Skip to main content

Advertisement

Log in

Bone Marrow Mesenchymal Stem Cells: Biological Properties and Their Role in Hematopoiesis and Hematopoietic Stem Cell Transplantation

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are multipotent adult stem cells that are present in practically all tissues as a specialized population of mural cells/pericytes that lie on the abluminal side of blood vessels. Originally identified within the bone marrow (BM) stroma, not only do they provide microenvironmental support for hematopoietic stem cells (HSCs), but can also differentiate into various mesodermal lineages. MSCs can easily be isolated from the BM and subsequently expand in vitro and in addition they exhibit intriguing immunomodulatory properties, thereby emerging as attractive candidates for various therapeutic applications. This review addresses the concept of BM MSCs via a hematologist’s point of view. In this context it discusses the stem cell properties that have been attributed to BM MSCs, as compared to those of the prototypic hematopoietic stem cell model and then gives a brief overview of the in vitro and vivo features of the former, emphasizing on their immunoregulatory properties and their hematopoiesis-supporting role. In addition, the qualitative and quantitative characteristics of BM MSCs within the context of a defective microenvironment, such as the one characterizing Myelodysplastic Syndromes are described and the potential involvement of these cells in the pathophysiology of the disease is discussed. Finally, emerging clinical applications of BM MSCs in the field of hematopoietic stem cell transplantation are reviewed and potential hazards from MSC use are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4(1–2), 7–25.

    PubMed  CAS  Google Scholar 

  2. Friedenstein, A. J. (1990). Osteogenic stem cells in Bone Marrow. In J. N. M. Heersche & J. A. Kanis (Eds.), Bone and mineral research (pp. 243–272). Amsterdam: Elsevier.

    Google Scholar 

  3. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    Article  PubMed  CAS  Google Scholar 

  4. Bianco, P., Robey, P. G., & Simmons, P. J. (2008). Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell, 2(4), 313–319.

    Article  PubMed  CAS  Google Scholar 

  5. Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5), 641–650.

    Article  PubMed  CAS  Google Scholar 

  6. Horwitz, E. M., Le, B. K., Dominici, M., et al. (2005). Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy, 7(5), 393–395.

    Article  PubMed  CAS  Google Scholar 

  7. Kuznetsov, S. A., Friedenstein, A. J., & Robey, P. G. (1997). Factors required for bone marrow stromal fibroblast colony formation in vitro. British Journal Haematology, 97(3), 561–570.

    Article  CAS  Google Scholar 

  8. Satomura, K., Krebsbach, P., Bianco, P., & Gehron, R. P. (2000). Osteogenic imprinting upstream of marrow stromal cell differentiation. Journal of Cellular Biochemistry, 78(3), 391–403.

    Article  PubMed  CAS  Google Scholar 

  9. Bianco, P., Robey, P. G., Saggio, I., & Riminucci, M. (2010). “Mesenchymal” stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease. Human Gene Therapy, 21(9), 1057–1066.

    Article  PubMed  CAS  Google Scholar 

  10. Sacchetti, B., Funari, A., Michienzi, S., et al. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131(2), 324–336.

    Article  PubMed  CAS  Google Scholar 

  11. Morikawa, S., Mabuchi, Y., Kubota, Y., et al. (2009). Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. The Journal of Experimental Medicine, 206(11), 2483–2496.

    Article  PubMed  CAS  Google Scholar 

  12. van Os, R., Kamminga, L. M., & de Haan, G. (2004). Stem cell assays: something old, something new, something borrowed. Stem Cells, 22(7), 1181–1190.

    Article  PubMed  Google Scholar 

  13. Dominici, M., Le, B. K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  PubMed  CAS  Google Scholar 

  14. Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25(11), 2739–2749.

    Article  PubMed  CAS  Google Scholar 

  15. Mosna, F., Sensebe, L., & Krampera, M. (2010). Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells and Development, 19(10), 1449–1470.

    Article  PubMed  CAS  Google Scholar 

  16. Galmiche, M. C., Koteliansky, V. E., Briere, J., Herve, P., & Charbord, P. (1993). Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood, 82(1), 66–76.

    PubMed  CAS  Google Scholar 

  17. Remy-Martin, J. P., Marandin, A., Challier, B., et al. (1999). Vascular smooth muscle differentiation of murine stroma: a sequential model. Experimental Hematology, 27(12), 1782–1795.

    Article  PubMed  CAS  Google Scholar 

  18. Delorme, B., Ringe, J., Pontikoglou, C., et al. (2009). Specific lineage-priming of bone marrow mesenchymal stem cells provides the molecular framework for their plasticity. Stem Cells, 27(5), 1142–1151.

    Article  PubMed  CAS  Google Scholar 

  19. Wakitani, S., Saito, T., & Caplan, A. I. (1995). Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle & Nerve, 18(12), 1417–1426.

    Article  CAS  Google Scholar 

  20. Makino, S., Fukuda, K., Miyoshi, S., et al. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. Journal of Clinical Investigation, 103(5), 697–705.

    Article  PubMed  CAS  Google Scholar 

  21. Oswald, J., Boxberger, S., Jorgensen, B., et al. (2004). Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells, 22(3), 377–384.

    Article  PubMed  Google Scholar 

  22. Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61(4), 364–370.

    Article  PubMed  CAS  Google Scholar 

  23. Chagraoui, J., Lepage-Noll, A., Anjo, A., Uzan, G., & Charbord, P. (2003). Fetal liver stroma consists of cells in epithelial-to-mesenchymal transition. Blood, 101(8), 2973–2982.

    Article  PubMed  CAS  Google Scholar 

  24. Charbord, P. (2010). Bone marrow mesenchymal stem cells: historical overview and concepts. Human Gene Therapy, 21(9), 1045–1056.

    Article  PubMed  CAS  Google Scholar 

  25. Delorme, B., Ringe, J., Gallay, N., et al. (2008). Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood, 111(5), 2631–2635.

    Article  PubMed  CAS  Google Scholar 

  26. Kastrinaki, M. C., Andreakou, I., Charbord, P., & Papadaki, H. A. (2008). Isolation of human bone marrow mesenchymal stem cells using different membrane markers: comparison of colony/cloning efficiency, differentiation potential, and molecular profile. Tissue Engineering Part C Methods, 14(4), 333–339.

    Article  PubMed  CAS  Google Scholar 

  27. da Silva, M. L., Caplan, A. I., & Nardi, N. B. (2008). In search of the in vivo identity of mesenchymal stem cells. Stem Cells, 26(9), 2287–2299.

    Article  Google Scholar 

  28. Deschaseaux, F., Pontikoglou, C., & Sensebe, L. (2010). Bone regeneration: the stem/progenitor cells point of view. Journal of Cellular and Molecular Medicine, 14(1–2), 103–115.

    Article  PubMed  CAS  Google Scholar 

  29. Patel, S. A., Sherman, L., Munoz, J., & Rameshwar, P. (2008). Immunological properties of mesenchymal stem cells and clinical implications. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 56(1), 1–8.

    Article  CAS  Google Scholar 

  30. Bruder, S. P., Jaiswal, N., & Haynesworth, S. E. (1997). Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. Journal of Cellular Biochemistry, 64(2), 278–294.

    Article  PubMed  CAS  Google Scholar 

  31. Castro-Malaspina, H., Gay, R. E., Resnick, G., et al. (1980). Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood, 56(2), 289–301.

    PubMed  CAS  Google Scholar 

  32. Pontikoglou, C., Delorme, B., & Charbord, P. (2008). Human bone marrow native mesenchymal stem cells. Regenerative Medicine, 3(5), 731–741.

    Article  PubMed  CAS  Google Scholar 

  33. Simmons, P. J., & Torok-Storb, B. (1991). Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood, 78(1), 55–62.

    PubMed  CAS  Google Scholar 

  34. Martinez, C., Hofmann, T. J., Marino, R., Dominici, M., & Horwitz, E. M. (2007). Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood, 109(10), 4245–4248.

    Article  PubMed  CAS  Google Scholar 

  35. Gang, E. J., Bosnakovski, D., Figueiredo, C. A., Visser, J. W., & Perlingeiro, R. C. (2007). SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood, 109(4), 1743–1751.

    Article  PubMed  CAS  Google Scholar 

  36. Deschaseaux, F., & Charbord, P. (2000). Human marrow stromal precursors are alpha 1 integrin subunit-positive. Journal of Cellular Physiology, 184(3), 319–325.

    Article  PubMed  CAS  Google Scholar 

  37. Shi, S., & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research, 18(4), 696–704.

    Article  PubMed  Google Scholar 

  38. Quirici, N., Soligo, D., Bossolasco, P., Servida, F., Lumini, C., & Deliliers, G. L. (2002). Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Experimental Hematology, 30(7), 783–791.

    Article  PubMed  CAS  Google Scholar 

  39. Takashima, Y., Era, T., Nakao, K., et al. (2007). Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell, 129(7), 1377–1388.

    Article  PubMed  CAS  Google Scholar 

  40. Morikawa, S., Mabuchi, Y., Niibe, K., et al. (2009). Development of mesenchymal stem cells partially originate from the neural crest. Biochemical and Biophysical Research Communications, 379(4), 1114–1119.

    Article  PubMed  CAS  Google Scholar 

  41. Crisan, M., Yap, S., Casteilla, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–313.

    Article  PubMed  CAS  Google Scholar 

  42. da Silva, M. L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(Pt 11), 2204–2213.

    Google Scholar 

  43. Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., et al. (1999). Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Natural Medicines, 5(3), 309–313.

    Article  CAS  Google Scholar 

  44. Le, B. K., & Ringden, O. (2006). Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. Current Opinion in Immunology, 18(5), 586–591.

    Article  CAS  Google Scholar 

  45. Sensebe, L., Krampera, M., Schrezenmeier, H., Bourin, P., & Giordano, R. (2010). Mesenchymal stem cells for clinical application. Vox Sanguinis, 98(2), 93–107.

    Article  PubMed  CAS  Google Scholar 

  46. Prockop, D. J. (2009). Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Molecular Therapy, 17(6), 939–946.

    Article  PubMed  CAS  Google Scholar 

  47. da Silva Meirelles, L., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 20(5-6), 419–427.

    Article  CAS  Google Scholar 

  48. Uccelli, A., Moretta, L., & Pistoia, V. (2006). Immunoregulatory function of mesenchymal stem cells. European Journal of Immunology, 36(10), 2566–2573.

    Article  PubMed  CAS  Google Scholar 

  49. Le Blanc, K., & Ringden, O. (2007). Immunomodulation by mesenchymal stem cells and clinical experience. Journal of Internal Medicine, 262(5), 509–525.

    Article  PubMed  CAS  Google Scholar 

  50. Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110(10), 3499–3506.

    Article  PubMed  CAS  Google Scholar 

  51. Uccelli, A., Pistoia, V., & Moretta, L. (2007). Mesenchymal stem cells: a new strategy for immunosuppression? Trends in Immunology, 28(5), 219–226.

    Article  PubMed  CAS  Google Scholar 

  52. Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 8(9), 726–736.

    Article  PubMed  CAS  Google Scholar 

  53. Bernardo, M. E., Locatelli, F., & Fibbe, W. E. (2009). Mesenchymal stromal cells. Annals of the New York Academy of Sciences, 1176, 101–117.

    Article  PubMed  CAS  Google Scholar 

  54. Siegel, G., Schafer, R., & Dazzi, F. (2009). The immunosuppressive properties of mesenchymal stem cells. Transplantation, 87(9 Suppl), S45–S49.

    Article  PubMed  Google Scholar 

  55. Eliopoulos, N., Stagg, J., Lejeune, L., Pommey, S., & Galipeau, J. (2005). Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood, 106(13), 4057–4065.

    Article  PubMed  CAS  Google Scholar 

  56. Nauta, A. J., Westerhuis, G., Kruisselbrink, A. B., Lurvink, E. G., Willemze, R., & Fibbe, W. E. (2006). Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 108(6), 2114–2120.

    Article  PubMed  CAS  Google Scholar 

  57. Tse, W. T., Pendleton, J. D., Beyer, W. M., Egalka, M. C., & Guinan, E. C. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 75(3), 389–397.

    Article  PubMed  CAS  Google Scholar 

  58. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  59. Krampera, M., Vitale, A., Vincenzi, C., et al. (2003). Outcome prediction by immunophenotypic minimal residual disease detection in adult T-cell acute lymphoblastic leukaemia. British Journal Haematology, 120(1), 74–79.

    Article  Google Scholar 

  60. Djouad, F., Plence, P., Bony, C., et al. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102(10), 3837–3844.

    Article  PubMed  CAS  Google Scholar 

  61. Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105(7), 2821–2827.

    Article  PubMed  CAS  Google Scholar 

  62. Benvenuto, F., Ferrari, S., Gerdoni, E., et al. (2007). Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells, 25(7), 1753–1760.

    Article  PubMed  CAS  Google Scholar 

  63. Maccario, R., Podesta, M., Moretta, A., et al. (2005). Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica, 90(4), 516–525.

    PubMed  CAS  Google Scholar 

  64. Selmani, Z., Naji, A., Zidi, I., et al. (2008). Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+ CD25highFOXP3+ regulatory T cells. Stem Cells, 26(1), 212–222.

    Article  PubMed  CAS  Google Scholar 

  65. Opitz, C. A., Litzenburger, U. M., Lutz, C., et al. (2009). Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2, 3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells, 27(4), 909–919.

    Article  PubMed  CAS  Google Scholar 

  66. Liotta, F., Angeli, R., Cosmi, L., et al. (2008). Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells, 26(1), 279–289.

    Article  PubMed  CAS  Google Scholar 

  67. Augello, A., Tasso, R., Negrini, S. M., et al. (2005). Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. European Journal of Immunology, 35(5), 1482–1490.

    Article  PubMed  CAS  Google Scholar 

  68. Corcione, A., Benvenuto, F., Ferretti, E., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107(1), 367–372.

    Article  PubMed  CAS  Google Scholar 

  69. Rasmusson, I., Le, B. K., Sundberg, B., & Ringden, O. (2007). Mesenchymal stem cells stimulate antibody secretion in human B cells. Scandinavian Journal of Immunology, 65(4), 336–343.

    Article  PubMed  CAS  Google Scholar 

  70. Traggiai, E., Volpi, S., Schena, F., et al. (2008). Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells, 26(2), 562–569.

    Article  PubMed  CAS  Google Scholar 

  71. Jiang, W., Ma, A., Wang, T., et al. (2006). Intravenous transplantation of mesenchymal stem cells improves cardiac performance after acute myocardial ischemia in female rats. Transplant International, 19(7), 570–580.

    Article  PubMed  Google Scholar 

  72. Spaggiari, G. M., Abdelrazik, H., Becchetti, F., & Moretta, L. (2009). MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood, 113(26), 6576–6583.

    Article  PubMed  CAS  Google Scholar 

  73. Zhao, S., Wehner, R., Bornhauser, M., Wassmuth, R., Bachmann, M., & Schmitz, M. (2010). Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells and Development, 19(5), 607–614.

    Article  PubMed  CAS  Google Scholar 

  74. Kim, J., & Hematti, P. (2009). Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Experimental Hematology, 37(12), 1445–1453.

    Article  PubMed  CAS  Google Scholar 

  75. Raffaghello, L., Bianchi, G., Bertolotto, M., et al. (2008). Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells, 26(1), 151–162.

    Article  PubMed  CAS  Google Scholar 

  76. Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., & Papamichail, M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 24(1), 74–85.

    Article  PubMed  Google Scholar 

  77. Spaggiari, G. M., Capobianco, A., Becchetti, S., Mingari, M. C., & Moretta, L. (2006). Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 107(4), 1484–1490.

    Article  PubMed  CAS  Google Scholar 

  78. Spaggiari, G. M., Capobianco, A., Abdelrazik, H., Becchetti, F., Mingari, M. C., & Moretta, L. (2008). Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2, 3-dioxygenase and prostaglandin E2. Blood, 111(3), 1327–1333.

    Article  PubMed  CAS  Google Scholar 

  79. Stagg, J., Pommey, S., Eliopoulos, N., & Galipeau, J. (2006). Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood, 107(6), 2570–2577.

    Article  PubMed  CAS  Google Scholar 

  80. Chan, W. K., Lau, A. S., Li, J. C., Law, H. K., Lau, Y. L., & Chan, G. C. (2008). MHC expression kinetics and immunogenicity of mesenchymal stromal cells after short-term IFN-gamma challenge. Experimental Hematology, 36(11), 1545–1555.

    Article  PubMed  CAS  Google Scholar 

  81. Francois, M., Romieu-Mourez, R., Stock-Martineau, S., Boivin, M. N., Bramson, J. L., & Galipeau, J. (2009). Mesenchymal stromal cells cross-present soluble exogenous antigens as part of their antigen-presenting cell properties. Blood, 114(13), 2632–2638.

    PubMed  CAS  Google Scholar 

  82. Krebsbach, P. H., Kuznetsov, S. A., Bianco, P., & Robey, P. G. (1999). Bone marrow stromal cells: characterization and clinical application. Critical Reviews in Oral Biology and Medicine, 10(2), 165–181.

    Article  PubMed  CAS  Google Scholar 

  83. Dexter, T. M., Allen, T. D., & Lajtha, L. G. (1977). Conditions controlling the proliferation of haemopoietic stem cells in vitro. Journal of Cellular Physiology, 91(3), 335–344.

    Article  PubMed  CAS  Google Scholar 

  84. Dennis, J. E., Carbillet, J. P., Caplan, A. I., & Charbord, P. (2002). The STRO-1+ marrow cell population is multipotential. Cells, Tissues, Organs, 170(2–3), 73–82.

    Article  PubMed  Google Scholar 

  85. Charbord, P., Tavian, M., Humeau, L., & Peault, B. (1996). Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood, 87(10), 4109–4119.

    PubMed  CAS  Google Scholar 

  86. Westen, H., & Bainton, D. F. (1979). Association of alkaline-phosphatase-positive reticulum cells in bone marrow with granulocytic precursors. The Journal of Experimental Medicine, 150(4), 919–937.

    Article  PubMed  CAS  Google Scholar 

  87. Cattoretti, G., Schiro, R., Orazi, A., Soligo, D., & Colombo, M. P. (1993). Bone marrow stroma in humans: anti-nerve growth factor receptor antibodies selectively stain reticular cells in vivo and in vitro. Blood, 81(7), 1726–1738.

    PubMed  CAS  Google Scholar 

  88. Omatsu, Y., Sugiyama, T., Kohara, H., et al. (2010). The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity, 33(3), 387–399.

    Article  PubMed  CAS  Google Scholar 

  89. Sugiyama, T., Kohara, H., Noda, M., & Nagasawa, T. (2006). Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 25(6), 977–988.

    Article  PubMed  CAS  Google Scholar 

  90. Wilson, A., & Trumpp, A. (2009). Hematopoietic stem cell niches. In A. Wickrema & B. Kee (Eds.), Molecular basis of hematopoiesis (pp. 47–71). New York: Springer.

    Chapter  Google Scholar 

  91. Chan, C. K., Chen, C. C., Luppen, C. A., et al. (2009). Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature, 457(7228), 490–494.

    Article  PubMed  CAS  Google Scholar 

  92. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121(7), 1109–1121.

    Article  PubMed  CAS  Google Scholar 

  93. Lo Celco, C., Fleming, H. E., Wu, J. W., et al. (2009). Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature, 457(7225), 92–96.

    Article  CAS  Google Scholar 

  94. Xie, Y., Yin, T., Wiegraebe, W., et al. (2009). Detection of functional haematopoietic stem cell niche using real-time imaging. Nature, 457(7225), 97–101.

    Article  PubMed  CAS  Google Scholar 

  95. Mendez-Ferrer, S., Michurina, T. V., Ferraro, F., et al. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466(7308), 829–834.

    Article  PubMed  CAS  Google Scholar 

  96. Mendez-Ferrer, S., Chow, A., Merad, M., & Frenette, P. S. (2009). Circadian rhythms influence hematopoietic stem cells. Current Opinion in Hematology, 16(4), 235–242.

    Article  PubMed  CAS  Google Scholar 

  97. Koc, O. N., Gerson, S. L., Cooper, B. W., et al. (2000). Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of Clinical Oncology, 18(2), 307–316.

    PubMed  CAS  Google Scholar 

  98. Devine, S. M., Bartholomew, A. M., Mahmud, N., et al. (2001). Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Experimental Hematology, 29(2), 244–255.

    Article  PubMed  CAS  Google Scholar 

  99. In ’t Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., et al. (2003). Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 102(4), 1548–1549.

    Article  PubMed  Google Scholar 

  100. Bensidhoum, M., Chapel, A., Francois, S., et al. (2004). Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood, 103(9), 3313–3319.

    Article  PubMed  CAS  Google Scholar 

  101. Muguruma, Y., Yahata, T., Miyatake, H., et al. (2006). Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood, 107(5), 1878–1887.

    Article  PubMed  CAS  Google Scholar 

  102. Gao, J., Dennis, J. E., Muzic, R. F., Lundberg, M., & Caplan, A. I. (2001). The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells, Tissues, Organs, 169(1), 12–20.

    Article  PubMed  CAS  Google Scholar 

  103. Barbash, I. M., Chouraqui, P., Baron, J., et al. (2003). Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation, 108(7), 863–868.

    Article  PubMed  Google Scholar 

  104. Lee, R. H., Pulin, A. A., Seo, M. J., et al. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5(1), 54–63.

    Article  PubMed  CAS  Google Scholar 

  105. Dazzi, F., Ramasamy, R., Glennie, S., Jones, S. P., & Roberts, I. (2006). The role of mesenchymal stem cells in haemopoiesis. Blood Reviews, 20(3), 161–171.

    Article  PubMed  CAS  Google Scholar 

  106. Majumdar, M. K., Thiede, M. A., Haynesworth, S. E., Bruder, S. P., & Gerson, S. L. (2000). Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. Journal of Hematotherapy & Stem Cell Research, 9(6), 841–848.

    Article  CAS  Google Scholar 

  107. Di, N. M., Carlo-Stella, C., Magni, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843.

    Article  Google Scholar 

  108. Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276(5309), 71–74.

    Article  PubMed  CAS  Google Scholar 

  109. Majumdar, M. K., Thiede, M. A., Mosca, J. D., Moorman, M., & Gerson, S. L. (1998). Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. Journal of Cellular Physiology, 176(1), 57–66.

    Article  PubMed  CAS  Google Scholar 

  110. Gottschling, S., Saffrich, R., Seckinger, A., et al. (2007). Human mesenchymal stromal cells regulate initial self-renewing divisions of hematopoietic progenitor cells by a beta1-integrin-dependent mechanism. Stem Cells, 25(3), 798–806.

    Article  PubMed  CAS  Google Scholar 

  111. Cheng, L., Qasba, P., Vanguri, P., & Thiede, M. A. (2000). Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. Journal of Cellular Physiology, 184(1), 58–69.

    Article  PubMed  CAS  Google Scholar 

  112. Ichii, M., Oritani, K., Yokota, T., et al. (2008). Regulation of human B lymphopoiesis by the transforming growth factor-beta superfamily in a newly established coculture system using human mesenchymal stem cells as a supportive microenvironment. Experimental Hematology, 36(5), 587–597.

    Article  PubMed  CAS  Google Scholar 

  113. Morad, V., Pevsner-Fischer, M., Barnees, S., et al. (2008). The myelopoietic supportive capacity of mesenchymal stromal cells is uncoupled from multipotency and is influenced by lineage determination and interference with glycosylation. Stem Cells, 26(9), 2275–2286.

    Article  PubMed  CAS  Google Scholar 

  114. Lord, B. I., Testa, N. G., & Hendry, J. H. (1975). The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood, 46(1), 65–72.

    PubMed  CAS  Google Scholar 

  115. Gong, J. K. (1978). Endosteal marrow: a rich source of hematopoietic stem cells. Science, 199(4336), 1443–1445.

    Article  PubMed  CAS  Google Scholar 

  116. Askmyr, M., Sims, N. A., Martin, T. J., & Purton, L. E. (2009). What is the true nature of the osteoblastic hematopoietic stem cell niche? Trends in Endocrinology and Metabolism, 20(6), 303–309.

    Article  PubMed  CAS  Google Scholar 

  117. Taichman, R. S. (2005). Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood, 105(7), 2631–2639.

    Article  PubMed  CAS  Google Scholar 

  118. Taichman, R. S., & Emerson, S. G. (1998). The role of osteoblasts in the hematopoietic microenvironment. Stem Cells, 16(1), 7–15.

    Article  PubMed  CAS  Google Scholar 

  119. Zhu, J., Garrett, R., Jung, Y., et al. (2007). Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood, 109(9), 3706–3712.

    Article  PubMed  CAS  Google Scholar 

  120. Visnjic, D., Kalajzic, Z., Rowe, D. W., Katavic, V., Lorenzo, J., & Aguila, H. L. (2004). Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood, 103(9), 3258–3264.

    Article  PubMed  CAS  Google Scholar 

  121. Taichman, R. S., & Emerson, S. G. (1994). Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. The Journal of Experimental Medicine, 179(5), 1677–1682.

    Article  PubMed  CAS  Google Scholar 

  122. Calvi, L. M., Adams, G. B., Weibrecht, K. W., et al. (2003). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425(6960), 841–846.

    Article  PubMed  CAS  Google Scholar 

  123. Zhang, J., Niu, C., Ye, L., et al. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425(6960), 836–841.

    Article  PubMed  CAS  Google Scholar 

  124. Kiel, M. J., & Morrison, S. J. (2008). Uncertainty in the niches that maintain haematopoietic stem cells. Nature Reviews Immunology, 8(4), 290–301.

    Article  PubMed  CAS  Google Scholar 

  125. Lymperi, S., Horwood, N., Marley, S., Gordon, M. Y., Cope, A. P., & Dazzi, F. (2008). Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood, 111(3), 1173–1181.

    Article  PubMed  CAS  Google Scholar 

  126. Raaijmakers, M. H., Mukherjee, S., Guo, S., et al. (2010). Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature, 464(7290), 852–857.

    Article  PubMed  CAS  Google Scholar 

  127. Carlesso, N., & Cardoso, A. A. (2010). Stem cell regulatory niches and their role in normal and malignant hematopoiesis. Current Opinion in Hematology, 17(4), 281–286.

    Article  PubMed  CAS  Google Scholar 

  128. Oh, I. H., & Kwon, K. R. (2010). Concise review: multiple niches for hematopoietic stem cell regulations. Stem Cells, 28(7), 1243–1249.

    PubMed  CAS  Google Scholar 

  129. Naveiras, O., Nardi, V., Wenzel, P. L., Hauschka, P. V., Fahey, F., & Daley, G. Q. (2009). Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature, 460(7252), 259–263.

    Article  PubMed  CAS  Google Scholar 

  130. Mufti, G. J. (2004). Pathobiology, classification, and diagnosis of myelodysplastic syndrome. Best Practice & Research Clinical Haematology, 17(4), 543–557.

    Google Scholar 

  131. Greenberg, P. (2005). Pathogenetic mechanisms underlying myelodysplastic syndromes. In P. L. Greenberg (Ed.), Myelodysplastic syndromes: Clincal and biological advances (pp. 63–93). New York: Cambridge University Press.

    Chapter  Google Scholar 

  132. Kastrinaki, M. C., Pontikoglou, C., Klaus, M., Stavroulaki, E., Pavlaki, K., Papadaki, H. A. (2010). Biologic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes. Curr Stem Cell Res Ther.

  133. Flores-Figueroa, E., Arana-Trejo, R. M., Gutierrez-Espindola, G., Perez-Cabrera, A., & Mayani, H. (2005). Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leukemia Research, 29(2), 215–224.

    Article  PubMed  CAS  Google Scholar 

  134. Klaus, M., Stavroulaki, E., Kastrinaki, M. C., et al. (2009). Reserves, functional, immunoregulatory and cytogenetic properties of bone marrow mesenchymal stem cells in patients with myelodysplastic syndromes. Stem Cells and Development, 19(7), 1043–1054.

    Article  CAS  Google Scholar 

  135. Campioni, D., Moretti, S., Ferrari, L., Punturieri, M., Castoldi, G. L., & Lanza, F. (2006). Immunophenotypic heterogeneity of bone marrow-derived mesenchymal stromal cells from patients with hematologic disorders: correlation with bone marrow microenvironment. Haematologica, 91(3), 364–368.

    PubMed  Google Scholar 

  136. Campioni, D., Rizzo, R., Stignani, M., et al. (2009). A decreased positivity for CD90 on human mesenchymal stromal cells (MSCs) is associated with a loss of immunosuppressive activity by MSCs. Cytometry Part B: Clinical Cytometry, 76(3), 225–230.

    Article  CAS  Google Scholar 

  137. Lopez-Villar, O., Garcia, J. L., Sanchez-Guijo, F. M., et al. (2009). Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q- syndrome. Leukemia, 23(4), 664–672.

    Article  PubMed  CAS  Google Scholar 

  138. Flores-Figueroa, E., Montesinos, J. J., Flores-Guzman, P., et al. (2008). Functional analysis of myelodysplastic syndromes-derived mesenchymal stem cells. Leukemia Research, 32(9), 1407–1416.

    Article  PubMed  CAS  Google Scholar 

  139. Zipori, D., Reichman, N., Arcavi, L., Shtalrid, M., Berrebi, A., & Resnitzky, P. (1985). In vitro functions of stromal cells from human and mouse bone marrow. Experimental Hematology, 13(7), 603–609.

    PubMed  CAS  Google Scholar 

  140. Varga, G., Kiss, J., Varkonyi, J., et al. (2007). Inappropriate Notch activity and limited mesenchymal stem cell plasticity in the bone marrow of patients with myelodysplastic syndromes. Pathology Oncology Research, 13(4), 311–319.

    Article  PubMed  CAS  Google Scholar 

  141. Kastrinaki, M. C., & Papadaki, H. A. (2009). Mesenchymal stromal cells in rheumatoid arthritis: biological properties and clinical applications. Current Stem Cell Research & Therapy, 4(1), 61–69.

    Article  CAS  Google Scholar 

  142. Soenen-Cornu, V., Tourino, C., Bonnet, M. L., et al. (2005). Mesenchymal cells generated from patients with myelodysplastic syndromes are devoid of chromosomal clonal markers and support short- and long-term hematopoiesis in vitro. Oncogene, 24(15), 2441–2448.

    Article  PubMed  CAS  Google Scholar 

  143. Ramakrishnan, A., Awaya, N., Bryant, E., & Torok-Storb, B. (2006). The stromal component of the marrow microenvironment is not derived from the malignant clone in MDS. Blood, 108(2), 772–773.

    Article  PubMed  CAS  Google Scholar 

  144. Blau, O., Hofmann, W. K., Baldus, C. D., et al. (2007). Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Experimental Hematology, 35(2), 221–229.

    Article  PubMed  CAS  Google Scholar 

  145. Tarte, K., Gaillard, J., Lataillade, J. J., et al. (2010). Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood, 115(8), 1549–1553.

    Article  PubMed  CAS  Google Scholar 

  146. Ozisik, Y. Y., Morgan, R., Peier, A., Meloni, A. M., & Sandberg, A. A. (1994). Trisomy 5 in long-term cultures from bone marrow of patients with solid tumors. Cancer Genetics and Cytogenetics, 78(2), 207–209.

    Article  PubMed  CAS  Google Scholar 

  147. Johansson, B., Heim, S., Mandahl, N., Mertens, F., & Mitelman, F. (1993). Trisomy 7 in nonneoplastic cells. Genes, Chromosomes & Cancer, 6(4), 199–205.

    Article  CAS  Google Scholar 

  148. Broberg, K., Toksvig-Larsen, S., Lindstrand, A., & Mertens, F. (2001). Trisomy 7 accumulates with age in solid tumors and non-neoplastic synovia. Genes, Chromosomes & Cancer, 30(3), 310–315.

    Article  CAS  Google Scholar 

  149. Kinne, R. W., Kunisch, E., Beensen, V., et al. (2003). Synovial fibroblasts and synovial macrophages from patients with rheumatoid arthritis and other inflammatory joint diseases show chromosomal aberrations. Genes, Chromosomes & Cancer, 38(1), 53–67.

    Article  Google Scholar 

  150. Sloand, E. M., & Rezvani, K. (2008). The role of the immune system in myelodysplasia: implications for therapy. Seminars in Hematology, 45(1), 39–48.

    Article  PubMed  CAS  Google Scholar 

  151. Han, Q., Sun, Z., Liu, L., et al. (2007). Impairment in immuno-modulatory function of Flk1(+)CD31(-)CD34(-) MSCs from MDS-RA patients. Leukemia Research, 31(11), 1469–1478.

    Article  PubMed  CAS  Google Scholar 

  152. Zhi-Gang, Z., Wei-Ming, L., Zhi-Chao, C., Yong, Y., & Ping, Z. (2008). Immunosuppressive properties of mesenchymal stem cells derived from bone marrow of patient with hematological malignant diseases. Leukaemia & Lymphoma, 49(11), 2187–2195.

    Article  CAS  Google Scholar 

  153. Ferrara, J. L., Levine, J. E., Reddy, P., & Holler, E. (2009). Graft-versus-host disease. Lancet, 373(9674), 1550–1561.

    Article  PubMed  CAS  Google Scholar 

  154. Bacigalupo, A. (2007). Management of acute graft-versus-host disease. British Journal Haematology, 137(2), 87–98.

    Article  CAS  Google Scholar 

  155. Chung, N. G., Jeong, D. C., Park, S. J., et al. (2004). Cotransplantation of marrow stromal cells may prevent lethal graft-versus-host disease in major histocompatibility complex mismatched murine hematopoietic stem cell transplantation. International Journal of Hematology, 80(4), 370–376.

    Article  PubMed  Google Scholar 

  156. Sudres, M., Norol, F., Trenado, A., et al. (2006). Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. Journal of Immunology, 176(12), 7761–7767.

    CAS  Google Scholar 

  157. Le Blanc, K., Rasmusson, I., Sundberg, B., et al. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363(9419), 1439–1441.

    Article  PubMed  Google Scholar 

  158. Ringden, O., Uzunel, M., Rasmusson, I., et al. (2006). Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 81(10), 1390–1397.

    Article  PubMed  Google Scholar 

  159. Fang, B., Song, Y., Liao, L., Zhang, Y., & Zhao, R. C. (2007). Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplantation Proceedings, 39(10), 3358–3362.

    Article  PubMed  CAS  Google Scholar 

  160. Muller, I., Kordowich, S., Holzwarth, C., et al. (2008). Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells, Molecules & Diseases, 40(1), 25–32.

    Article  Google Scholar 

  161. Le Blanc, K., Frassoni, F., Ball, L., et al. (2008). Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 371(9624), 1579–1586.

    Article  PubMed  CAS  Google Scholar 

  162. von Bonin, M., Stolzel, F., Goedecke, A., et al. (2009). Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplantation, 43(3), 245–251.

    Article  CAS  Google Scholar 

  163. Lucchini, G., Introna, M., Dander, E., et al. (2010). PL-expanded mesenchymal stromal cells as a salvage therapy for severe resistant graft versus host disease in a pediatric population. Biology of Blood and Marrow Transplantation, 16(9), 1293–1301.

    Article  PubMed  Google Scholar 

  164. Kurtzerbrg, J., Prasad, V., Grimley, M., et al. (2010). Allogeneic human mesenchymal stem cell therapy (PROCHYMAL®) as a rescue agent for severe treatment resistant GVHD in pediatric patients. Biology of Blood and Marrow Transplantation, 16(2), S169.

    Article  Google Scholar 

  165. Martin, P. J., Uberti, J. P., Soiffer, R. J., et al. (2010). Prochymal improves response rates in patients with steroid-refractory acute graft versus host disease (SR-GVHD) involving the liver and gut: results of a roandomizwd placebo-controlled, multicenter phase III trial in GVHD. Biology of Blood and Marrow Transplantation, 16(2), 169–170.

    Article  Google Scholar 

  166. Kebriaei, P., Isola, L., Bahceci, E., et al. (2009). Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biology of Blood and Marrow Transplantation, 15(7), 804–811.

    Article  PubMed  CAS  Google Scholar 

  167. Ning, H., Yang, F., Jiang, M., et al. (2008). The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia, 22(3), 593–599.

    Article  PubMed  CAS  Google Scholar 

  168. Almeida-Porada, G., Flake, A. W., Glimp, H. A., & Zanjani, E. D. (1999). Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Experimental Hematology, 27(10), 1569–1575.

    Article  PubMed  CAS  Google Scholar 

  169. In ’t Anker, P. S., Noort, W. A., Kruisselbrink, A. B., et al. (2003). Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Experimental Hematology, 31(10), 881–889.

    Article  PubMed  Google Scholar 

  170. Maitra, B., Szekely, E., Gjini, K., et al. (2004). Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplantation, 33(6), 597–604.

    Article  PubMed  CAS  Google Scholar 

  171. Angelopoulou, M., Novelli, E., Grove, J. E., et al. (2003). Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Experimental Hematology, 31(5), 413–420.

    Article  PubMed  CAS  Google Scholar 

  172. Lazarus, H. M., Haynesworth, S. E., Gerson, S. L., Rosenthal, N. S., & Caplan, A. I. (1995). Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplantation, 16(4), 557–564.

    PubMed  CAS  Google Scholar 

  173. Lazarus, H. M., Koc, O. N., Devine, S. M., et al. (2005). Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation, 11(5), 389–398.

    Article  PubMed  Google Scholar 

  174. Le Blanc, K., Samuelsson, H., Gustafsson, B., et al. (2007). Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia, 21(8), 1733–1738.

    Article  PubMed  CAS  Google Scholar 

  175. Ball, L. M., Bernardo, M. E., Roelofs, H., et al. (2007). Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood, 110(7), 2764–2767.

    Article  PubMed  CAS  Google Scholar 

  176. Meuleman, N., Tondreau, T., Ahmad, I., et al. (2009). Infusion of mesenchymal stromal cells can aid hematopoietic recovery following allogeneic hematopoietic stem cell myeloablative transplant: a pilot study. Stem Cells and Development, 18(9), 1247–1252.

    Article  PubMed  Google Scholar 

  177. Karlsson, H., Samarasinghe, S., Ball, L. M., et al. (2008). Mesenchymal stem cells exert differential effects on alloantigen and virus-specific T-cell responses. Blood, 112(3), 532–541.

    Article  PubMed  CAS  Google Scholar 

  178. Baron, F., Lechanteur, C., Willems, E., et al. (2010). Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biology of Blood and Marrow Transplantation, 16(6), 838–847.

    Article  PubMed  Google Scholar 

  179. Macmillan, M. L., Blazar, B. R., DeFor, T. E., & Wagner, J. E. (2009). Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplantation, 43(6), 447–454.

    Article  PubMed  CAS  Google Scholar 

  180. Gonzalo-Daganzo, R., Regidor, C., Martin-Donaire, T., et al. (2009). Results of a pilot study on the use of third-party donor mesenchymal stromal cells in cord blood transplantation in adults. Cytotherapy, 11(3), 278–288.

    Article  PubMed  CAS  Google Scholar 

  181. Bernardo, M. E., Ball, L. M., Cometa, A. M., et al. (2010). Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow Transplant.

  182. Kushida, T., Inaba, M., Hisha, H., et al. (2001). Intra-bone marrow injection of allogeneic bone marrow cells: a powerful new strategy for treatment of intractable autoimmune diseases in MRL/lpr mice. Blood, 97(10), 3292–3299.

    Article  PubMed  CAS  Google Scholar 

  183. Poloni, A., Leoni, P., Buscemi, L., et al. (2006). Engraftment capacity of mesenchymal cells following hematopoietic stem cell transplantation in patients receiving reduced-intensity conditioning regimen. Leukemia, 20(2), 329–335.

    Article  PubMed  CAS  Google Scholar 

  184. Krampera, M., Pizzolo, G., Aprili, G., & Franchini, M. (2006). Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone, 39(4), 678–683.

    Article  PubMed  CAS  Google Scholar 

  185. Jethva, R., Otsuru, S., Dominici, M., & Horwitz, E. M. (2009). Cell therapy for disorders of bone. Cytotherapy, 11(1), 3–17.

    Article  PubMed  CAS  Google Scholar 

  186. Mathiasen, A. B., Haack-Sorensen, M., & Kastrup, J. (2009). Mesenchymal stromal cells for cardiovascular repair: current status and future challenges. Future Cardiol, 5(6), 605–617.

    Article  PubMed  CAS  Google Scholar 

  187. Trivedi, P. S., Tray, N. J., Nguyen, T. D., Nigam, N., & Gallicano, G. I. (2010). Mesenchymal stem cell therapy for treatment of cardiovascular disease: helping people sooner or later. Stem Cells and Development, 19(7), 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  188. Parr, A. M., Tator, C. H., & Keating, A. (2007). Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplantation, 40(7), 609–619.

    Article  PubMed  CAS  Google Scholar 

  189. Sadan, O., Melamed, E., & Offen, D. (2009). Bone-marrow-derived mesenchymal stem cell therapy for neurodegenerative diseases. Expert Opinion on Biological Therapy, 9(12), 1487–1497.

    Article  PubMed  CAS  Google Scholar 

  190. Breitbach, M., Bostani, T., Roell, W., et al. (2007). Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110(4), 1362–1369.

    Article  PubMed  CAS  Google Scholar 

  191. Miura, M., Miura, Y., Padilla-Nash, H. M., et al. (2006). Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells, 24(4), 1095–1103.

    Article  PubMed  Google Scholar 

  192. Zhou, Y. F., Bosch-Marce, M., Okuyama, H., et al. (2006). Spontaneous transformation of cultured mouse bone marrow-derived stromal cells. Cancer Research, 66(22), 10849–10854.

    Article  PubMed  CAS  Google Scholar 

  193. Aguilar, S., Nye, E., Chan, J., et al. (2007). Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells, 25(6), 1586–1594.

    Article  PubMed  Google Scholar 

  194. Li, H., Fan, X., Kovi, R. C., et al. (2007). Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Research, 67(22), 10889–10898.

    Article  PubMed  CAS  Google Scholar 

  195. Bernardo, M. E., Zaffaroni, N., Novara, F., et al. (2007). Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Research, 67(19), 9142–9149.

    Article  PubMed  CAS  Google Scholar 

  196. Rubio, D., Garcia-Castro, J., Martin, M. C., et al. (2005). Spontaneous human adult stem cell transformation. Cancer Research, 65(8), 3035–3039.

    PubMed  CAS  Google Scholar 

  197. Rosland, G. V., Svendsen, A., Torsvik, A., et al. (2009). Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Research, 69(13), 5331–5339.

    Article  PubMed  CAS  Google Scholar 

  198. Garcia, S., Bernad, A., Martin, M. C., Cigudosa, J. C., Garcia-Castro, J., & de la Fuente, R. (2010). Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells. Experimental Cell Research, 316(9), 1648–1650.

    Article  PubMed  CAS  Google Scholar 

  199. Torsvik, A., Rosland, G. V., Svendsen, A., et al. (2010). Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track—letter. Cancer Research, 70(15), 6393–6396.

    Article  PubMed  CAS  Google Scholar 

  200. Prockop, D. J., Brenner, M., Fibbe, W. E., et al. (2010). Defining the risks of mesenchymal stromal cell therapy. Cytotherapy, 12(5), 576–578.

    Article  PubMed  Google Scholar 

  201. Riggi, N., Cironi, L., Provero, P., et al. (2005). Development of Ewing’s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Research, 65(24), 11459–11468.

    Article  PubMed  CAS  Google Scholar 

  202. Tirode, F., Laud-Duval, K., Prieur, A., Delorme, B., Charbord, P., & Delattre, O. (2007). Mesenchymal stem cell features of Ewing tumors. Cancer Cell, 11(5), 421–429.

    Article  PubMed  CAS  Google Scholar 

  203. Riggi, N., Suva, M. L., Suva, D., et al. (2008). EWS-FLI-1 expression triggers a Ewing’s sarcoma initiation program in primary human mesenchymal stem cells. Cancer Research, 68(7), 2176–2185.

    Article  PubMed  CAS  Google Scholar 

  204. ]Riggi, N., Suva, M. L., De, V. C., et al. (2010). EWS-FLI-1modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells. Genes & Development, 24(9), 916–932.

    Article  CAS  Google Scholar 

  205. Djouad, F., Bony, C., Apparailly, F., Louis-Plence, P., Jorgensen, C., & Noel, D. (2006). Earlier onset of syngeneic tumors in the presence of mesenchymal stem cells. Transplantation, 82(8), 1060–1066.

    Article  PubMed  Google Scholar 

  206. Zhu, W., Xu, W., Jiang, R., et al. (2006). Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Experimental and Molecular Pathology, 80(3), 267–274.

    Article  PubMed  CAS  Google Scholar 

  207. Gunn, W. G., Conley, A., Deininger, L., Olson, S. D., Prockop, D. J., & Gregory, C. A. (2006). A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells, 24(4), 986–991.

    Article  PubMed  CAS  Google Scholar 

  208. Lazennec, G., & Jorgensen, C. (2008). Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells, 26(6), 1387–1394.

    Article  PubMed  CAS  Google Scholar 

  209. Orimo, A., Gupta, P. B., Sgroi, D. C., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121(3), 335–348.

    Article  PubMed  CAS  Google Scholar 

  210. Mishra, P. J., Mishra, P. J., Humeniuk, R., et al. (2008). Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Research, 68(11), 4331–4339.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalampos Pontikoglou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pontikoglou, C., Deschaseaux, F., Sensebé, L. et al. Bone Marrow Mesenchymal Stem Cells: Biological Properties and Their Role in Hematopoiesis and Hematopoietic Stem Cell Transplantation. Stem Cell Rev and Rep 7, 569–589 (2011). https://doi.org/10.1007/s12015-011-9228-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9228-8

Keywords

Navigation