of inflammation by modulating the Nrf2/HO-1 and NF-kappaB pathways in rats with ventilator-induced lung injury. International Immunopharmacology, 69, 289–298.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, T., Jian, Z., Baskys, A., et al. (2020). MSC-derived exosomes protect against oxidative stress-induced skin injury via adaptive regulation of the NRF2 defense system. Biomaterials, 257, 120264.

    Article  CAS  PubMed  Google Scholar 

  22. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659.

    Article  CAS  PubMed  Google Scholar 

  23. Wortzel, I., Dror, S., Kenific, C. M., & Lyden, D. (2019). Exosome-mediated metastasis: Communication from a distance. Developmental Cell, 49, 347–360.

    Article  CAS  PubMed  Google Scholar 

  24. Xian, P., Hei, Y., Wang, R., et al. (2019). Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice. Theranostics, 9, 5956–5975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shen, K., Jia, Y., Wang, X., et al. (2021). Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages. Free Radical Biology and Medicine, 165, 54–66.

    Article  CAS  PubMed  Google Scholar 

  26. Xia, C., Zeng, Z., Fang, B., et al. (2019). Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects. Free Radical Biology and Medicine, 143, 1–15.

    Article  CAS  PubMed  Google Scholar 

  27. Issy, A. C., Castania, V., Castania, M., et al. (2013). Experimental model of intervertebral disc degeneration by needle puncture in Wistar rats. Brazilian Journal of Medical and Biological Research, 46, 235–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frapin, L., Clouet, J., Delplace, V., Fusellier, M., Guicheux, J., & Le Visage, C. (2019). Lessons learned from intervertebral disc pathophysiology to guide rational design of sequential delivery systems for therapeutic biological factors. Advanced Drug Delivery Reviews, 149–150, 49–71.

    Article  PubMed  Google Scholar 

  29. Sun, J. C., Zheng, B., Sun, R. X., et al. (2019). MiR-499a-5p suppresses apoptosis of human nucleus pulposus cells and degradation of their extracellular matrix by targeting SOX4. Biomedicine & Pharmacotherapy, 113, 108652.

    Article  CAS  Google Scholar 

  30. Li, Z., Li, X., Chen, C., Chan, M. T. V., Wu, W. K. K., & Shen, J. (2017). Melatonin inhibits nucleus pulposus (NP) cell proliferation and extracellular matrix (ECM) remodeling via the melatonin membrane receptors mediated PI3K-Akt pathway. Journal of Pineal Research. https://doi.org/10.1111/jpi.12435

  31. Dimozi, A., Mavrogonatou, E., Sklirou, A., & Kletsas, D. (2015). Oxidative stress inhibits the proliferation, induces premature senescence and promotes a catabolic phenotype in human nucleus pulposus intervertebral disc cells. European Cells & Materials, 30, 89–102. discussion 103.

    Article  CAS  Google Scholar 

  32. D’Autreaux, B., & Toledano, M. B. (2007). ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology, 8, 813–824.

    Article  PubMed  Google Scholar 

  33. Madreiter-Sokolowski, C. T., Thomas, C., & Ristow, M. (2020). Interrelation between ROS and ca(2+) in aging and age-related diseases. Redox Biology, 36, 101678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamamoto, M., Kensler, T. W., & Motohashi, H. (2018). The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiological Reviews, 98, 1169–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Labrousse-Arias, D., Martinez-Ruiz, A., & Calzada, M. J. (2017). Hypoxia and redox signaling on extracellular matrix remodeling: From mechanisms to pathological implications. Antioxidants & Redox Signaling, 27, 802–822.

    Article  CAS  Google Scholar 

  36. Tang, P., Gu, J. M., Xie, Z. A., et al. (2018). Honokiol alleviates the degeneration of intervertebral disc via suppressing the activation of TXNIP-NLRP3 inflammasome signal pathway. Free Radical Biology and Medicine, 120, 368–379.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng, X., Zhang, G., Zhang, L., et al. (2018). Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. Journal of Cellular and Molecular Medicine, 22, 261–276.

    Article  CAS  PubMed  Google Scholar 

  38. Liao, Z., Luo, R., Li, G., et al. (2019). Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo. Theranostics, 9, 4084–4100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo, L., Jian, X., Sun, H., et al. (2021). Cartilage endplate stem cells inhibit intervertebral disc degeneration by releasing exosomes to nucleus pulposus cells to activate Akt/autophagy. Stem Cells, 39, 467–481.

    Article  CAS  PubMed  Google Scholar 

  40. Lu, S. C. (2009). Regulation of glutathione synthesis. Molecular Aspects of Medicine, 30, 42–59.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, H., Davies, K. J. A., & Forman, H. J. (2015). Oxidative stress response and Nrf2 signaling in aging. Free Radical Biology and Medicine, 88, 314–336.

    Article  CAS  PubMed  Google Scholar 

  42. Sakai, D., & Grad, S. (2015). Advancing the cellular and molecular therapy for intervertebral disc disease. Advanced Drug Delivery Reviews, 84, 159–171.

    Article  CAS  PubMed  Google Scholar 

  43. Ortega, N., Behonick, D., Stickens, D., & Werb, Z. (2003). How proteases regulate bone morphogenesis. Annals of the New York Academy of Sciences, 995, 109–116.

    Article  CAS  PubMed  Google Scholar 

  44. Deng, H., Huang, X., & Yuan, L. (2016). Molecular genetics of the COL2A1-related disorders. Mutation Research - Reviews in Mutation Research, 768, 1–13.

    Article  CAS  PubMed  Google Scholar 

  45. Colombier, P., Clouet, J., Hamel, O., Lescaudron, L., & Guicheux, J. (2014). The lumbar intervertebral disc: From embryonic development to degeneration. Joint, Bone, Spine: Revue Du Rhumatisme, 81, 125–129.

    Article  Google Scholar 

  46. Bellezza, I., Tucci, A., Galli, F., et al. (2012). Inhibition of NF-kappaB nuclear translocation via HO-1 activation underlies alpha-tocopheryl succinate toxicity. Journal of Nutritional Biochemistry, 23, 1583–1591.

    Article  CAS  PubMed  Google Scholar 

  47. Bao, L., Li, J., Zha, D., et al. (2018). Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-kB pathways. International Immunopharmacology, 54, 245–253.

    Article  CAS  PubMed  Google Scholar 

  48. Wardyn, J. D., Ponsford, A. H., & Sanderson, C. M. (2015). Dissecting molecular cross-talk between Nrf2 and NF-kappaB response pathways. Biochemical Society Transactions, 43, 621–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ahmed, S. M., Luo, L., Namani, A., Wang, X. J., & Tang, X. (2017). Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1863, 585–597.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, X. J., Yu, H. W., Yang, Y. Z., et al. (2018). Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biology, 18, 124–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Singh, A., Venkannagari, S., Oh, K. H., et al. (2016). Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-Deficient NSCLC tumors. ACS Chemical Biology, 11, 3214–3225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, H., La Marca, F., Hollister, S. J., Goldstein, S. A., & Lin, C. Y. (2009). Developing consistently reproducible intervertebral disc degeneration at rat caudal spine by using needle puncture. Journal of Neurosurgery. Spine, 10, 522–530.

    Article  PubMed  Google Scholar 

  53. Mager, S. E. L. A., Breakefield, I., & Wood, X. O. (2013). Extracellular vesicles: Biology and emerging therapeutic opportunities. Nature Reviews. Drug Discovery, 12, 347–357.

    Article  PubMed  Google Scholar 

  54. Chen, B., Sun, Y., Zhang, J., et al. (2019). Human embryonic stem cell-derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells. Stem Cell Research & Therapy, 10, 142.

    Article  Google Scholar 

  55. Xie, L., Chen, Z., Liu, M., et al. (2020). MSC-derived exosomes protect vertebral endplate chondrocytes against apoptosis and calcification via the miR-31-5p/ATF6 Axis. Molecular Therapy Nucleic Acids, 22, 601–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shi, Q. Z., Yu, H. M., Chen, H. M., Liu, M., & Cheng, X. (2021). Exosomes derived from mesenchymal stem cells regulate Treg/Th17 balance in aplastic anemia by transferring miR-23a-3p. Clinical and Experimental Medicine. https://doi.org/10.1007/s10238-021-00701-3

    Article  PubMed  Google Scholar 

  57. Zimta, A. A., Cenariu, D., & Irimie, A. (2019). The role of Nrf2 activity in cancer development and progression. Cancers (Basel). https://doi.org/10.3390/cancers11111755

Download references

Acknowledgements

We thanked Professor Mingxia Fan, the director of Key Laboratory of Magnetic Resonance, East China Normal University, for her help in the MRI of rat tails.

Funding

This work was supported by Shanghai Sailing Program, Shanghai, China (20YF1429900); National Natural Science Foundation of China, China (81972093, 81972109, 82102620, 82172490 and 82272549).

Author information

Authors and Affiliations

Authors

Contributions

JS, JYJ, HLW, FZ designed the experiments. GYX, XL, SYL, YXZ, SX and FZ performed the experiments and acquired the data. GYX, XL, XLX and XSM analysed the data. GYX, SYL and FZL supervised the project and wrote the manuscript.

Corresponding authors

Correspondence to Jian Song or Jianyuan Jiang.

Ethics declarations

Ethics Approval

The study was approved by the Ethics Committee of Huashan Hospital, Fudan University (2022-042) and the procedures followed were in accordance with the Helsinki Declaration.

Consent to Participate

The nucleus pulposus tissue were collected after obtaining informed consent from the donors.

Consent for Publication

All authors consented to publish this paper.

Conflict of Interest

The authors declare that they have no conflict of interest in the authorship.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 13.4 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Lu, X., Liu, S. et al. MSC-Derived Exosomes Ameliorate Intervertebral Disc Degeneration By Regulating the Keap1/Nrf2 Axis. Stem Cell Rev and Rep 19, 2465–2480 (2023). https://doi.org/10.1007/s12015-023-10570-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10570-w

Keywords

Navigation