Skip to main content

Advertisement

Log in

Strategies to Improve AFT Volume Retention After Fat Grafting

  • Original Article
  • Fat Injection
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Autologous fat grafting has gained increasing popularity used in plastic surgery as a strategy to improve functional and aesthetic outcome. However, variable augmentation results have concerned surgeons in that volume loss of grafted fat reported fluctuates unsteadily.

Aim

An optimal technique that clinically maximizes the long-term survival rate of transplantation is in urgent need to be identified.

Method

The PubMed/MEDLINE database was queried to search for animal and human studies published through March of 2022 with search terms related to adipose grafting encompassing liposuction, adipose graft viability, processing technique, adipose-derived stem cell, SVF and others.

Results

45 in vivo studies met inclusion criteria. The principal of ideal processing technique is effective purification of fat and protection of tissue viability, such as gauze rolling and washing-filtration devices. Cell-assisted lipotransfer including SVF, SVF-gel and ADSCs significantly promotes graft retention via differentiation potential and paracrine manner. ADSCs induce polarization of macrophages to regulate inflammatory response, mediate extracellular matrix remodeling and promote endothelial cell migration and sprouting, and differentiate into adipocytes to replace necrotic cells, providing powerful evidence for the benefits and efficacy of cell-assisted lipotransfer.

Conclusion

Based on the current evidence, the best strategy can not be decided. Cell-assisted lipotransfer has great potential for use in regenerative medicine. But so far mechanically prepared SVF-gel is conducive to clinical promotion. PRP as endogenous growth factor sustained-release material shows great feasibility.

Level of Evidence IV

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Vyas KS, Vasconez HC, Morrison S, Mogni B, Linton S, Hockensmith L, Kabir T, Zielins E, Najor A, Bakri K, Mardini S (2020) Fat Graft enrichment strategies: a systematic review. Plast Reconstr Surg 145:827–841

    Article  CAS  PubMed  Google Scholar 

  2. Li J, Gao J, Cha P, Chang Q, Liao Y, Liu C, Li K, Lu F (2013) Supplementing fat grafts with adipose stromal cells for cosmetic facial contouring. Dermatol Surg 39:449–456

    Article  PubMed  Google Scholar 

  3. Missana MC, Laurent I, Barreau L, Balleyguier C (2007) Autologous fat transfer in reconstructive breast surgery: indications, technique and results. Eur J Surg Oncol (EJSO) 33(6):685–690. https://doi.org/10.1016/j.ejso.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  4. Simonacci F, Bertozzi N, Grieco MP, Grignaffini E, Raposio E (2017) Procedure, applications, and outcomes of autologous fat grafting. Ann Med Surg 20:49–60. https://doi.org/10.1016/j.amsu.2017.06.059

    Article  Google Scholar 

  5. Strong AL, Rubin JP, Kozlow JH, Cederna PS (2019) Fat grafting for the treatment of scleroderma. Plast Reconstr Surg 144:1498–1507

    Article  CAS  PubMed  Google Scholar 

  6. Tabit CJ, Slack GC, Fan K, Wan DC, Bradley JP (2012) Fat grafting versus adipose-derived stem cell therapy: distinguishing indications, techniques, and outcomes. Aesth Plast Surg 36(3):704–713. https://doi.org/10.1007/s00266-011-9835-4

    Article  Google Scholar 

  7. Wang GH, Zhao JF, Xue HY, Li D (2019) Facial aesthetic fat graft retention rates after filtration, centrifugation, or sedimentation processing techniques measured using three-dimensional surface imaging devices. Chin Med J 132(01):69–77

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gontijo-de-Amorim NF, Charles-de-Sá L, Rigotti G (2017) Mechanical supplementation with the stromal vascular fraction yields improved volume retention in facial lipotransfer: a 1-year comparative study. Aesthet Surg J 37:975–985

    Article  PubMed  Google Scholar 

  9. Zhang K, Liu F, Zhang Y, Huang X, Tang M, Hou Y, Lv Q, Jin D, Li Y, Kong L (2020) Mechanical vibration-extracted stromal vascular fraction improves volume retention after autologous fat grafting. Plast Reconstr Surg 146:1275–1284

    Article  CAS  PubMed  Google Scholar 

  10. Shridharani SM, Broyles JM, Matarasso A (2014) Liposuction devices: technology update. Med Dev (Auckland, NZ). 7:241

    Google Scholar 

  11. Molitor M, Trávníčková M, Měšťák O, Christodoulou P, Sedlář A, Bačáková L, Lucchina S (2021) The influence of low- and high-negative-pressure liposuction and different harvesting sites on the viability and yield of adipocytes and other nucleated cells. Aesthetic Plast Surg 45:2952–2970

    Article  PubMed  Google Scholar 

  12. Lee JH, Kirkham JC, McCormack MC, Nicholls AM, Randolph MA, Austen WG Jr (2013) The effect of pressure and shear on autologous fat grafting. Plast Reconstr Surg 131(5):1125–1136

    Article  CAS  PubMed  Google Scholar 

  13. Mojallal A, Auxenfans C, Lequeux C, Braye F, Damour O (2008) Influence of negative pressure when harvesting adipose tissue on cell yield of the stromal–vascular fraction. BioMed Mater Eng 18(4–5):193–197

    CAS  PubMed  Google Scholar 

  14. Cucchiani R, Corrales L (2016) The effects of fat harvesting and preparation, air exposure, obesity, and stem cell enrichment on adipocyte viability prior to graft transplantation. Aesthet Surg J 36:1164–1173

    Article  PubMed  Google Scholar 

  15. Chen YW, Wang JR, Liao X, Li SH, Xiao LL, Cheng B, Xie GH, Song JX, Liu HW (2017) Effect of suction pressures on cell yield and functionality of the adipose-derived stromal vascular fraction. J Plast Reconstr Aesthetic Surg 70(2):257–66

    Article  Google Scholar 

  16. Vazquez OA, Markowitz MI, Becker H (2020) Fat graft size: relationship between cannula and needle diameters. Cureus 12:e7598

    PubMed  PubMed Central  Google Scholar 

  17. Erdim M, Tezel E, Numanoglu A, Sav A (2009) The effects of the size of liposuction cannula on adipocyte survival and the optimum temperature for fat graft storage: an experimental study. J Plast Reconstr Aesthetic Surg 62(9):1210–1214

    Article  Google Scholar 

  18. Kirkham JC, Lee JH, Medina MA, McCormack MC, Randolph MA, Austen WG (2012) The impact of liposuction cannula size on adipocyte viability. Ann Plast Surg 69(4):479–481. https://doi.org/10.1097/SAP.0b013e31824a459f

    Article  CAS  PubMed  Google Scholar 

  19. Shiffman MA, Mirrafati S (2001) Fat transfer techniques: the effect of harvest and transfer methods on adipocyte viability and review of the literature. Dermatol Surg 27(9):819–826

    CAS  PubMed  Google Scholar 

  20. Eto H, Kato H, Suga H, Aoi N, Doi K, Kuno S, Yoshimura K (2012) The fate of adipocytes after nonvascularized fat grafting: evidence of early death and replacement of adipocytes. Plast Reconstr Surg 129(5):1081–1092. https://doi.org/10.1097/PRS.0b013e31824a2b19

    Article  CAS  PubMed  Google Scholar 

  21. Carpaneda CA, Ribeiro MT (1993) Study of the histologic alterations and viability of the adipose graft in humans. Aesthetic Plast Surg 17(1):43–47. https://doi.org/10.1007/BF00455048

    Article  CAS  PubMed  Google Scholar 

  22. Alharbi Z, Opländer C, Almakadi S, Fritz A, Vogt M, Pallua N (2013) Conventional vs. micro-fat harvesting: how fat harvesting technique affects tissue-engineering approaches using adipose tissue-derived stem/stromal cells. J Plast Reconstr Aesthetic Surg 66(9):1271–1278

    Article  Google Scholar 

  23. Flynn TC, Coleman WP, Field LM, Klein JA, Hanke WC (2000) History of liposuction. Dermatol Surg 26(6):515–520. https://doi.org/10.1046/j.1524-4725.2000.00066.x

    Article  CAS  PubMed  Google Scholar 

  24. Lillis PJ (1990) The tumescent technique for liposuction surgery. Dermatol Clin 8(3):439–450. https://doi.org/10.1016/S0733-8635(18)30475-3

    Article  CAS  PubMed  Google Scholar 

  25. Coleman SR (1995) Long-term survival of fat transplants: controlled demonstrations. Aesthetic Plast Surg 19(5):421–425. https://doi.org/10.1007/BF00453875

    Article  CAS  PubMed  Google Scholar 

  26. Zhu M, Cohen SR, Hicok KC, Shanahan RK, Strem BM, Yu JC, Arm DM, Fraser JK (2013) Comparison of three different fat graft preparation methods: gravity separation, centrifugation, and simultaneous washing with filtration in a closed system. Plast Reconstr Surg 131:873–880

    Article  CAS  PubMed  Google Scholar 

  27. Bourne DA, Bliley J, James I, Donnenberg AD, Donnenberg VS (2021) Changing the paradigm of craniofacial reconstruction: a prospective clinical trial of autologous fat transfer for craniofacial deformities. Ann Surg 273:1004–1011

    Article  PubMed  Google Scholar 

  28. Rongwei W, Yang X, Jin X, Haibin L, Jia Z, Li B, Jiang H, Qi Z (2018) Three-dimensional volumetric analysis of 3 fat-processing techniques for facial fat grafting: a randomized clinical trial. JAMA Facial Plast Surg 20(3):222–229. https://doi.org/10.1001/jamafacial.2017.2002

    Article  Google Scholar 

  29. Sarfati I (2017) A prospective randomized study comparing centrifugation and sedimentation for fat grafting in breast reconstruction. J Plast Reconstr Aesthet Surg 70:1218–1228

    Article  CAS  PubMed  Google Scholar 

  30. Mestak O, Sukop A, Hsueh YS, Molitor M, Mestak J, Matejovska J, Zarubova L (2014) Centrifugation versus puregraft for fatgrafting to the breast after breast-conserving therapy. World J Surg Oncol 12(1):178. https://doi.org/10.1186/1477-7819-12-178

    Article  PubMed  PubMed Central  Google Scholar 

  31. Asilian A, Siadat AH, Iraji R (2014) Comparison of fat maintenance in the face with centrifuge versus filtered and washed fat. J Res Med Sci Official J Isfahan Univ Med Sci 19(6):556–561

    Google Scholar 

  32. Gerth DJ, King B, Rabach L, Glasgold RA, Glasgold MJ (2014) Long-term volumetric retention of autologous fat grafting processed with closed-membrane filtration. Aesthetic Surg J 34(7):985–994. https://doi.org/10.1177/1090820X14542649

    Article  Google Scholar 

  33. Gentile P, Orlandi A, Scioli MG, Di Pasquali C, Bocchini I, Curcio CB, Floris M, Fiaschetti V, Floris R, Cervelli V (2012) A comparative translational study: the combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction. Stem Cells Transl Med 1(4):341–351. https://doi.org/10.5966/sctm.2011-0065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Botti G, Pascali M, Botti C, Bodog F, Cervelli V (2011) A Clinical Trial in facial fat grafting: filtered and washed versus centrifuged fat. Plast Reconstr Surg 127:2464–2473

    Article  CAS  PubMed  Google Scholar 

  35. Fan P, Fang M, Li J, Solari MG, Wu D, Tan W, Wang Y, Yang X, Lei S (2021) A novel fat making strategy with adipose-derived progenitor cell-enriched fat improves fat graft survival. Aesthetic Surg J 41(9):1228–1236

    Article  Google Scholar 

  36. Canizares OJ, Thomson JE, Allen RJJ, Davidson EH, Tutela JP, Saadeh PB, Warren SM, Hazen A (2017) The effect of processing technique on fat graft survival. Plast Reconstr Surg 140:933–943

    Article  CAS  PubMed  Google Scholar 

  37. Yin S, Luan J, Fu S, Zhuang Q (2016) Is centrifugation necessary for processing lipoaspirate harvested via water-jet force assisted technique before grafting? Evidence of lipoaspirate concentration with enhanced fat graft survival. Ann Plast Surg 77:477–484

    Article  CAS  PubMed  Google Scholar 

  38. Qiu L, Su Y, Zhang D, Song Y, Liu B, Yu Z, Guo S, Yi C (2016) Identification of the centrifuged lipoaspirate fractions suitable for postgrafting survival. Plast Reconstr Surg 137:67e–76e

    Article  CAS  PubMed  Google Scholar 

  39. Salinas HM, Broelsch GF, Fernandes JR, McCormack MC, Meppelink AM, Randolph MA, Colwell AS, Austen WGJ (2014) Comparative analysis of processing methods in fat grafting. Plast Reconstr Surg 134:675–683

    Article  CAS  PubMed  Google Scholar 

  40. Ansorge H, Garza JR, McCormack MC, Leamy P, Roesch S, Barere A, Connor J (2014) Autologous fat processing via the revolve system: quality and quantity of fat retention evaluated in an animal model. Aesthetic Surg J 34(3):438–47

    Article  Google Scholar 

  41. Fisher C, Grahovac TL, Schafer ME, Shippert RD, Marra KG, Rubin JP (2013) Comparison of harvest and processing techniques for fat grafting and adipose stem cell isolation. Plast Reconstr Surg 132:351–361

    Article  CAS  PubMed  Google Scholar 

  42. Minn KW, Min KH, Chang H, Kim S, Heo EJ (2010) Effects of fat preparation methods on the viabilities of autologous fat grafts. Aesthetic Plast Surg 34(5):626–631. https://doi.org/10.1007/s00266-010-9525-7

    Article  PubMed  Google Scholar 

  43. Condé-Green A, de Amorim NF, Pitanguy I (2010) Influence of decantation, washing and centrifugation on adipocyte and mesenchymal stem cell content of aspirated adipose tissue: a comparative study. J Plast Reconstr Aesthet Surg 63(8):1375–1381

    Article  PubMed  Google Scholar 

  44. Cao Z, Li H, Wang ZH, Liang XQ (2021) High-density fat grafting assisted stromal vascular fraction gel in facial deformities. J Craniofacial Surg 33(1):108–111. https://doi.org/10.1097/SCS.0000000000008038

    Article  Google Scholar 

  45. Allen RJJ, Canizares O, Scharf CL, Paek GK, Nguyen PD, Thanik VD, Warren SM, Saadeh PB, Coleman SR, Hazen A (2009) Spinning into control: centrifugation creates an optimal density for fat grafting. Plast Reconstr Surg 124:35–36

    Google Scholar 

  46. Condé-Green A, Iwen W, Graham I, Chae JJ, Drachenberg CB, Singh DP, Holton L, Slezak S, Elisseeff J (2013) Comparison of 3 techniques of fat grafting and cell-supplemented lipotransfer in athymic rats. Aesthetic Surg J 33(5):713–721. https://doi.org/10.1177/1090820X13487371

    Article  Google Scholar 

  47. Hoareau L, Bencharif K, Girard AC, Gence L, Delarue P, Hulard O, Festy F, Roche R (2013) Effect of centrifugation and washing on adipose graft viability: a new method to improve graft efficiency. J Plast Reconstr Aesthet Surg 66(5):712–9

    Article  PubMed  Google Scholar 

  48. Ferraro GA, De Francesco F, Tirino V, Cataldo C, Rossano F, Nicoletti G, D’Andrea F (2011) Effects of a new centrifugation method on adipose cell viability for autologous fat grafting. Aesthetic Plast Surg 35(3):341–348

    Article  PubMed  Google Scholar 

  49. Pfaff M, Wu W, Zellner E, Steinbacher DM (2014) Processing technique for lipofilling influences adipose-derived stem cell concentration and cell viability in lipoaspirate. Aesthetic Plast Surg 38(1):224–229

    Article  PubMed  Google Scholar 

  50. Gonzalez AM, Lobocki C, Kelly CP, Jackson IT (2007) An alternative method for harvest and processing fat grafts: an in vitro study of cell viability and survival. Plast Reconstr Surg 120(1):285–294

    Article  CAS  PubMed  Google Scholar 

  51. Hu S, Zhang H, Feng Y, Yang Y, Han X, Han X, Zhong Y, Shi J (2007) Introduction of an easy technique for purification and injection of autogenous free fat parcels in correcting of facial contour deformities. Ann Plast Surg 58(6):602–607

    Article  CAS  PubMed  Google Scholar 

  52. Valmadrid AC, Kaoutzanis C, Wormer BA, Farinas AF, Wang L, Al Kassis S, Perdikis G, Braun SA, Higdon KK (2020) Comparison of telfa rolling and a closed washing system for autologous fat processing techniques in postmastectomy breast reconstruction. Plast Reconstr Surg 146:486–497

    Article  CAS  PubMed  Google Scholar 

  53. Fang C, Patel P, Li H, Huang LT, Wan H, Collins S, Connell TL, Xu H (2020) Physical, biochemical, and biologic properties of fat graft processed via different methods. Plast Reconstr Surg Glob Open 8:e3010

    PubMed  PubMed Central  Google Scholar 

  54. Pallua N, Pulsfort AK, Suschek C, Wolter TP (2009) Content of the growth factors bFGF, IGF-1, VEGF, and PDGF-BB in freshly harvested lipoaspirate after centrifugation and incubation. Plast Reconstr Surg 123:826–833

    Article  CAS  PubMed  Google Scholar 

  55. Smith P, Adams WPJ, Lipschitz AH, Chau B, Sorokin E, Rohrich RJ, Brown SA (2006) Autologous human fat grafting: effect of harvesting and preparation techniques on adipocyte graft survival. Plast Reconstr Surg 117:1836–1844

    Article  CAS  PubMed  Google Scholar 

  56. Vezzani B, Shaw I, Lesme H, Yong L, Khan N, Tremolada C, Péault B (2018) Higher pericyte content and secretory activity of microfragmented human adipose tissue compared to enzymatically derived stromal vascular fraction. Stem Cells Transl Med 7:876–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vezzani B, Gomez-Salazar M, Casamitjana J, Tremolada C, Péault B (2019) Human adipose tissue micro-fragmentation for cell phenotyping and secretome characterization. JoVE 152:e60117

    Google Scholar 

  58. Ceserani V, Ferri A, Berenzi A, Benetti A, Ciusani E, Pascucci L, Bazzucchi C, Coccè V, Bonomi A, Pessina A, Ghezzi E (2016) Angiogenic and anti-inflammatory properties of micro-fragmented fat tissue and its derived mesenchymal stromal cells. Vasc Cell 8(1):1–2

    Article  Google Scholar 

  59. Guo B, Sawkulycz X, Heidari N, Rogers R, Liu D, Slevin M (2021) Characterisation of novel angiogenic and potent anti-inflammatory effects of micro-fragmented adipose tissue. Int J Mol Sci 22(6):3271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vinet-Jones H, Darr DK (2020) Clinical use of autologous micro-fragmented fat progressively restores pain and function in shoulder osteoarthritis. Regener Med 15(10):2153–2161

    Article  CAS  Google Scholar 

  61. Malanga GA, Chirichella PS, Hogaboom NS, Capella T (2021) Clinical evaluation of micro-fragmented adipose tissue as a treatment option for patients with meniscus tears with osteoarthritis: a prospective pilot study. Int Orthopaed 45(2):473–480

    Article  Google Scholar 

  62. Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K (2020) Cell-Assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 44:1258–1265

    Article  PubMed  Google Scholar 

  63. Yoshimura K, Asano Y, Aoi N, Kurita M, Oshima Y, Sato K, Inoue K, Suga H, Eto H, Kato H, Harii K (2010) Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications. Breast J 16:169–175

    Article  PubMed  Google Scholar 

  64. Yoshimura K, Sato K, Aoi N, Kurita M, Inoue K, Suga H, Eto H, Kato H, Hirohi T, Harii K (2008) Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg 34(9):1178–85

    CAS  PubMed  Google Scholar 

  65. Andia I, Maffulli N, Burgos-Alonso N (2019) Stromal vascular fraction technologies and clinical applications. Expert Opinion Biol Ther 19(12):1289–1305. https://doi.org/10.1080/14712598.2019.1671970

    Article  Google Scholar 

  66. Gentile P, Casella D, Palma E, Calabrese C (2019) Engineered Fat graft enhanced with adipose-derived stromal vascular fraction cells for regenerative medicine: clinical, histological and instrumental evaluation in breast reconstruction. J Clin Med 8(4):504. https://doi.org/10.3390/jcm8040504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jeon HJ, Choi DH, Lee JH, Lee JS, Lee J, Park HY, Yang JD (2021) A prospective study of the efficacy of cell-assisted lipotransfer with stromal vascular fraction to correct contour deformities of the autologous reconstructed breast. Aesthetic Plast Surg 45:853–863

    Article  PubMed  Google Scholar 

  68. Prantl L, Brix E, Kempa S, Felthaus O, Eigenberger A, Brébant V, Anker A, Strauss C (2021) Facial rejuvenation with concentrated lipograft: a 12 month follow-up study. Cells 10(3):594. https://doi.org/10.3390/cells10030594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhu H, Quan Y, Wang J, Jiang SL, Lu F, Cai J, Liao Y (2021) Improving low-density fat by condensing cellular and collagen content through a mechanical process: basic research and Clinical applications. Plast Reconstr Surg. https://doi.org/10.1097/PRS.0000000000008484

    Article  PubMed  Google Scholar 

  70. Kølle SF, Duscher D, Taudorf M, Fischer-Nielsen A, Svalgaard JD, Munthe-Fog L, Jønsson B, Selvig PB, Mamsen FP, Katz AJ (2020) Ex vivo-expanded autologous adipose tissue-derived stromal cells ensure enhanced fat graft retention in breast augmentation: a randomized controlled clinical trial. Stem Cells Transl Med 9(11):1277–1286

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gentile P, Sterodimas A, Calabrese C, De Angelis B, Trivisonno A, Pizzicannella J, Dionisi L, De Fazio D, Garcovich S (2020) Regenerative application of stromal vascular fraction cells enhanced fat graft maintenance: clinical assessment in face rejuvenation. Expert Opinion Biol Ther 20(12):1503–1513

    Article  Google Scholar 

  72. Jung HK, Kim CH, Song SY (2016) Prospective 1-year follow-up study of breast augmentation by cell-assisted lipotransfer. Aesthet Surg J 36:179–190

    Article  PubMed  Google Scholar 

  73. Sasaki GH (2015) The safety and efficacy of cell-assisted fat grafting to traditional fat grafting in the anterior mid-face: an indirect assessment by 3D imaging. Aesthetic Plast Surg 39:833–846

    Article  PubMed  Google Scholar 

  74. Wang L, Luo X, Lu Y, Fan ZH, Hu X (2015) Is the resorption of grafted fat reduced in cell-assisted lipotransfer for breast augmentation? Ann Plast Surg 75(2):128–34

    Article  CAS  PubMed  Google Scholar 

  75. Kølle SFT, Fischer-Nielsen A, Mathiasen AB, Elberg JJ, Oliveri RS, Glovinski PV, Kastrup J, Kirchhoff M, Rasmussen BS, Talman MLM, Thomsen C, Dickmeiss E, Drzewiecki KT (2013) Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet 382(9898):1113–1120. https://doi.org/10.1016/S0140-6736(13)61410-5

    Article  PubMed  Google Scholar 

  76. Keyhan SO, Hemmat S, Badri AA, Abdeshahzadeh A, Khiabani K (2013) Use of platelet-rich fibrin and platelet-rich plasma in combination with fat graft: which is more effective during facial lipostructure? J Oral Maxillofacial Surg 71(3):610–621. https://doi.org/10.1016/j.joms.2012.06.176

    Article  Google Scholar 

  77. Geeroms M, Fujimura S, Aiba E, Orgun D, Arita K, Kitamura R, Senda D, Mizuno H, Hamdi M, Tanaka R (2021) Quality and quantity-cultured human mononuclear cells improve human fat graft vascularization and survival in an in vivo murine experimental model. Plast Reconstr Surg 147:373–385

    Article  CAS  PubMed  Google Scholar 

  78. Rasmussen BS, Sørensen CL, Kurbegovic S, Ørholt M, Talman M-LM, Herly M, Pipper CB, Kølle S-FT, Rangatchew F, Holmgaard R, Vester-Glowinski PV, Fischer-Nielsen A, Drzewiecki KT (2019) Cell-enriched fat grafting improves graft retention in a porcine model: a dose-response study of adipose-derived stem cells versus stromal vascular fraction. Plast Reconstr Surg 144:397e–408e

    Article  CAS  PubMed  Google Scholar 

  79. Harris WM, Plastini M, Kappy N, Ortiz T, Chang S, Brown S, Carpenter JP, Zhang P (2019) Endothelial differentiated adipose-derived stem cells improvement of survival and neovascularization in fat transplantation. Aesthet Surg J 39:220–232

    Article  PubMed  Google Scholar 

  80. Choi JW, Kim SC, Eun-Jung Park JA (2018) Positive effect of incubated adipose-derived mesenchymal stem cells on microfat graft survival. J Craniofacial Surg 29(1):243–247. https://doi.org/10.1097/SCS.0000000000004071

    Article  Google Scholar 

  81. Cai J, Feng J, Liu K, Zhou S, Lu F (2018) Early macrophage infiltration improves fat graft survival by inducing angiogenesis and hematopoietic stem cell recruitment. Plast Reconstr Surg 141:376–386

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Y, Cai J, Zhou T, Yao Y, Dong Z, Lu F (2018) Improved long-term volume retention of stromal vascular fraction gel grafting with enhanced angiogenesis and adipogenesis. Plast Reconstr Surg 141:676e–686e

    Article  CAS  PubMed  Google Scholar 

  83. Zielins ER, Brett EA, Blackshear CP, Flacco J, Ransom RC, Longaker MT, Wan DC (2017) Purified adipose-derived stromal cells provide superior fat graft retention compared with unenriched stromal vascular fraction. Plast Reconstr Surg 139:911–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kakudo N, Morimoto N, Ogawa T, Hihara M, Lai F, Kusumoto K (2017) Adipose-derived stem cell (ASC)-enriched fat grafting: experiments using White rabbits and an automated cell processing apparatus. Med Mol Morphol 50(3):170–177

    Article  CAS  PubMed  Google Scholar 

  85. Li K, Li F, Li J, Wang H, Zheng X, Long J, Guo W, Tian W (2017) Increased survival of human free fat grafts with varying densities of human adipose-derived stem cells and platelet-rich plasma. J Tissue Eng Regen Med 11:209–219

    Article  CAS  PubMed  Google Scholar 

  86. Li F, Guo W, Li K, Mei Y, Tang W, Wang H, Tian W (2015) Improved fat graft survival by different volume fractions of platelet-rich plasma and adipose-derived stem cells. Aesthetic Surg J 35(3):319–333. https://doi.org/10.1093/asj/sju046

    Article  CAS  Google Scholar 

  87. Phipps KD, Gebremeskel S, Gillis J, Hong P, Johnston B, Bezuhly M (2015) Alternatively Activated M2 macrophages improve autologous fat graft survival in a mouse model through induction of angiogenesis. Plast Reconstr Surg 135:140–149

    Article  CAS  PubMed  Google Scholar 

  88. Paik KJ, Zielins ER, Atashroo DA, Maan ZN, Duscher D, Luan A, Walmsley GG, Momeni A, Vistnes S, Gurtner GC, Longaker MT, Wan DC (2015) Studies in fat grafting: part V. cell-assisted lipotransfer to enhance fat graft retention is dose dependent. Plast Reconstr Surg 136:67–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bae YC, Song JS, Bae SH, Kim JH (2015) Effects of human adipose-derived stem cells and stromal vascular fraction on cryopreserved fat transfer. Dermatol Surg 41(5):605–614. https://doi.org/10.1097/DSS.0000000000000342

    Article  CAS  PubMed  Google Scholar 

  90. Aronowitz JA, Lockhart RA, Hakakian CS, Hicok KC (2015) Clinical safety of stromal vascular fraction separation at the point of care. Ann Plast Surg 75:666–671

    Article  CAS  PubMed  Google Scholar 

  91. Bae YC, Kim KH, Yun HJ, Oh CH, Chang JH, Yi CR, Lee JW, Bae SH (2020) A study on the effective ratio of fat to stromal vascular fraction for cell-assisted lipotransfer. Aesthetic Plast Surg 44:162–167

    Article  PubMed  Google Scholar 

  92. Li FW, Wang HB, Fang JP, Zeng L, Chen CL, Luo SK (2019) Optimal use ratio of the stromal vascular fraction (SVF): an animal experiment based on micro-ct dynamic detection after large-volume fat grafting. Aesthet Surg J 39(6):NP213–NP24

    Article  PubMed  Google Scholar 

  93. Yao Y, Dong Z, Liao Y, Zhang P, Ma J, Gao J, Lu F (2017) Adipose extracellular matrix/stromal vascular fraction gel: a novel adipose tissue-derived injectable for stem cell therapy. Plast Reconstr Surg 139:867–879

    Article  CAS  PubMed  Google Scholar 

  94. Prantl L, Eigenberger A, Klein S, Limm K, Oefner PJ, Schratzenstaller T, Felthaus O (2020) Shear force processing of lipoaspirates for stem cell enrichment does not affect secretome of human cells detected by mass spectrometry in vitro. Plast Reconstr Surg 146:749e–758e

    Article  CAS  PubMed  Google Scholar 

  95. Sun M, He Y, Zhou T, Zhang P, Gao J, Lu F (2017) Adipose extracellular matrix/stromal vascular fraction gel secretes angiogenic factors and enhances skin wound healing in a murine model. Biomed Res Int 2017:3105780

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhu H, Ge J, Chen X, Feng L, Cai J (2019) Mechanical micronization of lipoaspirates for regenerative therapy. J Vis Exp. https://doi.org/10.3791/58765

    Article  PubMed  Google Scholar 

  97. Zhang P, Feng J, Liao Y, Cai J, Zhou T, Sun M, Gao J, Gao K (2018) Ischemic flap survival improvement by composition-selective fat grafting with novel adipose tissue derived product-stromal vascular fraction gel. Biochem Biophys Res Commun 495(3):2249–2256

    Article  CAS  PubMed  Google Scholar 

  98. Yao Y, Cai J, Zhang P, Liao Y, Yuan Y, Dong Z, Lu F (2018) Adipose stromal vascular fraction gel grafting: a new method for tissue volumization and rejuvenation. Dermatol Surg 44:1278–1286

    Article  CAS  PubMed  Google Scholar 

  99. van Joris A, Dongen AJ, Tuin MS, Jansma J, van der Lei B, Harmsen MC (2018) Comparison of intraoperative procedures for isolation of clinical grade stromal vascular fraction for regenerative purposes: a systematic review: intraoperative procedures for stromal vascular fraction isolation. J Tissue Eng Regener Med 12(1):e261–e274. https://doi.org/10.1002/term.2407

    Article  CAS  Google Scholar 

  100. Vilaboa SDA, Navarro-Palou M, Llull R (2014) Age influence on stromal vascular fraction cell yield obtained from human lipoaspirates. Cytotherapy 16(8):1092–1097. https://doi.org/10.1016/j.jcyt.2014.02.007

    Article  CAS  Google Scholar 

  101. Philips BJ, Grahovac TL, Valentin JE, Chung CW, Bliley JM, Pfeifer ME, Roy SB, Dreifuss S, Kelmendi-Doko A, Kling RE, Ravuri SK, Marra KG, Donnenberg VS, Donnenberg AD, Rubin JP (2013) Prevalence of endogenous CD34+ adipose stem cells predicts human fat graft retention in a xenograft model. Plast Reconstr Surg 132:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mazur S, Zołocińska A, Siennicka K, Janik-Kosacka K, Chrapusta A, Pojda Z (2018) Safety of adipose-derived cell (stromal vascular fraction–SVF) augmentation for surgical breast reconstruction in cancer patients. Adv Clin Exp Med 27(8):1085–1090

    Article  PubMed  Google Scholar 

  103. Borrelli MR, Patel RA, Blackshear C, Vistnes S, Diaz NM, Deleon SA, Shen AH, Sokol J, Momeni A, Nguyen D, Longaker MT, Wan DC (2020) CD34+CD146+ adipose-derived stromal cells enhance engraftment of transplanted fat. Stem Cells Transl Med 9(11):1389–1400. https://doi.org/10.1002/sctm.19-0195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Deleon NM, Adem S, Lavin CV, Abbas DB, Griffin M, King ME, Borrelli MR, Patel RA, Fahy EJ, Lee D, Shen AH (2021) Angiogenic CD34+ CD146+ adipose-derived stromal cells augment recovery of soft tissue after radiotherapy. J Tissue Eng Regener Med 15(12):1105–1117

    Article  CAS  Google Scholar 

  105. Lauvrud AT, Kelk P, Wiberg M, Kingham PJ (2017) Characterization of human adipose tissue-derived stem cells with enhanced angiogenic and adipogenic properties. J Tissue Eng Regener Med 11(9):2490–2502

    Article  CAS  Google Scholar 

  106. Peer LA (1956) The neglected free fat graft. Plast Reconstr Surg 18(4):233–250. https://doi.org/10.1097/00006534-195610000-00001

    Article  CAS  Google Scholar 

  107. Su F, Luan J, Xin M, Wang Q, Xiao R, Gao Y (2013) Fate of adipose-derived stromal vascular fraction cells after co-implantation with fat grafts: evidence of cell survival and differentiation in ischemic adipose tissue. Plast Reconstr Surg 132(2):363–373. https://doi.org/10.1097/PRS.0b013e31829588b3

    Article  CAS  Google Scholar 

  108. Suga H, Eto H, Aoi N, Kato H, Araki J, Doi K, Higashino T, Yoshimura K (2010) Adipose tissue remodeling under ischemia: death of adipocytes and activation of stem/progenitor cells. Plast Reconstr Surg 126(6):1911–1923. https://doi.org/10.1097/PRS.0b013e3181f4468b

    Article  CAS  PubMed  Google Scholar 

  109. Mashiko T, Yoshimura K (2015) How does fat survive and remodel after grafting? Clin Plast Surg 42(2):181–190. https://doi.org/10.1016/j.cps.2014.12.008

    Article  PubMed  Google Scholar 

  110. Yoshimura K, Eto H, Kato H, Doi K, Aoi N (2011) In vivo manipulation of stem cells for adipose tissue repair/reconstruction. Regener Med 6(6s):33–41. https://doi.org/10.2217/rme.11.62

    Article  CAS  Google Scholar 

  111. Zhu Y-Z, Zhang J, Hu X, Wang Z, Wu S, Yi Y (2020) Supplementation with extracellular vesicles derived from adipose-derived stem cells increases fat graft survival and browning in mice: a cell-free approach to construct beige fat from white fat grafting. Plast Reconstr Surg 145(8):1183–1195

    Article  CAS  PubMed  Google Scholar 

  112. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233(9):6425–40

    Article  CAS  PubMed  Google Scholar 

  113. Gorgun C, Ceresa D, Lesage R, Villa F, Reverberi D, Balbi C, Santamaria S, Cortese K, Malatesta P, Geris L, Quarto R, Tasso R (2021) Dissecting the effects of preconditioning with inflammatory cytokines and hypoxia on the angiogenic potential of mesenchymal stromal cell (MSC)-derived soluble proteins and extracellular vesicles (EVs). Biomaterials 269:120633

    Article  CAS  PubMed  Google Scholar 

  114. Shang Q, Bai Y, Wang G, Song Q, Guo C, Zhang L, Wang Q (2015) Delivery of adipose-derived stem cells attenuates adipose tissue inflammation and insulin resistance in obese mice Through remodeling macrophage phenotypes. Stem Cells Dev 24:2052–2064

    Article  CAS  PubMed  Google Scholar 

  115. Hanson SE, Kim J, Hematti P (2013) Comparative analysis of adipose-derived mesenchymal stem cells isolated from abdominal and breast tissue. Aesthetic Surg J 33(6):888–898. https://doi.org/10.1177/1090820X13496115

    Article  Google Scholar 

  116. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lo Sicco C, Reverberi D, Balbi C, Ulivi V, Principi E, Pascucci L, Becherini P, Bosco MC, Varesio L, Franzin C, Pozzobon M, Cancedda R, Tasso R (2017) Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med 6:1018–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhao H, Shang Q, Pan Z, Bai Y, Li Z, Zhang H, Zhang Q, Guo C, Zhang L, Wang Q (2018) Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing m2 macrophages and beiging in white adipose tissue. Diabetes 67:235–247

    Article  CAS  PubMed  Google Scholar 

  119. Vasquez-Dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E, Fu J, Blosser RL, Tam AJ, Bruno T, Zhang H, Pardoll D (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Inv 123(4):1580–9

    Article  CAS  Google Scholar 

  120. Monticelli LA, Buck MD, Flamar AL, Saenz SA, Tait ED, Wojno NA, Yudanin LC, Osborne MR, Hepworth SV, Tran HRR, Shah H, Cross JR, Diamond JM, Cantu E, Christie JD, Pearce EL, Artis D (2016) Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nat Immunol 17(6):656–665. https://doi.org/10.1038/ni.3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhu M, Xue J, Lu S, Yuan Y, Liao Y, Qiu J, Liu C, Liao Q (2019) Anti-inflammatory effect of stromal vascular fraction cells in fat transplantation. Exp Therap Med 17(2):1435–9

    CAS  Google Scholar 

  122. Kim H, Lee BK (2020) Anti-inflammatory effect of adipose-derived stromal vascular fraction on osteoarthritic temporomandibular joint synoviocytes. Tissue Eng Regen Med 17:351–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bai Y, Yan XL, Ren J, Zeng Q, Li XD, Pei XT, Han Y (2018) Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting. Biochem Biophys Res Commun 497(1):305–312

    Article  PubMed  Google Scholar 

  124. Sacilotto N, Chouliaras KM, Nikitenko LL, Lu YW, Fritzsche M, Wallace MD, Nornes S, García-Moreno F, Payne S, Bridges E, Liu K (2016) MEF2 transcription factors are key regulators of sprouting angiogenesis. Genes Dev 30(20):2297–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Huang B, Huang LF, Zhao L, Zeng Z, Wang X, Cao D, Yang L, Ye Z, Chen X, Liu B, He TC (2020) Microvesicles (MIVs) secreted from adipose-derived stem cells (ADSCs) contain multiple microRNAs and promote the migration and invasion of endothelial cells. Genes Dis 7(2):225–234

    Article  CAS  PubMed  Google Scholar 

  126. Kang T, Jones TM, Naddell C, Bacanamwo M, Calvert JW, Thompson WE, Bond VC, Chen YE, Liu D (2016) Adipose-derived stem cells induce angiogenesis via microvesicle transport of miRNA-31. Stem Cells Transl Med 5(4):440–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liang X, Zhang L, Wang S, Han Q, Zhao RC (2016) Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci 129(11):2182–2189. https://doi.org/10.1242/jcs.170373

    Article  CAS  PubMed  Google Scholar 

  128. Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, Georgopoulou D, Patient R, Boshoff C (2012) The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood J Am Soc Hematol 120(25):5063–5072

    CAS  Google Scholar 

  129. Zhu Y, Zhang J, Hu X, Wang Z, Wu S, Yi Y (2020) Extracellular vesicles derived from human adipose-derived stem cells promote the exogenous angiogenesis of fat grafts via the let-7/AGO1/VEGF signalling pathway. Sci Rep 10(1):1–4

    Google Scholar 

  130. Lai RC, Yeo RW, Lim SK (2015) Mesenchymal stem cell exosomes. Semin Cell Dev Biol 40:82–88

    Article  CAS  PubMed  Google Scholar 

  131. Serocki M, Bartoszewska S, Janaszak-Jasiecka A, Ochocka RJ, Collawn JF, Bartoszewski R (2018) miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis 21(2):183–202. https://doi.org/10.1007/s10456-018-9600-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Suga H, Glotzbach JP, Sorkin M, Longaker MT, Gurtner GC (2014) Paracrine mechanism of angiogenesis in adipose-derived stem cell transplantation. Ann Plast Surg 72(2):234–241. https://doi.org/10.1097/SAP.0b013e318264fd6a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hao X, Guo Y, Wang R, Xueyuan Y, He L, Shu M (2021) Exosomes from adipose-derived mesenchymal stem cells promote survival of fat grafts by regulating macrophage polarization via let-7c. Acta Biochim et Biophys Sinica 53(4):501–510. https://doi.org/10.1093/abbs/gmab018

    Article  CAS  Google Scholar 

  134. Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, Akimoto T, Higashi Y, Ochi M (2015) Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 589(11):1257–1265. https://doi.org/10.1016/j.febslet.2015.03.031

    Article  CAS  PubMed  Google Scholar 

  135. Merino-González C, Zuñiga FA, Escudero C, Ormazabal V, Reyes C, Nova-Lamperti E, Salomón C, Aguayo C (2016) Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application. Front Physiol 7:24

    Article  PubMed  PubMed Central  Google Scholar 

  136. Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, Kim YG, Jang JY, Kim CW (2013) Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS ONE 8(12):e84256. https://doi.org/10.1371/journal.pone.0084256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Qorri B, Kalaydina RV, Velickovic A, Kaplya Y, Decarlo A, Szewczuk MR (2018) Agonist-biased signaling via matrix metalloproteinase-9 promotes extracellular matrix remodeling. Cells 7(9):117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wu W, Peng S, Shi Y, Li L, Song Z, Lin S (2021) NPY promotes macrophage migration by upregulating matrix metalloproteinase-8 expression. J Cell Physiol 236(3):1903–1912

    Article  CAS  PubMed  Google Scholar 

  139. Chen B, Cai J, Wei Y, Jiang Z, Desjardins HE, Adams AE, Li S, Kao H-K, Guo L (2019) Exosomes are comparable to source adipose stem cells in fat graft retention with up-regulating early inflammation and angiogenesis. Plast Reconstr Surg 144:816e–827e

    Article  CAS  PubMed  Google Scholar 

  140. Mou S, Zhou M, Li Y, Wang J, Yuan Q, Xiao P, Sun J, Wang Z (2019) Extracellular vesicles from human adipose-derived stem cells for the improvement of angiogenesis and fat-grafting application. Plast Reconstr Surg 144:869–880

    Article  CAS  PubMed  Google Scholar 

  141. Billings E, May JW (1989) Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. Plast Reconstr Surg 83(2):368–831

    Article  PubMed  Google Scholar 

  142. Doi K, Ogata F, Eto H, Kato H, Kuno S, Kinoshita K, Kanayama K, Feng J, Manabe I, Yoshimura K (2015) Differential contributions of graft-derived and host-derived cells in tissue regeneration/remodeling after fat grafting. Plast Reconstr Surg 135:1607–1617

    Article  CAS  PubMed  Google Scholar 

  143. Kato H, Mineda K, Eto H, Doi K, Kuno S, Kinoshita K, Kanayama K, Yoshimura K (2014) Degeneration, regeneration, and cicatrization after fat grafting: dynamic total tissue remodeling during the first 3 months. Plast Reconstr Surg 133:303e–313e

    Article  CAS  PubMed  Google Scholar 

  144. Liao HT, James IB, Marra KG, Rubin JP (2015) The effects of platelet-rich plasma on cell proliferation and adipogenic potential of adipose-derived stem cells. Tissue Eng Part A 21:2714–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lai F, Kakudo N, Morimoto N, Taketani S, Hara T, Ogawa T, Kusumoto K (2018) Platelet-rich plasma enhances the proliferation of human adipose stem cells through multiple signaling pathways. Stem Cell Res Ther. https://doi.org/10.1186/s13287-018-0851-z

    Article  PubMed  PubMed Central  Google Scholar 

  146. Loibl M, Lang S, Hanke A, Herrmann M, Huber M, Brockhoff G, Klein S, Nerlich M, Angele P, Prantl L, Gehmert S (2016) Leukocyte-reduced platelet-rich plasma alters protein expression of adipose tissue-derived mesenchymal stem cells. Plast Reconstr Surg 138:397–408

    Article  CAS  PubMed  Google Scholar 

  147. Lopatina T, Bruno S, Tetta C, Kalinina N, Porta M, Camussi G (2014) Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun Signal 12:26

    Article  PubMed  PubMed Central  Google Scholar 

  148. Mammoto T, Jiang A, Jiang E, Mammoto A (2013) Platelet rich plasma extract promotes angiogenesis through the angiopoietin1-Tie2 pathway. Microvasc Res 89:15–24. https://doi.org/10.1016/j.mvr.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  149. Ghanaati S, Booms P, Orlowska A, Kubesch A, Lorenz J, Rutkowski J, Landes C, Robert Sader CJ, Kirkpatrick JC (2014) Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. J Oral Implantol 40(6):679–689. https://doi.org/10.1563/aaid-joi-D-14-00138

    Article  PubMed  Google Scholar 

  150. Masuki H, Okudera T, Watanebe T, Suzuki M, Nishiyama K, Okudera H, Nakata K, Uematsu K, Su CY, Kawase T (2016) Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF). Int J Implant Dent 2:19

    Article  PubMed  PubMed Central  Google Scholar 

  151. Aizawa H, Tsujino T, Watanabe T, Isobe K, Kitamura Y, Sato A, Yamaguchi S, Okudera H, Okuda K, Kawase T (2020) Quantitative Near-infrared imaging of platelets in platelet-rich fibrin (PRF) matrices: comparative analysis of bio-prf, leukocyte-rich prf, advanced-prf and concentrated growth factors. Int J Mol Sci 21(12):4426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kobayashi E, Flückiger L, Fujioka-Kobayashi M, Sawada K, Sculean A, Schaller B, Miron RJ (2016) Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin Oral Inves 20(9):2353–2360

    Article  Google Scholar 

  153. Calabriso N, Stanca E, Rochira A, Damiano F, Giannotti L, Di Chiara SB, Massaro M, Scoditti E, Demitri C, Nitti P, Palermo A (2021) Angiogenic properties of concentrated growth factors (CGFs): The role of soluble factors and cellular components. Pharmaceutics 13(5):635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Del Vecchio DA, Del Vecchio SJ (2014) The graft-to-capacity ratio: volumetric planning in large-volume fat transplantation. Plast Reconstr Surg. 133:561–569

    Article  PubMed  Google Scholar 

  155. Tonnard P, Verpaele A, Peeters G, Hamdi M, Cornelissen M, Declercq H (2013) Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg 132:1017–1026

    Article  CAS  PubMed  Google Scholar 

  156. Rose JG, Lucarelli MJ, Lemke BN, Dortzbach RK, Boxrud CA, Obagi S, Patel S (2006) Histologic comparison of autologous fat processing methods. Ophthalmic Plast Reconstr Surg 22(3):195–200

    Article  PubMed  Google Scholar 

  157. Bianchi F, Maioli M, Leonardi E, Olivi E, Pasquinelli G, Valente S, Mendez AJ, Ricordi C, Raffaini M, Tremolada C, Ventura C (2013) A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell Transpl 22:2063–2077

    Article  Google Scholar 

  158. Zhu M, Dong Z, Gao J, Liao Y, Xue J, Yuan Y, Liu L, Chang Q, Lu F (2015) Adipocyte regeneration after free fat transplantation: promotion by stromal vascular fraction cells. Cell Transpl 24:49–62

    Article  CAS  Google Scholar 

  159. Jung DW, Kim YH, Kim TG, Lee JH, Chung KJ, Lim JO, Choi JY (2015) Improvement of fat transplantation: fat graft with adipose-derived stem cells and oxygen-generating microspheres. Ann Plast Surg 75:463–470

    Article  CAS  PubMed  Google Scholar 

  160. Hong KY, Yim S, Kim HJ, Jin US, Lim S, Eo S, Chang H, Minn KW (2018) The fate of the adipose-derived stromal cells during angiogenesis and adipogenesis after cell-assisted lipotransfer. Plast Reconstr Surg 141:365–375

    Article  CAS  PubMed  Google Scholar 

  161. Guillaume VGJ, Ruhl T, Boos AM, Beier JP (2022) The crosstalk between adipose-derived stem or stromal cells (ASC) and cancer cells and asc-mediated effects on cancer formation and progression—ASCs: safety hazard or harmless source of tropism? Stem Cells Transl Med 11(4):394–406. https://doi.org/10.1093/stcltm/szac002

    Article  PubMed  PubMed Central  Google Scholar 

  162. Almeria C, Weiss R, Roy M, Tripisciano C, Kasper C, Weber V, Egger D (2019) Hypoxia conditioned mesenchymal stem cell-derived extracellular vesicles induce increased vascular tube formation in vitro. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2019.00292

    Article  PubMed  PubMed Central  Google Scholar 

  163. Seyhan N, Alhan D, Ural AU, Gunal A, Avunduk MC, Savaci N (2015) The effect of combined use of platelet-rich plasma and adipose-derived stem cells on fat graft survival. Ann Plast Surg 74(5):615–620. https://doi.org/10.1097/SAP.0000000000000480

    Article  CAS  PubMed  Google Scholar 

  164. Liang Z, Huang D, Nong W, Mo J, Zhu D, Wang M, Chen M, Wei C, Li H (2021) Advanced-platelet-rich fibrin extract promotes adipogenic and osteogenic differentiation of human adipose-derived stem cells in a dose-dependent manner in vitro. Tissue Cell 71:101506. https://doi.org/10.1016/j.tice.2021.101506

    Article  CAS  PubMed  Google Scholar 

  165. An Y, Panayi AC, Mi B, Fu S, Orgill DP (2020) Comparative analysis of two automated fat-processing systems. Plast Reconstr Surg Glob Open 8:e2587

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Peking University Third Hospital (No. BYSYLXHG2019001) and Innovation Transformation Fund, Peking University Third Hospital (No. BYSYZHKC2020101)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youbai Chen or Yang An.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Shang, Y., Liu, N. et al. Strategies to Improve AFT Volume Retention After Fat Grafting. Aesth Plast Surg 47, 808–824 (2023). https://doi.org/10.1007/s00266-022-03088-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-022-03088-y

Keywords

Navigation