Skip to main content

Advertisement

Log in

Improving Autologous Fat Grafting in Regenerative Surgery through Stem Cell-Assisted Lipotransfer

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Autologous fat transplantation -i.e., lipofilling- has become a promising and popular technique in aesthetic and reconstructive surgery with several application such as breast reconstruction, facial and hand rejuvenation. However, the use of this technology is still limited due to an unpredictable and low graft survival rate (which ranges from 25%-80%). A systematic literature review was performed by thoroughly searching 12 terms using the PubMed database. The objective of this study is to present the current evidence for the efficacy of adjuvant regenerative strategies and cellular factors, which have been tested to improve fat graft retention. We present the main results (fat retention rate, histological analysis for pre-clinical studies and satisfaction/ complication for clinical studies) obtained from the studies of the three main fat grafting enrichment techniques: platelet-rich plasma (PRP), the stromal vascular fraction (SVF) and adipose-derived stem cells (ADSCs) and discuss the promising role of recent angiogenic cell enrichment that could induce early vascularization of fat graft. All in all, adding stem or progenitor cells to autologous fat transplantation might become a new concept in lipofilling. New preclinical models should be used to find mechanisms able to increase fat retention, assure safety and transfer these technologies to a good manufacturing practice (GMP) compliant facility, to manufacture an advanced therapy medicinal product (ATMP).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

NA.

References

  1. Billings, E., & May, J. W. (1989). Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. Plastic and Reconstructive Surgery, 83(2), 368–381. https://doi.org/10.1097/00006534-198902000-00033

    Article  PubMed  Google Scholar 

  2. Gutowski, K. A., ASPS Fat Graft Task Force. (2009). Current applications and safety of autologous fat grafts: A report of the ASPS fat graft task force. Plastic and Reconstructive Surgery, 124(1), 272–280. https://doi.org/10.1097/PRS.0b013e3181a09506

    Article  CAS  PubMed  Google Scholar 

  3. Rigotti, G., Charles-de-Sá, L., Gontijo-de-Amorim, N. F., Takiya, C. M., Amable, P. R., Borojevic, R., … Sbarbati, A. (2016). Expanded stem cells, stromal-vascular fraction, and platelet-rich plasma enriched fat: Comparing results of different facial rejuvenation approaches in a clinical trial. Aesthetic Surgery Journal, 36(3), 261–270. https://doi.org/10.1093/asj/sjv231

  4. Willemsen, J. C. N., van der Lei, B., Vermeulen, K. M., & Stevens, H. P. J. D. (2014). The effects of platelet-rich plasma on recovery time and aesthetic outcome in facial rejuvenation: Preliminary retrospective observations. Aesthetic Plastic Surgery, 38(5), 1057–1063. https://doi.org/10.1007/s00266-014-0361-z

    Article  PubMed  Google Scholar 

  5. Cohen Tervaert, J. W., Mohazab, N., Redmond, D., van Eeden, C., & Osman, M. (2022). Breast implant illness: Scientific evidence of its existence. Expert Review of Clinical Immunology, 18(1), 15–29. https://doi.org/10.1080/1744666X.2022.2010546

    Article  CAS  PubMed  Google Scholar 

  6. Lancerotto, L., Chin, M. S., Freniere, B., Lujan-Hernandez, J. R., Li, Q., Vasquez, A. V., … Orgill, D. P. (2013). Mechanisms of action of external volume expansion devices. Plastic and Reconstructive Surgery, 132(3), 569–578. https://doi.org/10.1097/PRS.0b013e31829ace30

  7. Khouri, R. K., Rigotti, G., Cardoso, E., Khouri, R. K., & Biggs, T. M. (2014). Megavolume autologous fat transfer: part I. Theory and principles. Plastic and Reconstructive Surgery, 133(3), 550–557. https://doi.org/10.1097/01.prs.0000438044.06387.2a

    Article  CAS  PubMed  Google Scholar 

  8. Del Vecchio, D. A., & Del Vecchio, S. J. (2014). The graft-to-capacity ratio: Volumetric planning in large-volume fat transplantation. Plastic and Reconstructive Surgery, 133(3), 561–569. https://doi.org/10.1097/01.prs.0000438471.23249.6e

    Article  CAS  PubMed  Google Scholar 

  9. Kølle, S.-F. T., Fischer-Nielsen, A., Mathiasen, A. B., Elberg, J. J., Oliveri, R. S., Glovinski, P. V., … Drzewiecki, K. T. (2013). Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet (London, England), 382(9898), 1113–1120. https://doi.org/10.1016/S0140-6736(13)61410-5

  10. Wang, L., Luo, X., Lu, Y., Fan, Z.-H., & Hu, X. (2015). Is the resorption of grafted fat reduced in cell-assisted Lipotransfer for breast augmentation? Annals of Plastic Surgery, 75(2), 128–134. https://doi.org/10.1097/SAP.0000000000000068

    Article  CAS  PubMed  Google Scholar 

  11. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., … Hedrick, M. H. (2001). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering, 7(2), 211–228. https://doi.org/10.1089/107632701300062859

  12. Delay, E., Garson, S., Tousson, G., & Sinna, R. (2009). Fat injection to the breast: Technique, results, and indications based on 880 procedures over 10 years. Aesthetic Surgery Journal, 29(5), 360–376. https://doi.org/10.1016/j.asj.2009.08.010

    Article  PubMed  Google Scholar 

  13. Lee, J. H., Kirkham, J. C., McCormack, M. C., Nicholls, A. M., Randolph, M. A., & Austen, W. G. (2013). The effect of pressure and shear on autologous fat grafting. Plastic and Reconstructive Surgery, 131(5), 1125–1136. https://doi.org/10.1097/PRS.0b013e3182879f4a

    Article  CAS  PubMed  Google Scholar 

  14. Cheriyan, T., Kao, H. K., Qiao, X., & Guo, L. (2014). Low harvest pressure enhances autologous fat graft viability. Plastic and Reconstructive Surgery, 133(6), 1365–1368. https://doi.org/10.1097/PRS.0000000000000185

    Article  CAS  PubMed  Google Scholar 

  15. Kasem, A., Wazir, U., Headon, H., & Mokbel, K. (2015). Breast lipofilling: A review of current practice. Archives of Plastic Surgery, 42(2), 126–130. https://doi.org/10.5999/aps.2015.42.2.126

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pu, L. L. Q. (2016). Mechanisms of fat graft survival. Annals of Plastic Surgery, 77(Suppl 1), S84-86. https://doi.org/10.1097/SAP.0000000000000730

    Article  CAS  PubMed  Google Scholar 

  17. Pu, L. L. Q., Yoshimura, K., & Coleman, S. R. (2015). Fat grafting: Current concept, clinical application, and regenerative potential, part 1. Clinics in Plastic Surgery, 42(2), ix–x. https://doi.org/10.1016/j.cps.2015.02.001

    Article  PubMed  Google Scholar 

  18. Pu, L. L. Q., Yoshimura, K., & Coleman, S. R. (2015). Fat grafting: Current concept, clinical application, and regenerative potential, Part 2. Preface. Clinics in Plastic Surgery, 42(3), xiii–xiv. https://doi.org/10.1016/j.cps.2015.05.001

    Article  PubMed  Google Scholar 

  19. Eto, H., Kato, H., Suga, H., Aoi, N., Doi, K., Kuno, S., & Yoshimura, K. (2012). The fate of adipocytes after nonvascularized fat grafting: Evidence of early death and replacement of adipocytes. Plastic and Reconstructive Surgery, 129(5), 1081–1092. https://doi.org/10.1097/PRS.0b013e31824a2b19

    Article  CAS  PubMed  Google Scholar 

  20. Marx, R. E. (2004). Platelet-rich plasma: Evidence to support its use. Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons, 62(4), 489–496. https://doi.org/10.1016/j.joms.2003.12.003

    Article  PubMed  Google Scholar 

  21. Eppley, B. L., Pietrzak, W. S., & Blanton, M. (2006). Platelet-rich plasma: A review of biology and applications in plastic surgery. Plastic and Reconstructive Surgery, 118(6), 147e–159e. https://doi.org/10.1097/01.prs.0000239606.92676.cf

    Article  CAS  PubMed  Google Scholar 

  22. Foster, T. E., Puskas, B. L., Mandelbaum, B. R., Gerhardt, M. B., & Rodeo, S. A. (2009). Platelet-rich plasma: From basic science to clinical applications. The American Journal of Sports Medicine, 37(11), 2259–2272. https://doi.org/10.1177/0363546509349921

    Article  PubMed  Google Scholar 

  23. Jun-Jiang, C., & Huan-Jiu, X. (2016). Vascular endothelial growth factor 165-transfected adipose-derived mesenchymal stem cells promote vascularization-assisted fat transplantation. Artificial Cells, Nanomedicine, and Biotechnology, 44(4), 1141–1149. https://doi.org/10.3109/21691401.2015.1011808

    Article  CAS  PubMed  Google Scholar 

  24. Jin, R., Zhang, L., & Zhang, Y.-G. (2013). Does platelet-rich plasma enhance the survival of grafted fat? An update review. International Journal of Clinical and Experimental Medicine, 6(4), 252–258.

    PubMed  PubMed Central  Google Scholar 

  25. Pietrzak, W. S., & Eppley, B. L. (2005). Platelet rich plasma: Biology and new technology. The Journal of Craniofacial Surgery, 16(6), 1043–1054. https://doi.org/10.1097/01.scs.0000186454.07097.bf

    Article  PubMed  Google Scholar 

  26. Cervelli, V., Palla, L., Pascali, M., De Angelis, B., Curcio, B. C., & Gentile, P. (2009). Autologous platelet-rich plasma mixed with purified fat graft in aesthetic plastic surgery. Aesthetic Plastic Surgery, 33(5), 716–721. https://doi.org/10.1007/s00266-009-9386-0

    Article  PubMed  Google Scholar 

  27. Luck, J., Smith, O. J., & Mosahebi, A. (2017). A systematic review of autologous platelet-rich plasma and fat graft preparation methods. Plastic and Reconstructive Surgery. Global Open, 5(12), e1596. https://doi.org/10.1097/GOX.0000000000001596

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rutkowski, J. L., Johnson, D. A., Radio, N. M., & Fennell, J. W. (2010). Platelet rich plasma to facilitate wound healing following tooth extraction. The Journal of Oral Implantology, 36(1), 11–23. https://doi.org/10.1563/AAID-JOI-09-00063

    Article  PubMed  Google Scholar 

  29. Wiltfang, J., Kloss, F. R., Kessler, P., Nkenke, E., Schultze-Mosgau, S., Zimmermann, R., & Schlegel, K. A. (2004). Effects of platelet-rich plasma on bone healing in combination with autogenous bone and bone substitutes in critical-size defects. An animal experiment. Clinical Oral Implants Research, 15(2), 187–193. https://doi.org/10.1111/j.1600-0501.2004.00980.x

    Article  PubMed  Google Scholar 

  30. Nakamura, S., Ishihara, M., Takikawa, M., Murakami, K., Kishimoto, S., Nakamura, S., … Kiyosawa, T. (2010). Platelet-rich plasma (PRP) promotes survival of fat-grafts in rats. Annals of Plastic Surgery, 65(1), 101–106. https://doi.org/10.1097/SAP.0b013e3181b0273c

  31. Pires Fraga, M. F., Nishio, R. T., Ishikawa, R. S., Perin, L. F., Helene, A., & Malheiros, C. A. (2010). Increased survival of free fat grafts with platelet-rich plasma in rabbits. Journal of Plastic, Reconstructive & Aesthetic Surgery: JPRAS, 63(12), e818-822. https://doi.org/10.1016/j.bjps.2010.07.003

    Article  Google Scholar 

  32. Rodríguez-Flores, J., Palomar-Gallego, M. A., Enguita-Valls, A. B., Rodríguez-Peralto, J. L., & Torres, J. (2011). Influence of platelet-rich plasma on the histologic characteristics of the autologous fat graft to the upper lip of rabbits. Aesthetic Plastic Surgery, 35(4), 480–486. https://doi.org/10.1007/s00266-010-9640-5

    Article  PubMed  Google Scholar 

  33. Oh, D. S., Cheon, Y. W., Jeon, Y. R., & Lew, D. H. (2011). Activated platelet-rich plasma improves fat graft survival in nude mice: a pilot study. Dermatologic Surgery: Official Publication for American Society for Dermatologic Surgery [et Al.], 37(5), 619–625. https://doi.org/10.1111/j.1524-4725.2011.01953.x

    Article  CAS  Google Scholar 

  34. Hersant, B., Bouhassira, J., SidAhmed-Mezi, M., Vidal, L., Keophiphath, M., Chheangsun, B., … Rodriguez, A. M. (2018). Should platelet-rich plasma be activated in fat grafts? An animal study. Journal of plastic, reconstructive & aesthetic surgery: JPRAS, 71(5), 681–690. https://doi.org/10.1016/j.bjps.2018.01.005

  35. Cervelli, V., Gentile, P., Scioli, M. G., Grimaldi, M., Casciani, C. U., Spagnoli, L. G., & Orlandi, A. (2009). Application of platelet-rich plasma in plastic surgery: clinical and in vitro evaluation. Tissue Engineering. Part C, Methods, 15(4), 625–634. https://doi.org/10.1089/ten.TEC.2008.0518

    Article  CAS  PubMed  Google Scholar 

  36. Salgarello, M., Visconti, G., & Rusciani, A. (2011). Breast fat grafting with platelet-rich plasma: A comparative clinical study and current state of the art. Plastic and Reconstructive Surgery, 127(6), 2176–2185. https://doi.org/10.1097/PRS.0b013e3182139fe7

    Article  CAS  PubMed  Google Scholar 

  37. Gentile, P., Di Pasquali, C., Bocchini, I., Floris, M., Eleonora, T., Fiaschetti, V., … Cervelli, V. (2013). Breast reconstruction with autologous fat graft mixed with platelet-rich plasma. Surgical Innovation, 20(4), 370–376. https://doi.org/10.1177/1553350612458544

  38. Keyhan, S. O., Hemmat, S., Badri, A. A., Abdeshahzadeh, A., & Khiabani, K. (2013). Use of platelet-rich fibrin and platelet-rich plasma in combination with fat graft: Which is more effective during facial lipostructure? Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons, 71(3), 610–621. https://doi.org/10.1016/j.joms.2012.06.176

    Article  PubMed  Google Scholar 

  39. Cervelli, V., Nicoli, F., Spallone, D., Verardi, S., Sorge, R., Nicoli, M., & Balzani, A. (2012). Treatment of traumatic scars using fat grafts mixed with platelet-rich plasma, and resurfacing of skin with the 1540 nm nonablative laser. Clinical and Experimental Dermatology, 37(1), 55–61. https://doi.org/10.1111/j.1365-2230.2011.04199.x

    Article  CAS  PubMed  Google Scholar 

  40. Nita, A. C., Orzan, O. A., Filipescu, M., & Jianu, D. (2013). Fat graft, laser CO2 and platelet-rich-plasma synergy in scars treatment. Journal of Medicine and Life, 6(4), 430–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Willemsen, J. C. N., Lindenblatt, N., & Stevens, H. P. J. D. (2013). Results and long-term patient satisfaction after gluteal augmentation with platelet-rich plasma-enriched autologous fat. European Journal of Plastic Surgery, 36(12), 777–782. https://doi.org/10.1007/s00238-013-0887-3

    Article  PubMed  PubMed Central  Google Scholar 

  42. Por, Y.-C., Yeow, V.K.-L., Louri, N., Lim, T.K.-H., Kee, I., & Song, I.-C. (2009). Platelet-rich plasma has no effect on increasing free fat graft survival in the nude mouse. Journal of plastic, reconstructive & aesthetic surgery: JPRAS, 62(8), 1030–1034. https://doi.org/10.1016/j.bjps.2008.01.013

    Article  Google Scholar 

  43. Lei, H., & Xiao, R. (2020). A study of the effect of platelet-rich plasma on outcomes after aspirated human fat grafting with experimental design. The Journal of Craniofacial Surgery, 31(1), 313–318. https://doi.org/10.1097/SCS.0000000000005878

    Article  PubMed  Google Scholar 

  44. Hu, Y., Jiang, Y., Wang, M., Tian, W., & Wang, H. (2018). Concentrated growth factor enhanced fat graft survival: A comparative study. Dermatologic Surgery: Official Publication for American Society for Dermatologic Surgery [et Al.], 44(7), 976–984. https://doi.org/10.1097/DSS.0000000000001337

    Article  CAS  Google Scholar 

  45. Atashi, F., André-Lévigne, D., Colin, D. J., Germain, S., Pittet-Cuénod, B., & Modarressi, A. (2019). Does non-activated platelet-rich plasma (PRP) enhance fat graft outcome? An assessment with 3D CT-scan in mice. Journal of Plastic, Reconstructive & Aesthetic Surgery: JPRAS, 72(4), 669–675. https://doi.org/10.1016/j.bjps.2018.12.039

    Article  PubMed  Google Scholar 

  46. Ozer, K., & Atan, O. (2020). The use of higher proportions of platelet-rich plasma to enrich microfat has negative effects: A preclinical study. Plastic and Reconstructive Surgery, 146(3), 369e–370e. https://doi.org/10.1097/PRS.0000000000007105

    Article  CAS  PubMed  Google Scholar 

  47. Abellan Lopez, M., Bertrand, B., Kober, F., Boucekine, M., De Fromont De Bouailles, M., Vogtensperger, M., … Sabatier, F. (2020). The use of higher proportions of platelet-rich plasma to enrich microfat has negative effects: A preclinical study. Plastic and Reconstructive Surgery, 145(1), 130–140. https://doi.org/10.1097/PRS.0000000000006406

  48. Gentile, P., De Angelis, B., Pasin, M., Cervelli, G., Curcio, C. B., Floris, M., … Cervelli, V. (2014). Adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical evaluation for cell-based therapies in patients with scars on the face. The Journal of Craniofacial Surgery, 25(1), 267–272. https://doi.org/10.1097/01.scs.0000436746.21031.ba

  49. Cervelli, V., Scioli, M. G., Gentile, P., Doldo, E., Bonanno, E., Spagnoli, L. G., & Orlandi, A. (2012). Platelet-rich plasma greatly potentiates insulin-induced adipogenic differentiation of human adipose-derived stem cells through a serine/threonine kinase Akt-dependent mechanism and promotes clinical fat graft maintenance. Stem Cells Translational Medicine, 1(3), 206–220. https://doi.org/10.5966/sctm.2011-0052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Choukroun, J., Diss, A., Simonpieri, A., Girard, M.-O., Schoeffler, C., Dohan, S. L., … Dohan, D. M. (2006). Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part IV: clinical effects on tissue healing. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 101(3), e56–60. https://doi.org/10.1016/j.tripleo.2005.07.011

  51. Choukroun, J. I., Braccini, F., Diss, A., Giordano, G., Doglioli, P., & Dohan, D. M. (2007). Influence of platelet rich fibrin (PRF) on proliferation of human preadipocytes and tympanic keratinocytes: A new opportunity in facial lipostructure (Coleman’s technique) and tympanoplasty? Revue De Laryngologie - Otologie - Rhinologie, 128(1–2), 27–32.

    CAS  PubMed  Google Scholar 

  52. Kim, E.-S., Kim, J.-J., & Park, E.-J. (2010). Angiogenic factor-enriched platelet-rich plasma enhances in vivo bone formation around alloplastic graft material. The Journal of Advanced Prosthodontics, 2(1), 7–13. https://doi.org/10.4047/jap.2010.2.1.7

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dohan, D. M., Choukroun, J., Diss, A., Dohan, S. L., Dohan, A. J. J., Mouhyi, J., & Gogly, B. (2006). Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 101(3), e37-44. https://doi.org/10.1016/j.tripleo.2005.07.008

    Article  PubMed  Google Scholar 

  54. Liu, B., Tan, X.-Y., Liu, Y.-P., Xu, X.-F., Li, L., Xu, H.-Y., … Chen, F.-M. (2013). The adjuvant use of stromal vascular fraction and platelet-rich fibrin for autologous adipose tissue transplantation. Tissue Engineering. Part C, Methods, 19(1), 1–14. https://doi.org/10.1089/ten.TEC.2012.0126

  55. Planat-Benard, V., Silvestre, J.-S., Cousin, B., André, M., Nibbelink, M., Tamarat, R., … Casteilla, L. (2004). Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation, 109(5), 656–663. https://doi.org/10.1161/01.CIR.0000114522.38265.61

  56. Stillaert, F., Findlay, M., Palmer, J., Idrizi, R., Cheang, S., Messina, A., … Thompson, E. W. (2007). Host rather than graft origin of Matrigel-induced adipose tissue in the murine tissue-engineering chamber. Tissue Engineering, 13(9), 2291–2300. https://doi.org/10.1089/ten.2006.0382

  57. Gentile, P., Scioli, M. G., Orlandi, A., & Cervelli, V. (2015). Breast reconstruction with enhanced stromal vascular fraction fat grafting: What is the best method? Plastic and Reconstructive Surgery. Global Open, 3(6), e406. https://doi.org/10.1097/GOX.0000000000000285

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yoshimura, K., Shigeura, T., Matsumoto, D., Sato, T., Takaki, Y., Aiba-Kojima, E., … Gonda, K. (2006). Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. Journal of Cellular Physiology, 208(1), 64–76. https://doi.org/10.1002/jcp.20636

  59. Fu, S., Luan, J., Xin, M., Wang, Q., Xiao, R., & Gao, Y. (2013). Fate of adipose-derived stromal vascular fraction cells after co-implantation with fat grafts: Evidence of cell survival and differentiation in ischemic adipose tissue. Plastic and Reconstructive Surgery, 132(2), 363–373. https://doi.org/10.1097/PRS.0b013e31829588b3

    Article  CAS  PubMed  Google Scholar 

  60. Kakudo, N., Tanaka, Y., Morimoto, N., Ogawa, T., Kushida, S., Hara, T., & Kusumoto, K. (2013). Adipose-derived regenerative cell (ADRC)-enriched fat grafting: Optimal cell concentration and effects on grafted fat characteristics. Journal of Translational Medicine, 11, 254. https://doi.org/10.1186/1479-5876-11-254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, L., Pan, S., Ni, B., & Lin, Y. (2014). Improvement in autologous human fat transplant survival with SVF plus VEGF-PLA nano-sustained release microspheres. Cell Biology International, 38(8), 962–970. https://doi.org/10.1002/cbin.10284

    Article  CAS  PubMed  Google Scholar 

  62. Luan, A., Duscher, D., Whittam, A. J., Paik, K. J., Zielins, E. R., Brett, E. A., … Wan, D. C. (2016). Cell-assisted lipotransfer improves volume retention in irradiated recipient sites and rescues radiation-induced skin changes. Stem Cells (Dayton, Ohio), 34(3), 668–673. https://doi.org/10.1002/stem.2256

  63. Paik, K. J., Zielins, E. R., Atashroo, D. A., Maan, Z. N., Duscher, D., Luan, A., … Wan, D. C. (2015). Studies in fat grafting: Part V. Cell-assisted lipotransfer to enhance fat graft retention is dose dependent. Plastic and Reconstructive Surgery, 136(1), 67–75. https://doi.org/10.1097/PRS.0000000000001367

  64. Zhou, S.-B., Chiang, C.-A., Xie, Y., Li, H., Liu, K., Kobayashi, E., & Li, Q.-F. (2014). In vivo bioimaging analysis of stromal vascular fraction-assisted fat grafting: The interaction and mutualism of cells and grafted fat. Transplantation, 98(10), 1048–1055. https://doi.org/10.1097/TP.0000000000000397

    Article  CAS  PubMed  Google Scholar 

  65. Zhu, M., Dong, Z., Gao, J., Liao, Y., Xue, J., Yuan, Y., … Lu, F. (2015). Adipocyte regeneration after free fat transplantation: promotion by stromal vascular fraction cells. Cell Transplantation, 24(1), 49–62. https://doi.org/10.3727/096368913X675133

  66. Li, F.-W., Wang, H.-B., Fang, J.-P., Zeng, L., Chen, C.-L., & Luo, S.-K. (2019). Optimal use ratio of the stromal vascular fraction (SVF): An animal experiment based on micro-CT dynamic detection after large-volume fat grafting. Aesthetic Surgery Journal, 39(6), NP213–NP224. https://doi.org/10.1093/asj/sjy266

    Article  PubMed  Google Scholar 

  67. Bae, Y. C., Kim, K. H., Yun, H. J., Oh, C. H., Chang, J. H., Yi, C. R., … Bae, S. H. (2020). A study on the effective ratio of fat to stromal vascular fraction for cell-assisted Lipotransfer. Aesthetic Plastic Surgery, 44(1), 162–167. https://doi.org/10.1007/s00266-019-01548-6

  68. He, Y., Yu, X., Chen, Z., & Li, L. (2019). Stromal vascular fraction cells plus sustained release VEGF/Ang-1-PLGA microspheres improve fat graft survival in mice. Journal of Cellular Physiology, 234(5), 6136–6146. https://doi.org/10.1002/jcp.27368

    Article  CAS  PubMed  Google Scholar 

  69. Zhu, M., Zhou, Z., Chen, Y., Schreiber, R., Ransom, J. T., Fraser, J. K., … Kuo, H.-C. (2010). Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention. Annals of Plastic Surgery, 64(2), 222–228. https://doi.org/10.1097/SAP.0b013e31819ae05c

  70. He, X., Zhong, X., Ni, Y., Liu, M., Liu, S., & Lan, X. (2013). Effect of ASCs on the graft survival rates of fat particles in rabbits. Journal of Plastic Surgery and Hand Surgery, 47(1), 3–7. https://doi.org/10.3109/2000656X.2012.730488

    Article  PubMed  Google Scholar 

  71. Ni, Y., He, X., Yuan, Z., Liu, M., Du, H., & Zhong, X. (2015). Effect of fat particle-to-SVF ratio on graft survival rates in rabbits. Annals of Plastic Surgery, 74(5), 609–614. https://doi.org/10.1097/SAP.0b013e318298e6f5

    Article  CAS  PubMed  Google Scholar 

  72. Li, K., Li, F., Li, J., Wang, H., Zheng, X., Long, J., … Tian, W. (2017). Increased survival of human free fat grafts with varying densities of human adipose-derived stem cells and platelet-rich plasma. Journal of Tissue Engineering and Regenerative Medicine, 11(1), 209–219. https://doi.org/10.1002/term.1903

  73. Pérez-Cano, R., Vranckx, J. J., Lasso, J. M., Calabrese, C., Merck, B., Milstein, A. M., … Weiler-Mithoff, E. M. (2012). Prospective trial of adipose-derived regenerative cell (ADRC)-enriched fat grafting for partial mastectomy defects: the RESTORE-2 trial. European Journal of Surgical Oncology: The Journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology, 38(5), 382–389. https://doi.org/10.1016/j.ejso.2012.02.178

  74. Yoshimura, K., Asano, Y., Aoi, N., Kurita, M., Oshima, Y., Sato, K., … Harii, K. (2010). Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications. The Breast Journal, 16(2), 169–175. https://doi.org/10.1111/j.1524-4741.2009.00873.x

  75. Jung, H. K., Kim, C. H., & Song, S. Y. (2016). Prospective 1-year follow-up study of breast augmentation by cell-assisted Lipotransfer. Aesthetic Surgery Journal, 36(2), 179–190. https://doi.org/10.1093/asj/sjv164

    Article  PubMed  Google Scholar 

  76. Sterodimas, A., de Faria, J., Nicaretta, B., & Boriani, F. (2011). Autologous fat transplantation versus adipose-derived stem cell-enriched lipografts: A study. Aesthetic Surgery Journal, 31(6), 682–693. https://doi.org/10.1177/1090820X11415976

    Article  PubMed  Google Scholar 

  77. Li, J., Gao, J., Cha, P., Chang, Q., Liao, Y., Liu, C., … Lu, F. (2013). Supplementing fat grafts with adipose stromal cells for cosmetic facial contouring. Dermatologic Surgery: Official Publication for American Society for Dermatologic Surgery [et Al.], 39(3 Pt 1), 449–456. https://doi.org/10.1111/dsu.12058

  78. Chang, Q., Li, J., Dong, Z., Liu, L., & Lu, F. (2013). Quantitative volumetric analysis of progressive hemifacial atrophy corrected using stromal vascular fraction-supplemented autologous fat grafts. Dermatologic Surgery: Official Publication for American Society for Dermatologic Surgery [et Al.], 39(10), 1465–1473. https://doi.org/10.1111/dsu.12310

    Article  CAS  Google Scholar 

  79. Sasaki, G. H. (2015). The safety and efficacy of cell-assisted fat grafting to traditional fat grafting in the anterior mid-face: An indirect assessment by 3D imaging. Aesthetic Plastic Surgery, 39(6), 833–846. https://doi.org/10.1007/s00266-015-0533-5

    Article  PubMed  Google Scholar 

  80. Peltoniemi, H. H., Salmi, A., Miettinen, S., Mannerström, B., Saariniemi, K., Mikkonen, R., … Herold, C. (2013). Stem cell enrichment does not warrant a higher graft survival in lipofilling of the breast: a prospective comparative study. Journal of Plastic, Reconstructive & Aesthetic Surgery: JPRAS, 66(11), 1494–1503. https://doi.org/10.1016/j.bjps.2013.06.002

  81. Gentile, P., Orlandi, A., Scioli, M. G., Di Pasquali, C., Bocchini, I., Curcio, C. B., … Cervell, V. (2012). A comparative translational study: the combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction. Stem Cells Translational Medicine, 1(4), 341–351. https://doi.org/10.5966/sctm.2011-0065

  82. Tissiani, L. A. L., & Alonso, N. (2016). A prospective and controlled clinical trial on stromal vascular fraction enriched fat grafts in secondary breast reconstruction. Stem Cells International, 2016, 2636454. https://doi.org/10.1155/2016/2636454

    Article  CAS  PubMed  Google Scholar 

  83. Kamakura, T., & Ito, K. (2011). Autologous cell-enriched fat grafting for breast augmentation. Aesthetic Plastic Surgery, 35(6), 1022–1030. https://doi.org/10.1007/s00266-011-9727-7

    Article  PubMed  Google Scholar 

  84. Gentile, P., Casella, D., Palma, E., & Calabrese, C. (2019). Engineered fat graft enhanced with adipose-derived stromal vascular fraction cells for regenerative medicine: Clinical, histological and instrumental evaluation in breast reconstruction. Journal of Clinical Medicine, 8(4), E504. https://doi.org/10.3390/jcm8040504

    Article  CAS  Google Scholar 

  85. Yoshimura, K., Sato, K., Aoi, N., Kurita, M., Hirohi, T., & Harii, K. (2008). Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plastic Surgery, 32(1), 48–55. https://doi.org/10.1007/s00266-007-9019-4. discussion 56-57.

    Article  PubMed  Google Scholar 

  86. Sommer, B., & Sattler, G. (2000). Current concepts of fat graft survival: histology of aspirated adipose tissue and review of the literature. Dermatologic Surgery: Official Publication for American Society for Dermatologic Surgery [et Al.], 26(12), 1159–1166.

    Article  CAS  Google Scholar 

  87. Gentile P, Orlandi A, Scioli MG, Di Pasquali C, Bocchini I, Curcio CB, Floris M, Fiaschetti V, Floris R, Cervell V (2012) A comparative translational study: the combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction 1(4):341–51. https://doi.org/10.5966/sctm.2011-0065

  88. Pontikoglou, C., Deschaseaux, F., Sensebé, L., & Papadaki, H. A. (2011). Bone marrow mesenchymal stem cells: Biological properties and their role in hematopoiesis and hematopoietic stem cell transplantation. Stem Cell Reviews and Reports, 7(3), 569–589. https://doi.org/10.1007/s12015-011-9228-8

    Article  PubMed  Google Scholar 

  89. Suga, H., Eto, H., Aoi, N., Kato, H., Araki, J., Doi, K., … Yoshimura, K. (2010). Adipose tissue remodeling under ischemia: death of adipocytes and activation of stem/progenitor cells. Plastic and Reconstructive Surgery, 126(6), 1911–1923. https://doi.org/10.1097/PRS.0b013e3181f4468b

  90. Moseley, T. A., Zhu, M., & Hedrick, M. H. (2006). Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plastic and Reconstructive Surgery, 118(3 Suppl), 121S-128S. https://doi.org/10.1097/01.prs.0000234609.74811.2e

    Article  CAS  PubMed  Google Scholar 

  91. Kapur, S. K., & Katz, A. J. (2013). Review of the adipose derived stem cell secretome. Biochimie, 95(12), 2222–2228. https://doi.org/10.1016/j.biochi.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  92. Kobolak, J., Dinnyes, A., Memic, A., Khademhosseini, A., & Mobasheri, A. (2016). Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods (San Diego, Calif.), 99, 62–68. https://doi.org/10.1016/j.ymeth.2015.09.016

    Article  CAS  PubMed  Google Scholar 

  93. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., … Hedrick, M. H. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13(12), 4279–4295. https://doi.org/10.1091/mbc.e02-02-0105

  94. Klopp, A. H., Gupta, A., Spaeth, E., Andreeff, M., & Marini, F. (2011). Concise review: Dissecting a discrepancy in the literature: Do mesenchymal stem cells support or suppress tumor growth? Stem Cells (Dayton, Ohio), 29(1), 11–19. https://doi.org/10.1002/stem.559

    Article  CAS  PubMed  Google Scholar 

  95. Baer, P. C., & Geiger, H. (2012). Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells International, 2012, 812693. https://doi.org/10.1155/2012/812693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. De Ugarte, D. A., Morizono, K., Elbarbary, A., Alfonso, Z., Zuk, P. A., Zhu, M., … Hedrick, M. H. (2003). Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells, Tissues, Organs, 174(3), 101–109. https://doi.org/10.1159/000071150

  97. Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., … March, K. L. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109(10), 1292–1298. https://doi.org/10.1161/01.CIR.0000121425.42966.F1

  98. Stubbs, S. L., Hsiao, S.T.-F., Peshavariya, H. M., Lim, S. Y., Dusting, G. J., & Dilley, R. J. (2012). Hypoxic preconditioning enhances survival of human adipose-derived stem cells and conditions endothelial cells in vitro. Stem Cells and Development, 21(11), 1887–1896. https://doi.org/10.1089/scd.2011.0289

    Article  CAS  PubMed  Google Scholar 

  99. Efimenko, A., Starostina, E., Kalinina, N., & Stolzing, A. (2011). Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. Journal of Translational Medicine, 9, 10. https://doi.org/10.1186/1479-5876-9-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lu, F., Li, J., Gao, J., Ogawa, R., Ou, C., Yang, B., & Fu, B. (2009). Improvement of the survival of human autologous fat transplantation by using VEGF-transfected adipose-derived stem cells. Plastic and Reconstructive Surgery, 124(5), 1437–1446. https://doi.org/10.1097/PRS.0b013e3181babbb6

    Article  CAS  PubMed  Google Scholar 

  101. Jiang, A., Li, M., Duan, W., Dong, Y., & Wang, Y. (2015). Improvement of the survival of human autologous fat transplantation by adipose-derived stem-cells-assisted lipotransfer combined with bFGF. TheScientificWorldJournal, 2015, 968057. https://doi.org/10.1155/2015/968057

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ko, M.-S., Jung, J.-Y., Shin, I.-S., Choi, E.-W., Kim, J.-H., Kang, S. K., & Ra, J. C. (2011). Effects of expanded human adipose tissue-derived mesenchymal stem cells on the viability of cryopreserved fat grafts in the nude mouse. International Journal of Medical Sciences, 8(3), 231–238. https://doi.org/10.7150/ijms.8.231

    Article  PubMed  PubMed Central  Google Scholar 

  103. Luo, S., Hao, L., Li, X., Yu, D., Diao, Z., Ren, L., & Xu, H. (2013). Adipose tissue-derived stem cells treated with estradiol enhance survival of autologous fat transplants. The Tohoku Journal of Experimental Medicine, 231(2), 101–110. https://doi.org/10.1620/tjem.231.101

    Article  CAS  PubMed  Google Scholar 

  104. Xu, F., Li, H., Yin, Q.-S., Liu, D., Nan, H., Zhao, P., & Liang, S. (2014). Human breast adipose-derived stem cells transfected with the stromal cell-derived factor-1 receptor CXCR4 exhibit enhanced viability in human autologous free fat grafts. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 34(6), 2091–2104. https://doi.org/10.1159/000366404

    Article  CAS  PubMed  Google Scholar 

  105. Kim, Y. W., Min, H. J., Choi, R. J., Lee, D. H., & Cheon, Y. W. (2018). Insulin promotes adipose-derived stem cell differentiation after fat grafting. Plastic and Reconstructive Surgery, 142(4), 927–938. https://doi.org/10.1097/PRS.0000000000004814

    Article  CAS  PubMed  Google Scholar 

  106. Han, Y., Bai, Y., Yan, X.-L., Ren, J., Zeng, Q., Li, X.-D., … Han, Y. (2018). Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting. Biochemical and Biophysical Research Communications, 497(1), 305–312. https://doi.org/10.1016/j.bbrc.2018.02.076

  107. Hong, K. Y., Kim, I.-K., Park, S. O., Jin, U. S., & Chang, H. (2019). Systemic administration of adipose-derived stromal cells concurrent with fat grafting. Plastic and Reconstructive Surgery, 143(5), 973e–982e. https://doi.org/10.1097/PRS.0000000000005513

    Article  CAS  PubMed  Google Scholar 

  108. Piccinno, M. S., Veronesi, E., Loschi, P., Pignatti, M., Murgia, A., Grisendi, G., … Dominici, M. (2013). Adipose stromal/stem cells assist fat transplantation reducing necrosis and increasing graft performance. Apoptosis: An International Journal on Programmed Cell Death, 18(10), 1274–1289. https://doi.org/10.1007/s10495-013-0878-7

  109. Seyhan, N., Alhan, D., Ural, A. U., Gunal, A., Avunduk, M. C., & Savaci, N. (2015). The effect of combined use of platelet-rich plasma and adipose-derived stem cells on fat graft survival. Annals of Plastic Surgery, 74(5), 615–620. https://doi.org/10.1097/SAP.0000000000000480

    Article  CAS  PubMed  Google Scholar 

  110. Yuan, Y. I., Gao, J., & Lu, F. (2015). Effect of exogenous adipose-derived stem cells in the early stages following free fat transplantation. Experimental and Therapeutic Medicine, 10(3), 1052–1058. https://doi.org/10.3892/etm.2015.2605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang, J., Wang, Y., Zhao, B., Fan, L., Bai, X., Yang, L., … Liu, X. (2015). Allogeneic adipose-derived stem cells protect fat grafts at the early stage and improve long-term retention in immunocompetent rats. Aesthetic Plastic Surgery, 39(4), 625–634. https://doi.org/10.1007/s00266-015-0505-9

  112. Chen, B., Cai, J., Wei, Y., Jiang, Z., Desjardins, H. E., Adams, A. E., … Guo, L. (2019). Exosomes are comparable to source adipose stem cells in fat graft retention with up-regulating early inflammation and angiogenesis. Plastic and Reconstructive Surgery, 144(5), 816e–827e. https://doi.org/10.1097/PRS.0000000000006175

  113. Rasmussen, B. S., Sørensen, C. L., Kurbegovic, S., Ørholt, M., Talman, M.-L. M., Herly, M., … Drzewiecki, K. T. (2019). Cell-enriched fat grafting improves graft retention in a porcine model: A dose-response study of adipose-derived stem cells versus stromal vascular fraction. Plastic and Reconstructive Surgery, 144(3), 397e–408e. https://doi.org/10.1097/PRS.0000000000005920

  114. Koh, K. S., Oh, T. S., Kim, H., Chung, I. W., Lee, K. W., Lee, H. B., … Choi, J. W. (2012). Clinical application of human adipose tissue-derived mesenchymal stem cells in progressive hemifacial atrophy (Parry-Romberg disease) with microfat grafting techniques using 3-dimensional computed tomography and 3-dimensional camera. Annals of Plastic Surgery, 69(3), 331–337. https://doi.org/10.1097/SAP.0b013e31826239f0

  115. Kølle, S.-F. T., Duscher, D., Taudorf, M., Fischer-Nielsen, A., Svalgaard, J. D., Munthe-Fog, L., … Katz, A. J. (2020). Ex vivo-expanded autologous adipose tissue-derived stromal cells ensure enhanced fat graft retention in breast augmentation: A randomized controlled clinical trial. Stem Cells Translational Medicine, 9(11), 1277–1286. https://doi.org/10.1002/sctm.20-0081

  116. Zimmerlin, L., Donnenberg, A. D., Rubin, J. P., Basse, P., Landreneau, R. J., & Donnenberg, V. S. (2011). Regenerative therapy and cancer: In vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates. Tissue Engineering. Part A, 17(1–2), 93–106. https://doi.org/10.1089/ten.TEA.2010.0248

    Article  CAS  PubMed  Google Scholar 

  117. Rowan, B. G., Gimble, J. M., Sheng, M., Anbalagan, M., Jones, R. K., Frazier, T. P., … Chiu, E. S. (2014). Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts. PloS One, 9(2), e89595. https://doi.org/10.1371/journal.pone.0089595

  118. Bertolini, F., Petit, J.-Y., & Kolonin, M. G. (2015). Stem cells from adipose tissue and breast cancer: Hype, risks and hope. British Journal of Cancer, 112(3), 419–423. https://doi.org/10.1038/bjc.2014.657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang, Y., Daquinag, A., Traktuev, D. O., Amaya-Manzanares, F., Simmons, P. J., March, K. L., … Kolonin, M. G. (2009). White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Research, 69(12), 5259–5266. https://doi.org/10.1158/0008-5472.CAN-08-3444

  120. Yu, J. M., Jun, E. S., Bae, Y. C., & Jung, J. S. (2008). Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells and Development, 17(3), 463–473. https://doi.org/10.1089/scd.2007.0181

    Article  CAS  PubMed  Google Scholar 

  121. Muehlberg, F. L., Song, Y.-H., Krohn, A., Pinilla, S. P., Droll, L. H., Leng, X., … Alt, E. U. (2009). Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis, 30(4), 589–597. https://doi.org/10.1093/carcin/bgp036

  122. Massa, M., Gasparini, S., Baldelli, I., Scarabelli, L., Santi, P., Quarto, R., & Repaci, E. (2016). Interaction between breast cancer cells and adipose tissue cells derived from fat grafting. Aesthetic Surgery Journal, 36(3), 358–363. https://doi.org/10.1093/asj/sjv194

    Article  PubMed  Google Scholar 

  123. Freese, K. E., Kokai, L., Edwards, R. P., Philips, B. J., Sheikh, M. A., Kelley, J., … Linkov, F. (2015). Adipose-derived stems cells and their role in human cancer development, growth, progression, and metastasis: a systematic review. Cancer Research, 75(7), 1161–1168. https://doi.org/10.1158/0008-5472.CAN-14-2744

  124. Sasser, A. K., Sullivan, N. J., Studebaker, A. W., Hendey, L. F., Axel, A. E., & Hall, B. M. (2007). Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer. FASEB journal: Official publication of the Federation of American Societies for Experimental Biology, 21(13), 3763–3770. https://doi.org/10.1096/fj.07-8832com

    Article  CAS  PubMed  Google Scholar 

  125. Nieman, K. M., Romero, I. L., Van Houten, B., & Lengyel, E. (2013). Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochimica Et Biophysica Acta, 1831(10), 1533–1541. https://doi.org/10.1016/j.bbalip.2013.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Razmkhah, M., Jaberipour, M., Hosseini, A., Safaei, A., Khalatbari, B., & Ghaderi, A. (2010). Expression profile of IL-8 and growth factors in breast cancer cells and adipose-derived stem cells (ASCs) isolated from breast carcinoma. Cellular Immunology, 265(1), 80–85. https://doi.org/10.1016/j.cellimm.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  127. Kucerova, L., Kovacovicova, M., Polak, S., Bohac, M., Fedeles, J., Palencar, D., & Matuskova, M. (2011). Interaction of human adipose tissue-derived mesenchymal stromal cells with breast cancer cells. Neoplasma, 58(5), 361–370. https://doi.org/10.4149/neo_2011_05_361

    Article  CAS  PubMed  Google Scholar 

  128. Gehmert, S., Gehmert, S., Prantl, L., Vykoukal, J., Alt, E., & Song, Y.-H. (2010). Breast cancer cells attract the migration of adipose tissue-derived stem cells via the PDGF-BB/PDGFR-beta signaling pathway. Biochemical and Biophysical Research Communications, 398(3), 601–605. https://doi.org/10.1016/j.bbrc.2010.06.132

    Article  CAS  PubMed  Google Scholar 

  129. Zhao, M., Sachs, P. C., Wang, X., Dumur, C. I., Idowu, M. O., Robila, V., … Elmore, L. W. (2012). Mesenchymal stem cells in mammary adipose tissue stimulate progression of breast cancer resembling the basal-type. Cancer Biology & Therapy, 13(9), 782–792. https://doi.org/10.4161/cbt.20561

  130. Lin, R., Wang, S., & Zhao, R. C. (2013). Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Molecular and Cellular Biochemistry, 383(1–2), 13–20. https://doi.org/10.1007/s11010-013-1746-z

    Article  CAS  PubMed  Google Scholar 

  131. Chandler, E. M., Seo, B. R., Califano, J. P., Andresen Eguiluz, R. C., Lee, J. S., Yoon, C. J., … Fischbach, C. (2012). Implanted adipose progenitor cells as physicochemical regulators of breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 109(25), 9786–9791. https://doi.org/10.1073/pnas.1121160109

  132. Cho, J. A., Park, H., Lim, E. H., & Lee, K. W. (2012). Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. International Journal of Oncology, 40(1), 130–138. https://doi.org/10.3892/ijo.2011.1193

    Article  CAS  PubMed  Google Scholar 

  133. Jotzu, C., Alt, E., Welte, G., Li, J., Hennessy, B. T., Devarajan, E., … Song, Y.-H. (2010). Adipose tissue-derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor-derived factors. Analytical Cellular Pathology (Amsterdam), 33(2), 61–79. https://doi.org/10.3233/ACP-CLO-2010-0535

  134. Razmkhah, M., Jaberipour, M., Erfani, N., Habibagahi, M., Talei, A., & Ghaderi, A. (2011). Adipose derived stem cells (ASCs) isolated from breast cancer tissue express IL-4, IL-10 and TGF-β1 and upregulate expression of regulatory molecules on T cells: Do they protect breast cancer cells from the immune response? Cellular Immunology, 266(2), 116–122. https://doi.org/10.1016/j.cellimm.2010.09.005

    Article  CAS  PubMed  Google Scholar 

  135. Trivanović, D., Nikolić, S., Krstić, J., Jauković, A., Mojsilović, S., Ilić, V., … Bugarski, D. (2014). Characteristics of human adipose mesenchymal stem cells isolated from healthy and cancer affected people and their interactions with human breast cancer cell line MCF-7 in vitro. Cell Biology International, 38(2), 254–265. https://doi.org/10.1002/cbin.10198

  136. Eterno, V., Zambelli, A., Pavesi, L., Villani, L., Zanini, V., Petrolo, G., … Amato, A. (2014). Adipose-derived Mesenchymal Stem Cells (ASCs) may favour breast cancer recurrence via HGF/c-Met signaling. Oncotarget, 5(3), 613–633. https://doi.org/10.18632/oncotarget.1359

  137. Orecchioni, S., Gregato, G., Martin-Padura, I., Reggiani, F., Braidotti, P., Mancuso, P., … Bertolini, F. (2013). Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. Cancer Research, 73(19), 5880–5891. https://doi.org/10.1158/0008-5472.CAN-13-0821

  138. Sun, B., Roh, K.-H., Park, J.-R., Lee, S.-R., Park, S.-B., Jung, J.-W., … Kang, K.-S. (2009). Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy, 11(3), 289–298, 1 p following 298. https://doi.org/10.1080/14653240902807026

  139. Ryu, H., Oh, J.-E., Rhee, K.-J., Baik, S. K., Kim, J., Kang, S. J., … Eom, Y. W. (2014). Adipose tissue-derived mesenchymal stem cells cultured at high density express IFN-β and suppress the growth of MCF-7 human breast cancer cells. Cancer Letters, 352(2), 220–227. https://doi.org/10.1016/j.canlet.2014.06.018

  140. Kéramidas, M., de Fraipont, F., Karageorgis, A., Moisan, A., Persoons, V., Richard, M.-J., … Rome, C. (2013). The dual effect of mesenchymal stem cells on tumour growth and tumour angiogenesis. Stem Cell Research & Therapy, 4(2), 41. https://doi.org/10.1186/scrt195

  141. Agha, R. A., Fowler, A. J., Herlin, C., Goodacre, T. E. E., & Orgill, D. P. (2015). Use of autologous fat grafting for breast reconstruction: A systematic review with meta-analysis of oncological outcomes. Journal of plastic, reconstructive & aesthetic surgery: JPRAS, 68(2), 143–161. https://doi.org/10.1016/j.bjps.2014.10.038

    Article  PubMed  Google Scholar 

  142. Khakoo, A. Y., Pati, S., Anderson, S. A., Reid, W., Elshal, M. F., Rovira, I. I., … Finkel, T. (2006). Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. The Journal of Experimental Medicine, 203(5), 1235–1247. https://doi.org/10.1084/jem.20051921

  143. Zhu, Y., Sun, Z., Han, Q., Liao, L., Wang, J., Bian, C., … Zhao, R. C. (2009). Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia, 23(5), 925–933. https://doi.org/10.1038/leu.2008.384

  144. Cousin, B., Ravet, E., Poglio, S., De Toni, F., Bertuzzi, M., Lulka, H., … Cordelier, P. (2009). Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PloS One, 4(7), e6278. https://doi.org/10.1371/journal.pone.0006278

  145. Dasari, V. R., Velpula, K. K., Kaur, K., Fassett, D., Klopfenstein, J. D., Dinh, D. H., … Rao, J. S. (2010). Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP). PloS One, 5(7), e11813. https://doi.org/10.1371/journal.pone.0011813

  146. Tang, Y., Li, J., Wang, W., Chen, B., Chen, J., Shen, Z., … Lu, S. (2021). Platelet extracellular vesicles enhance the proangiogenic potential of adipose-derived stem cells in vivo and in vitro. Stem Cell Research & Therapy, 12(1), 497. https://doi.org/10.1186/s13287-021-02561-w

  147. Liao, H.-T., Marra, K. G., & Rubin, J. P. (2014). Application of platelet-rich plasma and platelet-rich fibrin in fat grafting: basic science and literature review. Tissue Engineering. Part B, Reviews, 20(4), 267–276. https://doi.org/10.1089/ten.TEB.2013.0317

    Article  CAS  PubMed  Google Scholar 

  148. Fawcett, D. W. (1948). Histological observations on the relation of insulin to the deposition of glycogen in adipose tissue. Endocrinology, 42(6), 454–467. https://doi.org/10.1210/endo-42-6-454

    Article  CAS  PubMed  Google Scholar 

  149. Ogawa, R. (2006). The importance of adipose-derived stem cells and vascularized tissue regeneration in the field of tissue transplantation. Current Stem Cell Research & Therapy, 1(1), 13–20. https://doi.org/10.2174/157488806775269043

    Article  CAS  Google Scholar 

  150. Yi, C., Pan, Y., Zhen, Y., Zhang, L., Zhang, X., Shu, M., … Guo, S. (2006). Enhancement of viability of fat grafts in nude mice by endothelial progenitor cells. Dermatologic Surgery: Official Publication for American Society for Dermatologic Surgery [et Al.], 32(12), 1437–1443. https://doi.org/10.1111/j.1524-4725.2006.32351.x

  151. Shoshani, O., Shupak, A., Ullmann, Y., Ramon, Y., Gilhar, A., Kehat, I., & Peled, I. J. (2000). The effect of hyperbaric oxygenation on the viability of human fat injected into nude mice. Plastic and Reconstructive Surgery, 106(6), 1390–1396. https://doi.org/10.1097/00006534-200011000-00028. discussion 1397-1398.

    Article  CAS  PubMed  Google Scholar 

  152. Shoshani, O., Livne, E., Armoni, M., Shupak, A., Berger, J., Ramon, Y., … Ullmann, Y. (2005). The effect of interleukin-8 on the viability of injected adipose tissue in nude mice. Plastic and Reconstructive Surgery, 115(3), 853–859. https://doi.org/10.1097/01.prs.0000153036.71928.30

  153. Hamed, S., Egozi, D., Kruchevsky, D., Teot, L., Gilhar, A., & Ullmann, Y. (2010). Erythropoietin improves the survival of fat tissue after its transplantation in nude mice. PloS One, 5(11), e13986. https://doi.org/10.1371/journal.pone.0013986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kern, P. A., Knedler, A., & Eckel, R. H. (1983). Isolation and culture of microvascular endothelium from human adipose tissue. The Journal of Clinical Investigation, 71(6), 1822–1829. https://doi.org/10.1172/jci110937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Szöke, K., Beckstrøm, K. J., & Brinchmann, J. E. (2012). Human adipose tissue as a source of cells with angiogenic potential. Cell Transplantation, 21(1), 235–250. https://doi.org/10.3727/096368911X580518

    Article  PubMed  Google Scholar 

  156. Lin, R.-Z., Moreno-Luna, R., Muñoz-Hernandez, R., Li, D., Jaminet, S.-C.S., Greene, A. K., & Melero-Martin, J. M. (2013). Human white adipose tissue vasculature contains endothelial colony-forming cells with robust in vivo vasculogenic potential. Angiogenesis, 16(4), 735–744. https://doi.org/10.1007/s10456-013-9350-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Klar, A. S., Güven, S., Zimoch, J., Zapiórkowska, N. A., Biedermann, T., Böttcher-Haberzeth, S., … Meuli, M. (2016). Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute. Pediatric Surgery International, 32(1), 17–27. https://doi.org/10.1007/s00383-015-3808-7

  158. Merfeld-Clauss, S., Lupov, I. P., Lu, H., March, K. L., & Traktuev, D. O. (2015). Adipose stromal cell contact with endothelial cells results in loss of complementary vasculogenic activity mediated by induction of activin A. Stem Cells (Dayton, Ohio), 33(10), 3039–3051. https://doi.org/10.1002/stem.2074

    Article  CAS  PubMed  Google Scholar 

  159. Cai, X., Xie, J., Yao, Y., Cun, X., Lin, S., Tian, T., … Lin, Y. (2017). Angiogenesis in a 3D model containing adipose tissue stem cells and endothelial cells is mediated by canonical Wnt signaling. Bone Research, 5, 17048. https://doi.org/10.1038/boneres.2017.48

  160. Freiman, A., Shandalov, Y., Rozenfeld, D., Shor, E., Segal, S., Ben-David, D., … Levenberg, S. (2016). Adipose-derived endothelial and mesenchymal stem cells enhance vascular network formation on three-dimensional constructs in vitro. Stem Cell Research & Therapy, 7, 5. https://doi.org/10.1186/s13287-015-0251-6

  161. Geeroms, M., Hamdi, M., Hirano, R., Hagiwara, H., Fujimura, S., Mizuno, H., & Tanaka, R. (2019). Quality and quantity-cultured murine endothelial progenitor cells increase vascularization and decrease fibrosis in the fat graft. Plastic and Reconstructive Surgery, 143(4), 744e–755e. https://doi.org/10.1097/PRS.0000000000005439

    Article  CAS  PubMed  Google Scholar 

  162. Geeroms, M., Fujimura, S., Aiba, E., Orgun, D., Arita, K., Kitamura, R., … Tanaka, R. (2021). Quality and quantity-cultured human mononuclear cells improve human fat graft vascularization and survival in an in vivo murine experimental model. Plastic and Reconstructive Surgery, 147(2), 373–385. https://doi.org/10.1097/PRS.0000000000007580

  163. Prantl, L., Eigenberger, A., Reinhard, R., Siegmund, A., Heumann, K., & Felthaus, O. (2022). Cell-enriched lipotransfer (CELT) improves tissue regeneration and rejuvenation without substantial manipulation of the adipose tissue graft. Cells, 11(19), 3159. https://doi.org/10.3390/cells11193159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The central illustration/figure 1 was created with BioRender.com

Funding

This work was supported by grants from the PROMEX STIFTUNG FUR DIE FORSCHUNG foundation that we deeply thank. Benjamin Debuc received a grant from AP-HP for research project.

Author information

Authors and Affiliations

Authors

Contributions

BD, NG, AGL and DMS wrote the paper. AGL and DMS organized the work. All authors contributed to manuscript revision, read and approved the submitted version. Authors declare that the submitted work is original and has not been published before (neither in English nor in any other language) and that the work is not under consideration for publication elsewhere.

Corresponding author

Correspondence to David M. Smadja.

Ethics declarations

Ethical Approval

NA.

Consent to Participate

NA.

Consent to Publish

NA.

Disclosure

Authors declare no conflict of interest related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debuc, B., Gendron, N., Cras, A. et al. Improving Autologous Fat Grafting in Regenerative Surgery through Stem Cell-Assisted Lipotransfer. Stem Cell Rev and Rep 19, 1726–1754 (2023). https://doi.org/10.1007/s12015-023-10568-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10568-4

Keywords

Navigation