Skip to main content

Advertisement

Log in

Assembling the Puzzle Pieces. Insights for in Vitro Bone Remodeling

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

As a highly dynamic organ, bone changes during throughout a person’s life. This process is referred to as ‘bone remodeling’ and it involves two stages – a well-balanced osteoclastic bone resorption and an osteoblastic bone formation. Under normal physiological conditions bone remodeling is highly regulated that ensures tight coupling between bone formation and resorption, and its disruption results in a bone metabolic disorder, most commonly osteoporosis. Though osteoporosis is one of the most prevalent skeletal ailments that affect women and men aged over 40 of all races and ethnicities, currently there are few, if any safe and effective therapeutic interventions available. Developing state-of-the-art cellular systems for bone remodeling and osteoporosis can provide important insights into the cellular and molecular mechanisms involved in skeletal homeostasis and advise better therapies for patients. This review describes osteoblastogenesis and osteoclastogenesis as two vital processes for producing mature, active bone cells in the context of interactions between cells and the bone matrix. In addition, it considers current approaches in bone tissue engineering, pointing out cell sources, core factors and matrices used in scientific practice for modeling bone diseases and testing drugs. Finally, it focuses on the challenges that bone regenerative medicine is currently facing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Evans, C. H. (2007). John Hunter and the origins of modern orthopaedic research. Journal of Orthopaedic Research, 25, 556–560. https://doi.org/10.1002/jor.20386

    Article  PubMed  Google Scholar 

  2. Del Fattore, A., Teti, A., & Rucci, N. (2012). Bone cells and the mechanisms of bone remodelling. Frontiers in Bioscience (Elite Edition), 4, 2302–2321. https://doi.org/10.2741/543

    Article  PubMed  Google Scholar 

  3. Pfeiffenberger, M., Damerau, A., Lang, A., Buttgereit, F., Hoff, P., & Gaber, T. (2021). Fracture healing research-shift. Towards in Vitro Modeling? Biomedicines, 9. https://doi.org/10.3390/biomedicines9070748

  4. Bolamperti, S., Villa, I., & Rubinacci, A. (2022). Bone remodeling: An operational process ensuring survival and bone mechanical competence.Bone Research, 10. https://doi.org/10.1038/s41413-022-00219-8

  5. de Villiers, T. J., & Goldstein, S. R. (2022) Bone Health 2022: An update. Climacteric, 25, 1–3.https://doi.org/10.1080/13697137.2021.1965408

  6. Khosla, S. (2010). Update in male osteoporosis. Journal of Clinical Endocrinology and Metabolism, 95, 3–10. https://doi.org/10.1210/jc.2009-1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shanks, G., Sharma, D., & Mishra, V. (2019). Prevention and treatment of osteoporosis in women. Obstetrics, Gynaecology and Reproductive Medicine, 29, 201–206. https://doi.org/10.1016/j.ogrm.2019.04.001

    Article  Google Scholar 

  8. Rashki Kemmak, A., Rezapour, A., Jahangiri, R., Nikjoo, S., Farabi, H., & Soleimanpour, S. (2020). Economic burden of osteoporosis in the World: A systematic review. Medical Journal of the Islamic Republic of Iran, 34, 154. https://doi.org/10.34171/mjiri.34.154

    Article  PubMed  PubMed Central  Google Scholar 

  9. Domnina, A. P., Krasnova, O. A., Kulakova, K. A., Karelkin, S. Y. V., & Lesnyak, V. V. (2022). N.I.E. Role of G protein-associated membrane receptors in the pathogenesis of osteoporosis. Translational Medicine, 9, 41–61.

    Article  Google Scholar 

  10. Rozenberg, S., Bruyère, O., Bergmann, P., Cavalier, E., Gielen, E., Goemaere, S., Kaufman, J. M., Lapauw, B., Laurent, M. R., & De Schepper, J. (2020). How to manage osteoporosis before the Age of 50. Maturitas, 138, 14–25.https://doi.org/10.1016/j.maturitas.2020.05.004

  11. Lesnyak, O. M., Baranova, I., Belova, K. Y., Gladkova, E. N., Evstigneeva, L. P., Ershova, O. B., Karonova, T. I. K., Yu, A., Nikitinskaya O. A., Skripnikova I. A., Toroptsova N. V., & Aramisova R. M. (2018). Osteoporosis in Russian Federation: Epidemiology, socio-medical and economical aspects.Traumatology and Orthopedics of Russia,24, 155–168.

  12. Liang, B., Burley, G., Lin, S., & Shi, Y. C. (2022). Osteoporosis pathogenesis and treatment: Existing and emerging avenues. Cellular & Molecular Biology Letters, 27. https://doi.org/10.1186/s11658-022-00371-3

  13. Miszkiewicz, J. J., Louys, J., & O’Connor, S. (2019). Microanatomical Record of cortical bone remodeling and high vascularity in a Fossil Giant Rat Midshaft Femur. Anatomical Record, 302, 1934–1940. https://doi.org/10.1002/ar.24224

    Article  Google Scholar 

  14. Jilka, R. L. (2013). The relevance of mouse models for investigating age-related bone loss in humans. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 68, 1209–1217. https://doi.org/10.1093/gerona/glt046

    Article  PubMed  Google Scholar 

  15. Owen, R., & Reilly, G. C. (2018). In vitro models of bone remodelling and associated disorders. Frontiers in Bioengineering and Biotechnology, 6, 134. https://doi.org/10.3389/fbioe.2018.00134

    Article  PubMed  PubMed Central  Google Scholar 

  16. Manolagas, S. C. (2000). Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis*. Endocrine Reviews, 21, 115–137. https://doi.org/10.1210/edrv.21.2.0395

    Article  CAS  PubMed  Google Scholar 

  17. Frost, H. M. (1965). A synchronous group of mammallian cells whose in vivo behavior can be studied. Henry Ford Hospital Medical Bulletin, 13, 161–172.

    CAS  PubMed  Google Scholar 

  18. Jilka, R. L. (2003). Biology of the Basic Multicellular Unit and the pathophysiology of osteoporosis. Medical and Pediatric Oncology, 41, 182–185. https://doi.org/10.1002/mpo.10334

    Article  PubMed  Google Scholar 

  19. Raggatt, L. J., & Partridge, N. C. (2010). Cellular and molecular mechanisms of bone remodeling*. Journal of Biological Chemistry, 285, 25103–25108. https://doi.org/10.1074/jbc.R109.041087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kenkre, J. S., & Bassett, J. H. D. (2018). The bone remodelling cycle. Annals of Clinical Biochemistry, 55, 308–327. https://doi.org/10.1177/0004563218759371

    Article  CAS  PubMed  Google Scholar 

  21. Kennedy, O. D., Herman, B. C., Laudier, D. M., Majeska, R. J., Sun, H. B., & Schaffler, M. B. (2012). Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone, 50, 1115–1122. https://doi.org/10.1016/j.bone.2012.01.025

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cardoso, L., Herman, B. C., Verborgt, O., Laudier, D., Majeska, R. J., & Schaffler, M. B. (2009). Osteocyte apoptosis controls activation of Intracortical resorption in response to bone fatigue. Journal of Bone and Mineral Research, 24, 597–605. https://doi.org/10.1359/jbmr.081210

    Article  CAS  PubMed  Google Scholar 

  23. Aguirre, J. I., Plotkin, L. I., Stewart, S. A., Weinstein, R. S., Parfitt, A. M., Manolagas, S. C., & Bellido, T. (2006). Osteocyte apoptosis is Induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. Journal of Bone and Mineral Research, 21, 605–615. https://doi.org/10.1359/jbmr.060107

    Article  PubMed  Google Scholar 

  24. Verborgt, O., Tatton, N. A., Majeska, R. J., & Schaffler, M. B. (2002). Spatial distribution of bax and Bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation? Journal of Bone and Mineral Research, 17, 907–914. https://doi.org/10.1359/jbmr.2002.17.5.907

    Article  CAS  PubMed  Google Scholar 

  25. Al-Dujaili, S. A., Lau, E., Al-Dujaili, H., Tsang, K., Guenther, A., & You, L. (2011). Apoptotic osteocytes regulate osteoclast precursor recruitment and differentiation in vitro. Journal of Cellular Biochemistry, 112, 2412–2423. https://doi.org/10.1002/jcb.23164

    Article  CAS  PubMed  Google Scholar 

  26. Nakashima, T., Hayashi, M., Fukunaga, T., Kurata, K., Oh-Hora, M., Feng, J. Q., Bonewald, L. F., Kodama, T., Wutz, A., Wagner, E. F., et al. (2011). Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nature Medicine, 17, 1231–1234. https://doi.org/10.1038/nm.2452

    Article  CAS  PubMed  Google Scholar 

  27. Moriishi, T., Fukuyama, R., Ito, M., Miyazaki, T., Maeno, T., Kawai, Y., Komori, H., & Komori, T. (2012). Osteocyte network; a negative regulatory system for bone mass augmented by the induction of rankl in osteoblasts and sost in osteocytes at unloading. PLoS One, 7, e40143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheung, W. Y., Fritton, J. C., Morgan, S. A., Seref-Ferlengez, Z., Basta-Pljakic, J., Thi, M. M., Suadicani, S. O., Spray, D. C., Majeska, R. J., & Schaffler, M. B. (2016). Pannexin-1 and P2 × 7-Receptor are required for apoptotic osteocytes in fatigued bone to trigger RANKL production in neighboring bystander osteocytes. Journal of Bone and Mineral Research, 31, 890–899. https://doi.org/10.1002/jbmr.2740

    Article  CAS  PubMed  Google Scholar 

  29. Ma, Y. L., Cain, R. L., Halladay, D. L., Yang, X., Zeng, Q., Miles, R. R., Chandrasekhar, S., Martin, T. J., & Onyia, J. E. (2001). Catabolic effects of continuous human PTH (1–38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology, 142, 4047–4054. https://doi.org/10.1210/endo.142.9.8356

    Article  CAS  PubMed  Google Scholar 

  30. Li, J., Sarosi, I., Yan, X. Q., Morony, S., Capparelli, C., Tan, H. L., McCabe, S., Elliott, R., Scully, S., Van, G. (2000). RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proceedings of the National Academy of Sciences, 97, 1566–1571. https://doi.org/10.1073/pnas.97.4.1566

  31. Teti, A. (2011). Bone development: overview of bone cells and signaling. Current Osteoporosis Reports, 9, 264–273. https://doi.org/10.1007/s11914-011-0078-8

    Article  PubMed  Google Scholar 

  32. Andersen, T. L., Abdelgawad, M. E., Kristensen, H. B., Hauge, E. M., Rolighed, L., Bollerslev, J., Kjærsgaard-Andersen, P., & Delaisse, J. M. (2013). Understanding coupling between bone resorption and formation: are reversal cells the missing link? American Journal of Pathology, 183, 235–246. https://doi.org/10.1016/j.ajpath.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  33. Delaisse, J. M., Andersen, T. L., Kristensen, H. B., Jensen, P. R., Andreasen, C. M., & Søe, K. (2020). Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone, 141, 115628. https://doi.org/10.1016/j.bone.2020.115628

    Article  CAS  PubMed  Google Scholar 

  34. Fuller, K., & Chambers, T. J. (1995). Localisation of MRNA for collagenase in osteocytic, bone surface and chondrocytic cells but not osteoclasts. Journal of Cell Science, 108(Pt 6), 2221–2230. https://doi.org/10.1242/jcs.108.6.2221

  35. Delaisse, J. M. (2014). The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. BoneKey Reports, 3. https://doi.org/10.1038/bonekey.2014.56

  36. Lassen, N. E., Andersen, T. L., Pløen, G. G., Søe, K., Hauge, E. M., Harving, S., Eschen, G. E. T., & Delaisse, J. M. (2017). Coupling of bone resorption and formation in real time: new knowledge gained from human haversian BMUs. Journal of Bone and Mineral Research, 32, 1395–1405. https://doi.org/10.1002/jbmr.3091

    Article  CAS  PubMed  Google Scholar 

  37. Blair, H. C., Larrouture, Q. C., Li, Y., Lin, H., Beer-Stoltz, D., Liu, L., Tuan, R. S., Robinson, L. J., Schlesinger, P. H., & Nelson, D. J. (2017). Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Engineering. Part B, Reviews, 23, 268–280. https://doi.org/10.1089/ten.TEB.2016.0454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sapir-Koren, R., & Livshits, G. (2014). Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption–formation cycles? Osteoporosis International, 25, 2685–2700. https://doi.org/10.1007/s00198-014-2808-0

    Article  CAS  PubMed  Google Scholar 

  39. Winkler, D. G., Sutherland, M. K., Geoghegan, J. C., Yu, C., Hayes, T., Skonier, J. E., Shpektor, D., Jonas, M., Kovacevich, B. R., Staehling-Hampton, K., et al. (2003). Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. Embo Journal, 22, 6267–6276. https://doi.org/10.1093/emboj/cdg599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Franz-Odendaal, T. A., Hall, B. K., & Witten, P. E. (2006). Buried alive: How osteoblasts become osteocytes. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 235, 176–190. https://doi.org/10.1002/dvdy.20603

    Article  CAS  PubMed  Google Scholar 

  41. Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 9, 641–650. https://doi.org/10.1002/jor.1100090504

    Article  CAS  PubMed  Google Scholar 

  42. Andrzejewska, A., Lukomska, B., Janowski, M. C., & Review. (2019). Mesenchymal stem cells: from roots to boost. Stem Cells, 37, 855–864. https://doi.org/10.1002/stem.3016

    Article  PubMed  Google Scholar 

  43. Huang, S., Jin, M., Su, N., & Chen, L. (2021). New insights on the reparative cells in bone regeneration and repair. Biological Reviews of the Cambridge Philosophical Society, 96, 357–375. https://doi.org/10.1111/brv.12659

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, N., Hu, L., Cao, Z., Liu, X., & Pan, J. (2022). Periosteal skeletal stem cells and their response to bone injury. Frontiers in Cell and Developmental Biology, 10, 812094. https://doi.org/10.3389/fcell.2022.812094

  45. Colnot, C. (2009). Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. Journal of Bone and Mineral Research: Official Journal of the American Society for Bone and Mineral Research, 24, 274–282. https://doi.org/10.1359/jbmr.081003

    Article  Google Scholar 

  46. Chen, Q., Shou, P., Zheng, C., Jiang, M., Cao, G., Yang, Q., Cao, J., Xie, N., Velletri, T., Zhang, X., et al. (2016). Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death and Differentiation, 23, 1128–1139. https://doi.org/10.1038/cdd.2015.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ahmadi, A., Mazloomnejad, R., Kasravi, M., Gholamine, B., Bahrami, S., Sarzaeem, M. M., & Niknejad, H. (2022). Recent advances on small molecules in osteogenic differentiation of stem cells and the underlying signaling pathways. Stem Cell Research & Therapy, 13, 518. https://doi.org/10.1186/s13287-022-03204-4

    Article  CAS  Google Scholar 

  48. Xu, X., Zheng, L., Yuan, Q., Zhen, G., Crane, J. L., Zhou, X., & Cao, X. (2018). Transforming growth Factor-β in stem cells and tissue homeostasis. Bone Research, 6, 2. https://doi.org/10.1038/s41413-017-0005-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dallas, S. L., Rosser, J. L., Mundy, G. R., & Bonewald, L. F. (2002). Proteolysis of latent transforming growth factor-Beta (TGF-Beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-Beta from bone matrix. Journal of Biological Chemistry, 277, 21352–21360. https://doi.org/10.1074/jbc.M111663200

    Article  CAS  PubMed  Google Scholar 

  50. Tang, Y., Wu, X., Lei, W., Pang, L., Wan, C., Shi, Z., Zhao, L., Nagy, T. R., Peng, X., Hu, J., et al. (2009). TGF-Β1–Induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nature Medicine, 15, 757–765. https://doi.org/10.1038/nm.1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Halloran, D., Durbano, H. W., & Nohe, A. (2020). Bone morphogenetic protein-2 in development and bone homeostasis. Journal of Developmental Biology, 8. https://doi.org/10.3390/jdb8030019

  52. Scarfì, S. (2016). Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World Journal of Stem Cells, 8, 1–12. https://doi.org/10.4252/wjsc.v8.i1.1

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang, R. N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., Zhang, Q., Ye, J., Yan, Z., Denduluri, S., et al. (2014). Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes & Diseases, 1, 87–105. https://doi.org/10.1016/j.gendis.2014.07.005

    Article  Google Scholar 

  54. Xian, L., Wu, X., Pang, L., Lou, M., Rosen, C. J., Qiu, T., Crane, J., Frassica, F., Zhang, L., Rodriguez, J. P., et al. (2012). Matrix IGF-1 maintains bone mass by activation of MTOR in mesenchymal stem cells. Nature Medicine, 18, 1095–1101. https://doi.org/10.1038/nm.2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, M. N., Hwang, H. S., Oh, S. H., Roshanzadeh, A., Kim, J. W., Song, J. H., Kim, E. S., & Koh, J. T. (2018). Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression. Experimental & Molecular Medicine, 50, 1–16. https://doi.org/10.1038/s12276-018-0170-6

    Article  CAS  Google Scholar 

  56. Aquino-Martínez, R., Angelo, A. P., & Pujol, F. V. (2017). Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration. Stem Cell Research & Therapy, 8, 265. https://doi.org/10.1186/s13287-017-0713-0

    Article  CAS  Google Scholar 

  57. Kreja, L., Brenner, R. E., Tautzenberger, A., Liedert, A., Friemert, B., Ehrnthaller, C., Huber-Lang, M., & Ignatius, A. (2010). Non-resorbing osteoclasts induce migration and osteogenic differentiation of mesenchymal stem cells. Journal of Cellular Biochemistry, 109, 347–355. https://doi.org/10.1002/jcb.22406

    Article  CAS  PubMed  Google Scholar 

  58. Yi, S., Kim, J., & Lee, S. Y. (2020). GDNF secreted by pre-osteoclasts induces migration of bone marrow mesenchymal stem cells and stimulates osteogenesis. Bmb Reports, 53, 646–651. https://doi.org/10.5483/BMBRep.2020.53.12.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pederson, L., Ruan, M., Westendorf, J. J., Khosla, S., & Oursler, M. J. (2008). Regulation of bone formation by osteoclasts involves Wnt/BMP Signaling and the chemokine sphingosine-1-phosphate. Proceedings of the National Academy of Sciences of the United States of America, 105, 20764–20769. https://doi.org/10.1073/pnas.0805133106

  60. Quint, P., Ruan, M., Pederson, L., Kassem, M., Westendorf, J. J., Khosla, S., & Oursler, M. J. (2013). Sphingosine 1-Phosphate (S1P) receptors 1 and 2 coordinately induce mesenchymal cell migration through S1P activation of complementary kinase pathways. Journal of Biological Chemistry, 288, 5398–5406. https://doi.org/10.1074/jbc.M112.413583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Murakami, S., Nifuji, A., & Noda, M. (1997). Expression of Indian hedgehog in osteoblasts and its posttranscriptional regulation by transforming growth Factor-Β*. Endocrinology, 138, 1972–1978. https://doi.org/10.1210/endo.138.5.5140

    Article  CAS  PubMed  Google Scholar 

  62. Zou, S., Chen, T., Wang, Y., Tian, R., Zhang, L., Song, P., Yang, S., Zhu, Y., Guo, X., Huang, Y., et al. (2014). Mesenchymal stem cells overexpressing Ihh promote bone repair. Journal of Orthopaedic Surgery and Research, 9. https://doi.org/10.1186/s13018-014-0102-7

  63. Maeda, K., Kobayashi, Y., Koide, M., Uehara, S., Okamoto, M., Ishihara, A., Kayama, T., Saito, M., & Marumo, K. (2019). The regulation of bone metabolism and disorders by Wnt signaling. International Journal of Molecular Sciences, 20.

  64. Zhong, Z., Zylstra-Diegel, C. R., Schumacher, C. A., Baker, J. J., Carpenter, A. C., Rao, S., Yao, W., Guan, M., Helms, J. A., Lane, N. E. (2012). Wntless Functions in Mature Osteoblasts to Regulate Bone Mass. Proceedings of the National Academy of Sciences of the United States of America, 109, E2197-204. https://doi.org/10.1073/pnas.1120407109

  65. Lau, K. H. W., Baylink, D. J., Zhou, X. D., Rodriguez, D., Bonewald, L. F., Li, Z., Ruffoni, D., Müller, R., Kesavan, C., & Sheng, M. H. C. (2013). Osteocyte-derived insulin-like growth factor I is essential for determining bone mechanosensitivity. American Journal Of Physiology. Endocrinology And Metabolism, 305, E271–E281. https://doi.org/10.1152/ajpendo.00092.2013

    Article  CAS  PubMed  Google Scholar 

  66. Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature, 474, 179–183. https://doi.org/10.1038/nature10137

    Article  CAS  PubMed  Google Scholar 

  67. Chang, Y. C., Wu, J. W., Wang, C. W., & Jang, A. C. C. (2019). Hippo signaling-mediated mechanotransduction in cell movement and cancer metastasis. Frontiers in Molecular Biosciences, 6, 157. https://doi.org/10.3389/fmolb.2019.00157

    Article  CAS  PubMed  Google Scholar 

  68. Yourek, G., McCormick, S. M., Mao, J. J., & Reilly, G. C. (2010). Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regenerative Medicine, 5, 713–724. https://doi.org/10.2217/rme.10.60

    Article  CAS  PubMed  Google Scholar 

  69. Kim, K. M., Choi, Y. J., Hwang, J. H., Kim, A. R., Cho, H. J., Hwang, E. S., Park, J. Y., Lee, S. H., & Hong, J. H. (2014). Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation. PLoS One, 9, e92427. https://doi.org/10.1371/journal.pone.0092427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Arnsdorf, E. J., Tummala, P., Kwon, R. Y., & Jacobs, C. R. (2009). Mechanically induced osteogenic differentiation–the role of RhoA, ROCKII and cytoskeletal dynamics. Journal of Cell Science, 122, 546–553. https://doi.org/10.1242/jcs.036293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Arnsdorf, E. J., Tummala, P., & Jacobs, C. R. (2009). Non-canonical wnt signaling and N-Cadherin related Beta-catenin signaling play a role in mechanically induced osteogenic cell fate. PLoS One, 4, e5388. https://doi.org/10.1371/journal.pone.0005388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guillot, P. V., De Bari, C., Dell’Accio, F., Kurata, H., Polak, J., & Fisk, N. M. (2008). Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources. Differentiation, 76, 946–957. https://doi.org/10.1111/j.1432-0436.2008.00279.x

    Article  CAS  PubMed  Google Scholar 

  73. Hwang, J. H., Byun, M. R., Kim, A. R., Kim, K. M., Cho, H. J., Lee, Y. H., Kim, J., Jeong, M. G., Hwang, E. S., & Hong, J. H. (2015). Extracellular matrix stiffness regulates osteogenic differentiation through MAPK activation. PLoS One, 10, 1–16. https://doi.org/10.1371/journal.pone.0135519

    Article  CAS  Google Scholar 

  74. Hong, J. H., Hwang, E. S., McManus, M. T., Amsterdam, A., Tian, Y., Kalmukova, R., Mueller, E., Benjamin, T., Spiegelman, B. M., Sharp, P. A., et al. (2005). TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science (80-), 309, 1074–1078. https://doi.org/10.1126/science.1110955

    Article  CAS  Google Scholar 

  75. Lee, K. S., Kim, H. J., Li, Q. L., Chi, X. Z., Ueta, C., Komori, T., Wozney, J. M., Kim, E. G., Choi, J. Y., Ryoo, H. M., et al. (2000). Runx2 is a common target of transforming growth factor Beta1 and bone morphogenetic protein 2, and Cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Molecular and Cellular Biology, 20, 8783–8792. https://doi.org/10.1128/MCB.20.23.8783-8792.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Galindo, M., Pratap, J., Young, D. W., Hovhannisyan, H., Im, H. J., Choi, J. Y., Lian, J. B., Stein, J. L., Stein, G. S., & van Wijnen, A. J. (2005). The bone-specific expression of Runx2 oscillates during the cell cycle to support a G1-Related antiproliferative function in osteoblasts. Journal of Biological Chemistry, 280, 20274–20285. https://doi.org/10.1074/jbc.M413665200

    Article  CAS  PubMed  Google Scholar 

  77. Thomas, D. M., Johnson, S. A., Sims, N. A., Trivett, M. K., Slavin, J. L., Rubin, B. P., Waring, P., McArthur, G. A., Walkley, C. R., Holloway, A. J., et al. (2004). Terminal osteoblast differentiation, mediated by Runx2 and P27KIP1, is disrupted in Osteosarcoma. Journal of Cell Biology, 167, 925–934. https://doi.org/10.1083/jcb.200409187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu, H., Whitfield, T. W., Gordon, J. A. R., Dobson, J. R., Tai, P. W. L., van Wijnen, A. J., Stein, J. L., Stein, G. S., & Lian, J. B. (2014). Genomic occupancy of Runx2 with global expression profiling identifies a Novel dimension to control of Osteoblastogenesis. Genome Biology, 15, R52. https://doi.org/10.1186/gb-2014-15-3-r52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J. M., Behringer, R. R., & de Crombrugghe, B. (2002). The Novel Zinc Finger-Containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 108, 17–29. https://doi.org/10.1016/s0092-8674(01)00622-5

    Article  CAS  PubMed  Google Scholar 

  80. Ortuño, M. J., Susperregui, A. R. G., Artigas, N., Rosa, J. L., & Ventura, F. (2013). Osterix induces Col1a1 gene expression through binding to Sp1 Sites in the bone enhancer and proximal promoter regions. Bone, 52, 548–556. https://doi.org/10.1016/j.bone.2012.11.007

    Article  CAS  PubMed  Google Scholar 

  81. Amarasekara, D. S., Kim, S., & Rho, J. (2021). Regulation of osteoblast differentiation by Cytokine Networks. International Journal of Molecular Sciences, 22, https://doi.org/10.3390/ijms22062851

  82. Na, W., Kang, M. K., Park, S. H., Kim, D. Y., Oh, S. Y., Oh, M. S., Park, S., Kang, I. J., & Kang, Y. H. (2021). Aesculetin accelerates osteoblast differentiation and matrix-vesicle-mediated mineralization. International Journal of Molecular Sciences, 22, https://doi.org/10.3390/ijms222212391

  83. Sun, C., Yuan, H., Wang, L., Wei, X., Williams, L., Krebsbach, P. H., Guan, J. L., & Liu, F. F. A. K. (2016). Promotes osteoblast progenitor cell proliferation and differentiation by enhancing wnt signaling. Journal of Bone and Mineral Research: Official Journal of the American Society for Bone and Mineral Research, 31, 2227–2238. https://doi.org/10.1002/jbmr.2908

    Article  CAS  Google Scholar 

  84. Song, L., Liu, M., Ono, N., Bringhurst, F. R., Kronenberg, H. M., & Guo, J. (2012). Loss of Wnt/β-Catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. Journal of Bone and Mineral Research: Official Journal of the American Society for Bone and Mineral Research, 27, 2344–2358. https://doi.org/10.1002/jbmr.1694

    Article  CAS  Google Scholar 

  85. Rutkovskiy, A., Stensløkken, K. O., & Vaage, I. J. (2016). Osteoblast differentiation at a glance. Medical Science Monitor Basic Research, 22, 95–106. https://doi.org/10.12659/msmbr.901142

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kimura, H., Kwan, K. M., Zhang, Z., Deng, J. M., Darnay, B. G., Behringer, R. R., Nakamura, T., de Crombrugghe, B., & Akiyama, H. (2008). Cthrc1 is a positive Regulator of Osteoblastic bone formation. PLoS One, 3, e3174. https://doi.org/10.1371/journal.pone.0003174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Takeshita, S., Fumoto, T., Matsuoka, K., Park, K., Aburatani, H., Kato, S., Ito, M., & Ikeda, K. (2013). Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. Journal of Clinical Investigation, 123, 3914–3924. https://doi.org/10.1172/JCI69493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roelofsen, T., Akkers, R., Beumer, W., Apotheker, M., Steeghs, I., van de Ven, J., Gelderblom, C., Garritsen, A., & Dechering, K. (2008). Sphingosine-1-Phosphate Acts as a developmental stage specific inhibitor of platelet-derived growth Factor-Induced Chemotaxis of osteoblasts. Journal of Cellular Biochemistry, 105, 1128–1138. https://doi.org/10.1002/jcb.21915

    Article  CAS  PubMed  Google Scholar 

  89. Lotinun, S., Kiviranta, R., Matsubara, T., Alzate, J. A., Neff, L., Lüth, A., Koskivirta, I., Kleuser, B., Vacher, J., Vuorio, E., et al. (2013). Osteoclast-specific cathepsin K deletion stimulates S1P-Dependent bone formation. Journal of Clinical Investigation, 123, 666–681. https://doi.org/10.1172/JCI64840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Alfaro, D., Rodríguez-Sosa, M. R., Zapata, A. G., Arthur, A., & Gronthos, S. (2020). Eph/Ephrin Signaling and Biology of Mesenchymal Stromal/Stem cells. Journal of Clinical Medicine, 9, 598612. https://doi.org/10.3390/jcm9020310

    Article  CAS  Google Scholar 

  91. Arthur, A., & Gronthos, S. (2021). Eph-Ephrin Signaling mediates Cross-Talk within the bone microenvironment. Frontiers in Cell and Developmental Biology, 9, 598612. https://doi.org/10.3389/fcell.2021.598612

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zhao, C., Irie, N., Takada, Y., Shimoda, K., Miyamoto, T., Nishiwaki, T., Suda, T., & Matsuo, K. (2006). Bidirectional EphrinB2-EphB4 signaling controls bone homeostasis. Cell Metabolism, 4, 111–121. https://doi.org/10.1016/j.cmet.2006.05.012

    Article  CAS  PubMed  Google Scholar 

  93. Furuya, M., Kikuta, J., Fujimori, S., Seno, S., Maeda, H., Shirazaki, M., Uenaka, M., Mizuno, H., Iwamoto, Y., Morimoto, A., et al. (2018). Direct cell-cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo. Nature Communications, 9, 300. https://doi.org/10.1038/s41467-017-02541-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vrahnas, C., & Sims, N. A. (2015). EphrinB2 signalling in osteoblast differentiation, bone formation and endochondral ossification. Current Molecular Biology Reports, 1, 148–156. https://doi.org/10.1007/s40610-015-0024-0

    Article  Google Scholar 

  95. Yu, S., Franceschi, R. T., Luo, M., Fan, J., Jiang, D., Cao, H., Kwon, T. G., Lai, Y., Zhang, J., Patrene, K., et al. (2009). Critical role of activating transcription factor 4 in the anabolic actions of parathyroid hormone in bone. PLoS One, 4, e7583.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lawal, R. A., Zhou, X., Batey, K., Hoffman, C. M., Georger, M. A., Radtke, F., Hilton, M. J., Xing, L., Frisch, B. J., & Calvi, L. M. (2017). The notch ligand Jagged1 regulates the Osteoblastic lineage by maintaining the Osteoprogenitor Pool. Journal of Bone and Mineral Research, 32, 1320–1331. https://doi.org/10.1002/jbmr.3106

    Article  CAS  PubMed  Google Scholar 

  97. Youngstrom, D. W., Dishowitz, M. I., Bales, C. B., Carr, E., Mutyaba, P. L., Kozloff, K. M., Shitaye, H., Hankenson, K. D., & Loomes, K. M. (2016). Jagged1 expression by osteoblast-lineage cells regulates trabecular bone Mass and Periosteal Expansion in mice. Bone, 91, 64–74. https://doi.org/10.1016/j.bone.2016.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ashley, J. W., Ahn, J., & Hankenson, K. D. (2015). Notch Signaling promotes osteoclast maturation and resorptive activity. Journal of Cellular Biochemistry, 116, 2598–2609. https://doi.org/10.1002/jcb.25205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Calvi, L. M., Adams, G. B., Weibrecht, K. W., Weber, J. M., Olson, D. P., Knight, M. C., Martin, R. P., Schipani, E., Divieti, P., Bringhurst, F. R., et al. (2003). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425, 841–846. https://doi.org/10.1038/nature02040

    Article  CAS  PubMed  Google Scholar 

  100. Park, D., Hoggatt, J., Ferraro, F., & Scadden, D. T. (2013). Chapter 7 - The Skeletal Stem Cell. In Marcus, R., Feldman, D., Dempster, D. W., Luckey, M., & Cauley, J. A. (Eds) Osteoporosis (4th Edition, pp. 127–147). Academic, ISBN 978-0-12-415853-5.

  101. Wein, M. N. (2017). Bone lining cells: Normal physiology and role in response to anabolic osteoporosis treatments. Current Molecular Biology Reports, 3, 79–84. https://doi.org/10.1007/s40610-017-0062-x

    Article  Google Scholar 

  102. Jilka, R. L., Weinstein, R. S., Bellido, T., Parfitt, A. M., & Manolagas, S. C. (1998). Osteoblast programmed cell death (apoptosis): Modulation by growth factors and cytokines. Journal of Bone and Mineral Research: Official Journal of the American Society for Bone and Mineral Research, 13, 793–802. https://doi.org/10.1359/jbmr.1998.13.5.793

    Article  CAS  Google Scholar 

  103. Chen, H., Senda, T., & Kubo, K. (2015). The Osteocyte Plays multiple roles in bone remodeling and Mineral Homeostasis. Medical Molecular Morphology, 48, 61–68. https://doi.org/10.1007/s00795-015-0099-y

    Article  CAS  PubMed  Google Scholar 

  104. Hardy, E., & Fernandez-Patron, C. (2020). Destroy to rebuild: The connection between bone tissue remodeling and Matrix Metalloproteinases. Frontiers in Physiology, 11, https://doi.org/10.3389/fphys.2020.00047

  105. Matic, I., Matthews, B. G., Wang, X., Dyment, N. A., Worthley, D. L., Rowe, D. W., Grcevic, D., & Kalajzic, I. (2016). Quiescent bone lining cells are a major source of osteoblasts during Adulthood. Stem Cells, 34, 2930–2942. https://doi.org/10.1002/stem.2474

    Article  CAS  PubMed  Google Scholar 

  106. Håkelien, A. M., Bryne, J. C., Harstad, K. G., Lorenz, S., Paulsen, J., Sun, J., Mikkelsen, T. S., Myklebost, O., & Meza-Zepeda, L. A. (2014). The Regulatory Landscape of osteogenic differentiation. Stem Cells, 32, 2780–2793. https://doi.org/10.1002/stem.1759

    Article  CAS  PubMed  Google Scholar 

  107. Kostina, D., Lobov, A., Klausen, P., Karelkin, V., Tikhilov, R., Bozhkova, S., Sereda, A., Ryumina, N., Enukashvily, N., & Malashicheva, A. (2022). Isolation of human osteoblast cells capable for mineralization and synthetizing bone-related proteins in vitro from adult bone. Cells, 11(21), 3356. https://doi.org/10.3390/cells11213356

  108. Patel, C., Shi, L., Whitesides, J. F., Foster, B. M., Fajardo, R. J., Quillen, E. E., & Kerr, B. A. (2022). A New Method of Bone Stromal Cell characterization by Flow Cytometry. Current Protocols, 2, e400. https://doi.org/10.1002/cpz1.400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Byun, M. R., Hwang, J. H., Kim, A. R., Kim, K. M., Hwang, E. S., Yaffe, M. B., & Hong, J. H. (2014). Canonical wnt signalling activates TAZ through PP1A during osteogenic differentiation. Cell Death and Differentiation, 21, 854–863. https://doi.org/10.1038/cdd.2014.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Twine, N. A., Chen, L., Pang, C. N., Wilkins, M. R., & Kassem, M. (2014). Identification of differentiation-stage specific markers that define the ex vivo osteoblastic phenotype. Bone, 67, 23–32. https://doi.org/10.1016/j.bone.2014.06.027

  111. Aasebø, E., Brenner, A. K., Hernandez-Valladares, M., Birkeland, E., Berven, F. S., Selheim, F., & Bruserud, Ø. (2021). Proteomic comparison of bone marrow derived osteoblasts and mesenchymal stem cells. International Journal of Molecular Sciences, 22. https://doi.org/10.3390/ijms22115665

  112. Liu, H., Peng, F., Liu, Z., Jiang, F., Li, L., Gao, S., Wang, G., Song, J., Ruan, E., Shao, Z., et al. (2017). CYR61/CCN1 stimulates proliferation and differentiation of osteoblasts in Vitro and contributes to bone remodeling in vivo in Myeloma Bone Disease. International Journal of Oncology, 50, 631–639. https://doi.org/10.3892/ijo.2016.3815

    Article  CAS  PubMed  Google Scholar 

  113. Nistala, H., Lee-Arteaga, S., Smaldone, S., Siciliano, G., Carta, L., Ono, R., Sengle, G., Arteaga-Solis, E., Levasseur, R., Ducy, P., et al. (2010). Fibrillin-1 and – 2 differentially modulate endogenous TGF-β and BMP bioavailability during bone formation. Journal of Cell Biology, 190, 1107–1121. https://doi.org/10.1083/jcb.201003089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gao, M. M., Su, Q. N., Liang, T. Z., Ma, J. X., Liang, T. Z., Stoddart, M. J., Richards, R. G., Zhou, Z. Y., & Zou, N. X. (2018). Transcriptional activation of ENPP1 by Osterix in osteoblasts and osteocytes. European Cells & Materials, 36, 1–14. https://doi.org/10.22203/eCM.v036a01

    Article  CAS  Google Scholar 

  115. Liu, F., Malaval, L., & Aubin, J. E. (1997). The mature osteoblast phenotype is characterized by extensive plasticity. Experimental Cell Research, 232, 97–105. https://doi.org/10.1006/excr.1997.3501

    Article  CAS  PubMed  Google Scholar 

  116. Yang, X., Matsuda, K., Bialek, P., Jacquot, S., Masuoka, H. C., Schinke, T., Li, L., Brancorsini, S., Sassone-Corsi, P., Townes, T. M., et al. (2004). ATF4 is a substrate of RSK2 and an essential Regulator of osteoblast Biology; implication for Coffin-Lowry Syndrome. Cell, 117, 387–398. https://doi.org/10.1016/s0092-8674(04)00344-7

    Article  CAS  PubMed  Google Scholar 

  117. Zohar, R., Cheifetz, S., McCulloch, C. A., & Sodek, J. (1998). Analysis of intracellular osteopontin as a marker of Osteoblastic Cell differentiation and Mesenchymal Cell Migration. European Journal of Oral Sciences, 106(Suppl 1), 401–407. https://doi.org/10.1111/j.1600-0722.1998.tb02206.x

    Article  CAS  PubMed  Google Scholar 

  118. Yu, H., de Vos, P., & Ren, Y. (2011). Overexpression of osteoprotegerin promotes preosteoblast differentiation to mature osteoblasts. Angle Orthodontist, 81, 100–106. https://doi.org/10.2319/050210-238.1

    Article  PubMed  PubMed Central  Google Scholar 

  119. Gordon, J. A. R., Tye, C. E., Sampaio, A. V., Underhill, T. M., Hunter, G. K., & Goldberg, H. A. (2007). Bone sialoprotein expression enhances osteoblast differentiation and Matrix Mineralization in Vitro. Bone, 41, 462–473. https://doi.org/10.1016/j.bone.2007.04.191

    Article  CAS  PubMed  Google Scholar 

  120. Supronowicz, P., Gill, E., Trujillo, A., Thula, T., Zhukauskas, R., Ramos, T., & Cobb, R. (2010). Human adipose-derived side Population Stem cells cultured on demineralized bone matrix for bone tissue Engineering. Tissue Engineering Part A, 17, 789–798. https://doi.org/10.1089/ten.TEA.2010.0357

    Article  PubMed  Google Scholar 

  121. Hikita, A., Yana, I., Wakeyama, H., Nakamura, M., Kadono, Y., Oshima, Y., Nakamura, K., Seiki, M., & Tanaka, S. (2006). Negative regulation of Osteoclastogenesis by Ectodomain shedding of receptor activator of NF-ΚB Ligand*. Journal of Biological Chemistry, 281, 36846–36855. https://doi.org/10.1074/jbc.M606656200

    Article  CAS  PubMed  Google Scholar 

  122. Akiva, A., Melke, J., Ansari, S., Liv, N., van der Meijden, R., van Erp, M., Zhao, F., Stout, M., Nijhuis, W. H., de Heus, C., et al. (2021). An Organoid for Woven Bone. Advanced Functional Materials, 31, 2010524. https://doi.org/10.1002/adfm.202010524

    Article  CAS  Google Scholar 

  123. Kitahama, S., Gibson, M. A., Hatzinikolas, G., Hay, S., Kuliwaba, J. L., Evdokiou, A., Atkins, G. J., & Findlay, D. M. (2000). Expression of fibrillins and other Microfibril-Associated Proteins in Human Bone and osteoblast-like cells. Bone, 27, 61–67. https://doi.org/10.1016/S8756-3282(00)00292-1

    Article  CAS  PubMed  Google Scholar 

  124. Miao, D., & Scutt, A. (2002). Histochemical localization of Alkaline phosphatase activity in decalcified bone and cartilage. Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 50, 333–340. https://doi.org/10.1177/002215540205000305

    Article  CAS  PubMed  Google Scholar 

  125. Buenzli, P. R., & Sims, N. A. (2015). Quantifying the Osteocyte Network in the human skeleton. Bone, 75, 144–150. https://doi.org/10.1016/j.bone.2015.02.016

    Article  CAS  PubMed  Google Scholar 

  126. Tresguerres, F. G. F., Torres, J., López-Quiles, J., Hernández, G., Vega, J. A., & Tresguerres, I. F. (2020). The osteocyte: A multifunctional cell within the bone. Annals of Anatomy = Anatomischer Anzeiger: Official Organ of the Anatomische Gesellschaft, 227, 151422. https://doi.org/10.1016/j.aanat.2019.151422

    Article  CAS  PubMed  Google Scholar 

  127. Bonewald, L. F. (2011). The amazing osteocyte. Journal of Bone and Mineral Research: Official Journal of the American Society for Bone and Mineral Research, 26, 229–238. https://doi.org/10.1002/jbmr.320

    Article  CAS  Google Scholar 

  128. Prideaux, M., Loveridge, N., Pitsillides, A. A., & Farquharson, C. (2012). Extracellular matrix mineralization promotes E11/Gp38 glycoprotein expression and drives osteocytic differentiation. PLoS One, 7, e36786. https://doi.org/10.1371/journal.pone.0036786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hirao, M., Hashimoto, J., Yamasaki, N., Ando, W., Tsuboi, H., Myoui, A., & Yoshikawa, H. (2007). Oxygen tension is an important mediator of the Transformation of osteoblasts to Osteocytes. Journal of Bone and Mineral Metabolism, 25, 266–276. https://doi.org/10.1007/s00774-007-0765-9

    Article  CAS  PubMed  Google Scholar 

  130. Mullen, C. A., Haugh, M. G., Schaffler, M. B., Majeska, R. J., & McNamara, L. M. (2013). Osteocyte differentiation is regulated by Extracellular Matrix stiffness and intercellular separation. Journal of the Mechanical Behavior of Biomedical Materials, 28, 183–194. https://doi.org/10.1016/j.jmbbm.2013.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Torreggiani, E., Matthews, B. G., Pejda, S., Matic, I., Horowitz, M. C., Grcevic, D., & Kalajzic, I. (2013). Preosteocytes/Osteocytes have the potential to dedifferentiate becoming a source of osteoblasts. PLoS One, 8, e75204. https://doi.org/10.1371/journal.pone.0075204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Palumbo, C., Palazzini, S., Zaffe, D., & Marotti, G. (1990). Osteocyte differentiation in the tibia of newborn rabbit: An ultrastructural study of the formation of cytoplasmic processes. Acta Anatomica (Basel), 137, 350–358. https://doi.org/10.1159/000146907

    Article  CAS  Google Scholar 

  133. Wee, N. K., Sims, N. A., & Morello, R. (2021). The Osteocyte Transcriptome: Discovering messages buried within bone. Current Osteoporosis Reports, 19, 604–615. https://doi.org/10.1007/s11914-021-00708-5

    Article  PubMed  PubMed Central  Google Scholar 

  134. van Bezooijen, R. L., Roelen, B. A. J., Visser, A., van der Wee-Pals, L., de Wilt, E., Karperien, M., Hamersma, H., Papapoulos, S. E., ten Dijke, P., & Löwik, C. W. G. M. (2004). Sclerostin is an osteocyte-expressed negative Regulator of bone formation, but not a classical BMP antagonist. Journal of Experimental Medicine, 199, 805–814. https://doi.org/10.1084/jem.20031454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hua, R., Gu, S., & Jiang, J. X. (2022). Connexin 43 Hemichannels regulate osteoblast to Osteocyte differentiation. Frontiers in Cell and Developmental Biology, 10, 892229. https://doi.org/10.3389/fcell.2022.892229

    Article  PubMed  PubMed Central  Google Scholar 

  136. Staines, K. A., Prideaux, M., Allen, S., Buttle, D. J., Pitsillides, A. A., & Farquharson, C. (2016). E11/Podoplanin protein stabilization through inhibition of the Proteasome promotes osteocyte differentiation in Murine in Vitro Models. Journal of Cellular Physiology, 231, 1392–1404. https://doi.org/10.1002/jcp.25282

    Article  CAS  PubMed  Google Scholar 

  137. McNamara, L. M., Majeska, R. J., Weinbaum, S., Friedrich, V., & Schaffler, M. B. (2009). Attachment of Osteocyte cell processes to the bone matrix. Anatomical Record (Hoboken), 292, 355–363. https://doi.org/10.1002/ar.20869

    Article  CAS  Google Scholar 

  138. Klein-Nulend, J., van der Plas, A., Semeins, C. M., Ajubi, N. E., Frangos, J. A., Nijweide, P. J., & Burger, E. H. (1995). Sensitivity of Osteocytes to Biomechanical stress in Vitro. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 9, 441–445. https://doi.org/10.1096/fasebj.9.5.7896017

    Article  CAS  PubMed  Google Scholar 

  139. Burger, E. H., & Klein-Nulend, J. (1999). Mechanotransduction in Bone–Role of the Lacuno-Canalicular Network. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 13(Suppl), S101-12.

  140. Vahidi, G., Rux, C., Sherk, V. D., & Heveran, C. M. (2021). Lacunar-Canalicular bone remodeling: Impacts on Bone Quality and Tools for Assessment. Bone, 143, 115663. https://doi.org/10.1016/j.bone.2020.115663

    Article  CAS  PubMed  Google Scholar 

  141. Holmbeck, K., Bianco, P., Pidoux, I., Inoue, S., Billinghurst, R. C., Wu, W., Chrysovergis, K., Yamada, S., Birkedal-Hansen, H., & Poole, A. R. (2005). The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. Journal of Cell Science, 118, 147–156. https://doi.org/10.1242/jcs.01581

    Article  CAS  PubMed  Google Scholar 

  142. Staines, K. A., Javaheri, B., Hohenstein, P., Fleming, R., Ikpegbu, E., Unger, E., Hopkinson, M., Buttle, D. J., Pitsillides, A. A., & Farquharson, C. (2017). Hypomorphic conditional deletion of E11/Podoplanin reveals a role in Osteocyte Dendrite Elongation. Journal of Cellular Physiology, 232, 3006–3019. https://doi.org/10.1002/jcp.25999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Staines, K. A., Ikpegbu, E., Törnqvist, A. E., Dillon, S., Javaheri, B., Amin, A. K., Clements, D. N., Buttle, D. J., Pitsillides, A. A., & Farquharson, C. (2019). Conditional deletion of E11/Podoplanin in bone protects against Load-Induced Osteoarthritis. Bmc Musculoskeletal Disorders, 20, 344. https://doi.org/10.1186/s12891-019-2731-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhang, K., Barragan-Adjemian, C., Ye, L., Kotha, S., Dallas, M., Lu, Y., Zhao, S., Harris, M., Harris, S. E., Feng, J. Q., et al. (2006). E11/Gp38 selective expression in Osteocytes: Regulation by mechanical strain and role in Dendrite Elongation. Molecular and Cellular Biology, 26, 4539–4552. https://doi.org/10.1128/MCB.02120-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Plotkin, L. I., & Bellido, T. (2013). Beyond gap junctions: Connexin43 and bone cell signaling. Bone, 52, 157–166. https://doi.org/10.1016/j.bone.2012.09.030

    Article  CAS  PubMed  Google Scholar 

  146. Yellowley, C. E., Li, Z., Zhou, Z., Jacobs, C. R., & Donahue, H. J. (2000). Functional gap junctions between Osteocytic and Osteoblastic cells. Journal of Bone and Mineral Research: Official Journal of the American Society for Bone and Mineral Research, 15, 209–217. https://doi.org/10.1359/jbmr.2000.15.2.209

    Article  CAS  Google Scholar 

  147. Kamioka, H., Honjo, T., Takano-Yamamoto, T. A., & Three-Dimensional. (2001). Distribution of osteocyte processes revealed by the combination of Confocal Laser scanning Microscopy and Differential Interference contrast Microscopy. Bone, 28, 145–149. https://doi.org/10.1016/s8756-3282(00)00421-x

    Article  CAS  PubMed  Google Scholar 

  148. Riquelme, M. A., Cardenas, E. R., Xu, H., & Jiang, J. X. (2020). The role of Connexin channels in the response of mechanical loading and unloading of bone. International Journal of Molecular Sciences, 21, https://doi.org/10.3390/ijms21031146

  149. Cheng, B., Zhao, S., Luo, J., Sprague, E., Bonewald, L. F., & Jiang, J. X. (2001). Expression of functional gap Junctions and Regulation by Fluid Flow in Osteocyte-Like MLO-Y4 cells. Journal of Bone and Mineral Research, 16, 249–259. https://doi.org/10.1359/jbmr.2001.16.2.249

    Article  CAS  PubMed  Google Scholar 

  150. Siller-Jackson, A. J., Burra, S., Gu, S., Xia, X., Bonewald, L. F., Sprague, E., & Jiang, J. X. (2008). Adaptation of Connexin 43-Hemichannel prostaglandin release to mechanical loading. Journal of Biological Chemistry, 283, 26374–26382. https://doi.org/10.1074/jbc.M803136200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Batra, N., Burra, S., Siller-Jackson, A. J., Gu, S., Xia, X., Weber, G. F., DeSimone, D., Bonewald, L. F., Lafer, E. M., Sprague, E. (2012). Mechanical Stress-Activated Integrin Α5β1 Induces Opening of Connexin 43 Hemichannels. Proceedings of the National Academy of Sciences of the United States of America, 109, 3359–3364. https://doi.org/10.1073/pnas.1115967109

  152. Thi, M. M., Suadicani, S. O., Schaffler, M. B., Weinbaum, S., & Spray, D. C. (2013). Mechanosensory Responses of Osteocytes to Physiological Forces Occur along Processes and Not Cell Body and Require ΑVβ3 Integrin. Proceedings of the National Academy of Sciences of the United States of America, 110, 21012–21017. https://doi.org/10.1073/pnas.1321210110

  153. Shackelford, L. C., LeBlanc, A. D., Driscoll, T. B., Evans, H. J., Rianon, N. J., Smith, S. M., Spector, E., Feeback, D. L., & Lai, D. (2004). Resistance Exercise as a countermeasure to Disuse-Induced Bone loss. Journal of Applied Physiology, 97, 119–129. https://doi.org/10.1152/japplphysiol.00741.2003

    Article  CAS  PubMed  Google Scholar 

  154. Orwoll, E. S., Adler, R. A., Amin, S., Binkley, N., Lewiecki, E. M., Petak, S. M., Shapses, S. A., Sinaki, M., Watts, N. B., & Sibonga, J. D. (2013). Skeletal health in long-duration astronauts: Nature, Assessment, and Management Recommendations from the NASA Bone Summit. Journal of Bone and Mineral Research: Official Journal of the American Society for Bone and Mineral Research, 28, 1243–1255. https://doi.org/10.1002/jbmr.1948

    Article  Google Scholar 

  155. Uda, Y., Azab, E., Sun, N., Shi, C., & Pajevic, P. D. (2017). Osteocyte Mechanobiology. Current Osteoporosis Reports, 15, 318–325. https://doi.org/10.1007/s11914-017-0373-0

    Article  PubMed  PubMed Central  Google Scholar 

  156. Davis, H. M., Pacheco-Costa, R., Atkinson, E. G., Brun, L. R., Gortazar, A. R., Harris, J., Hiasa, M., Bolarinwa, S. A., Yoneda, T., Ivan, M., et al. (2017). Disruption of the Cx43/MiR21 pathway leads to Osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell, 16, 551–563. https://doi.org/10.1111/acel.12586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Noble, B. S., Peet, N., Stevens, H. Y., Brabbs, A., Mosley, J. R., Reilly, G. C., Reeve, J., Skerry, T. M., & Lanyon, L. E. (2003). Mechanical loading: Biphasic osteocyte survival and targeting of osteoclasts for Bone Destruction in Rat cortical bone. American Journal Of Physiology. Cell Physiology, 284, C934–C943. https://doi.org/10.1152/ajpcell.00234.2002

    Article  CAS  PubMed  Google Scholar 

  158. Lloyd, S. A., Lang, C. H., Zhang, Y., Paul, E. M., Laufenberg, L. J., Lewis, G. S., & Donahue, H. J. (2014). Interdependence of muscle atrophy and bone loss Induced by Mechanical Unloading. Journal of Bone and Mineral Research: Official Journal of the American Society for Bone and Mineral Research, 29, 1118–1130. https://doi.org/10.1002/jbmr.2113

    Article  CAS  Google Scholar 

  159. Werner, S. L., Sharma, R., Woodruff, K., Horn, D., Harris, S. E., Gorin, Y., Lee, D. Y., Hua, R., Gu, S., Fajardo, R. J., et al. (2020). CSF-1 in Osteocytes inhibits Nox4-Mediated oxidative stress and promotes normal bone homeostasis. JBMR Plus, 4, e10080. https://doi.org/10.1002/jbm4.10080

    Article  CAS  PubMed  Google Scholar 

  160. Tomkinson, A., Reeve, J., Shaw, R. W., & Noble, B. S. (1997). The death of Osteocytes via apoptosis accompanies estrogen withdrawal in human bone. Journal of Clinical Endocrinology and Metabolism, 82, 3128–3135. https://doi.org/10.1210/jcem.82.9.4200

    Article  CAS  PubMed  Google Scholar 

  161. Weinstein, R. S., Nicholas, R. W., & Manolagas, S. C. (2000). Apoptosis of Osteocytes in Glucocorticoid-Induced osteonecrosis of the hip. Journal of Clinical Endocrinology and Metabolism, 85, 2907–2912. https://doi.org/10.1210/jcem.85.8.6714

    Article  CAS  PubMed  Google Scholar 

  162. Plotkin, L. I., Mathov, I., Aguirre, J. I., Parfitt, A. M., Manolagas, S. C., & Bellido, T. (2005). Mechanical stimulation prevents Osteocyte apoptosis: Requirement of integrins, src kinases, and ERKs. American Journal Of Physiology. Cell Physiology, 289, C633–C643. https://doi.org/10.1152/ajpcell.00278.2004

    Article  CAS  PubMed  Google Scholar 

  163. Choi, J. U. A., Kijas, A. W., Lauko, J., & Rowan, A. E. (2021). The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Frontiers in Cell and Developmental Biology, 9, 770143. https://doi.org/10.3389/fcell.2021.770143

    Article  PubMed  Google Scholar 

  164. Yahara, Y., Nguyen, T., Ishikawa, K., Kamei, K., & Alman, B. A. (2022). The Origins and Roles of Osteoclasts in Bone Development, Homeostasis and Repair. Development, 149, dev199908. https://doi.org/10.1242/dev.199908

  165. Al-Bari, A. A., & Al Mamun, A. (2020). Current advances in regulation of bone homeostasis. FASEB BioAdvances, 2, 668–679. https://doi.org/10.1096/fba.2020-00058

    Article  PubMed  PubMed Central  Google Scholar 

  166. Yu, J., & Canalis, E. (2020). Notch and the regulation of Osteoclast differentiation and function. Bone, 138, 115474. https://doi.org/10.1016/j.bone.2020.115474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sarrazin, S., & Sieweke, M. (2011). Integration of cytokine and transcription factor signals in hematopoietic stem cell commitment. Seminars in Immunology, 23, 326–334. https://doi.org/10.1016/j.smim.2011.08.011

    Article  CAS  PubMed  Google Scholar 

  168. Sarrazin, S., Mossadegh-Keller, N., Fukao, T., Aziz, A., Mourcin, F., Vanhille, L., Kelly Modis, L., Kastner, P., Chan, S., Duprez, E., et al. (2009). MafB restricts M-CSF-Dependent myeloid commitment divisions of hematopoietic stem cells. Cell, 138, 300–313. https://doi.org/10.1016/j.cell.2009.04.057

    Article  CAS  PubMed  Google Scholar 

  169. Mossadegh-Keller, N., Sarrazin, S., Kandalla, P. K., Espinosa, L., Stanley, E. R., Nutt, S. L., Moore, J., & Sieweke, M. H. (2013). M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature, 497, 239–243. https://doi.org/10.1038/nature12026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kwon, O. H., Lee, C. K., Lee, Y. I., Paik, S. G., & Lee, H. J. (2005). The hematopoietic transcription factor PU.1 regulates RANK gene expression in myeloid progenitors. Biochemical and Biophysical Research Communications, 335, 437–446. https://doi.org/10.1016/j.bbrc.2005.07.092

    Article  CAS  PubMed  Google Scholar 

  171. Sucur, A., Jajic, Z., Artukovic, M., Matijasevic, M. I., Anic, B., Flegar, D., Markotic, A., Kelava, T., Ivcevic, S., Kovacic, N., et al. (2017). Chemokine signals are crucial for enhanced homing and differentiation of circulating osteoclast progenitor cells. Arthritis Research & Therapy, 19, 142. https://doi.org/10.1186/s13075-017-1337-6

    Article  CAS  Google Scholar 

  172. Jung, Y., Wang, J., Schneider, A., Sun, Y. X., Koh-Paige, A. J., Osman, N. I., McCauley, L. K., & Taichman, R. S. (2006). Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for Stem Cell Homing. Bone, 38, 497–508. https://doi.org/10.1016/j.bone.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  173. Yu, X., Huang, Y., Collin-Osdoby, P., & Osdoby, P. (2003). Stromal cell-derived Factor-1 (SDF-1) recruits osteoclast precursors by inducing Chemotaxis, Matrix Metalloproteinase-9 (MMP-9) activity, and collagen transmigration. Journal of Bone and Mineral Research: Official Journal of the American Society for Bone and Mineral Research, 18, 1404–1418. https://doi.org/10.1359/jbmr.2003.18.8.1404

    Article  CAS  Google Scholar 

  174. Lee, D., Shin, K. J., Kim, D. W., Yoon, K. A., Choi, Y. J., Lee, B. N. R., & Cho, J. Y. (2018). CCL4 enhances Preosteoclast Migration and its receptor CCR5 downregulation by RANKL promotes osteoclastogenesis. Cell Death and Disease, 9, 495. https://doi.org/10.1038/s41419-018-0562-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Koizumi, K., Saitoh, Y., Minami, T., Takeno, N., Tsuneyama, K., Miyahara, T., Nakayama, T., Sakurai, H., Takano, Y., Nishimura, M., et al. (2009). Role of CX3CL1/Fractalkine in Osteoclast differentiation and bone Resorption1. The Journal of Immunology, 183, 7825–7831. https://doi.org/10.4049/jimmunol.0803627

    Article  CAS  PubMed  Google Scholar 

  176. Maeda, K., Kobayashi, Y., Udagawa, N., Uehara, S., Ishihara, A., Mizoguchi, T., Kikuchi, Y., Takada, I., Kato, S., Kani, S., et al. (2012). Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances Osteoclastogenesis. Nature Medicine, 18, 405–412. https://doi.org/10.1038/nm.2653

    Article  CAS  PubMed  Google Scholar 

  177. Kim, J. M., Lin, C., Stavre, Z., Greenblatt, M. B., & Shim, J. H. (2020). Osteoblast-osteoclast communication and bone homeostasis. Cells, 9. https://doi.org/10.3390/cells9092073

  178. Yao, Z., Xing, L., Qin, C., Schwarz, E. M., & Boyce, B. F. (2008). Osteoclast Precursor Interaction with Bone Matrix induces osteoclast formation directly by an Interleukin-1-Mediated autocrine mechanism. Journal of Biological Chemistry, 283, 9917–9924. https://doi.org/10.1074/jbc.M706415200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Udagawa, N., Takahashi, N., Jimi, E., Matsuzaki, K., Tsurukai, T., Itoh, K., Nakagawa, N., Yasuda, H., Goto, M., Tsuda, E., et al. (1999). Osteoblasts/Stromal cells stimulate osteoclast activation through expression of Osteoclast differentiation Factor/RANKL but not macrophage colony-stimulating factor: Receptor activator of NF-Kappa B ligand. Bone, 25, 517–523. https://doi.org/10.1016/s8756-3282(99)00210-0

    Article  CAS  PubMed  Google Scholar 

  180. Nakashima, T., Kobayashi, Y., Yamasaki, S., Kawakami, A., Eguchi, K., Sasaki, H., & Sakai, H. (2000). Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-KappaB ligand: Modulation of the expression by osteotropic factors and cytokines. Biochemical and Biophysical Research Communications, 275, 768–775. https://doi.org/10.1006/bbrc.2000.3379

    Article  CAS  PubMed  Google Scholar 

  181. Kaneshita, Y., Goda, S., & Kawamoto, T. (2007). The Effect of Matrix Metalloproteinase-9 on the differentiation into Osteoclast cells on RAW264 cells. Orthod Waves, 66, 122–128. https://doi.org/10.1016/j.odw.2007.09.003

    Article  Google Scholar 

  182. Xiong, J., Onal, M., Jilka, R. L., Weinstein, R. S., Manolagas, S. C., & O’Brien, C. A. (2011). Matrix-embedded cells control osteoclast formation. Nature Medicine, 17, 1235–1241. https://doi.org/10.1038/nm.2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ru, J., Wang, Y., & Osteocyte Apoptosis. (2020). The Roles and Key Molecular Mechanisms in Resorption-Related Bone Diseases. Cell Death and Disease, 11, 846. https://doi.org/10.1038/s41419-020-03059-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Feng, W., Guo, J., & Li, M. (2019). RANKL-Independent modulation of Osteoclastogenesis. Journal of Oral Biosciences, 61, 16–21. https://doi.org/10.1016/j.job.2019.01.001

    Article  PubMed  Google Scholar 

  185. Wu, Q., Zhou, X., Huang, D., JI, Y., & Kang, F. (2017). IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in Vitro Cellular Physiology and Biochemistry, 41, 1360–1369. https://doi.org/10.1159/000465455

    Article  CAS  PubMed  Google Scholar 

  186. Gangenahalli, G. U., Gupta, P., Saluja, D., Verma, Y. K., Kishore, V., Chandra, R., Sharma, R. K., & Ravindranath, T. (2005). Stem cell fate specification: Role of Master Regulatory switch transcription factor PU.1 in Differential hematopoiesis. Stem Cells and Development, 14, 140–152. https://doi.org/10.1089/scd.2005.14.140

    Article  CAS  PubMed  Google Scholar 

  187. Iwasaki, H., Somoza, C., Shigematsu, H., Duprez, E. A., Iwasaki-Arai, J., Mizuno, S., Arinobu, Y., Geary, K., Zhang, P., Dayaram, T., et al. (2005). Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood, 106, 1590–1600. https://doi.org/10.1182/blood-2005-03-0860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhang, D. E., Hetherington, C. J., Chen, H. M., & Tenen, D. G. (1994). The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Molecular and Cellular Biology, 14, 373–381. https://doi.org/10.1128/mcb.14.1.373-381.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Carey, H., Hildreth, B., Geisler, J., Nickel, M., Cabrera, J., Ghosh, S., Jiang, Y., Yan, J., Lee, J., Makam, S., et al. (2018). Enhancer variants reveal a conserved transcription factor network governed by PU.1 during osteoclast differentiation. Bone Research, 6. https://doi.org/10.1038/s41413-018-0011-1

  190. Sharma, S. M., Bronisz, A., Hu, R., Patel, K., Mansky, K. C., Sif, S., & Ostrowski, M. C. (2007). MITF and PU.1 Recruit P38 MAPK and NFATc1 to Target genes during Osteoclast Differentiation*. Journal of Biological Chemistry, 282, 15921–15929. https://doi.org/10.1074/jbc.M609723200

    Article  CAS  PubMed  Google Scholar 

  191. Søe, K. (2020). Osteoclast Fusion: Physiological regulation of multinucleation through heterogeneity—potential implications for drug sensitivity. International Journal of Molecular Sciences, 21. https://doi.org/10.3390/ijms21207717

  192. Miyamoto, T., Arai, F., Ohneda, O., Takagi, K., Anderson, D. M., & Suda, T. (2000). An adherent Condition is required for formation of multinuclear osteoclasts in the Presence of Macrophage colony-stimulating factor and receptor activator of Nuclear factor ΚB ligand. Blood, 96, 4335–4343. https://doi.org/10.1182/blood.V96.13.4335

    Article  CAS  PubMed  Google Scholar 

  193. Grzesik, W. J., Robey, P. G., Bone Matrix, R. G. D., & Glycoproteins. (1994). Immunolocalization and Interaction with Human Primary Osteoblastic Bone cells in Vitro. Journal of Bone and Mineral Research: Official Journal of the American Society for Bone and Mineral Research, 9, 487–496. https://doi.org/10.1002/jbmr.5650090408

    Article  CAS  Google Scholar 

  194. Barrow, A. D., Raynal, N., Andersen, T. L., Slatter, D. A., Bihan, D., Pugh, N., Cella, M., Kim, T., Rho, J., Negishi-Koga, T., et al. (2011). OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-Deficient humans and mice. Journal of Clinical Investigation, 121, 3505–3516. https://doi.org/10.1172/JCI45913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Nedeva, I. R., Vitale, M., Elson, A., Hoyland, J. A., & Bella, J. (2021). Role of OSCAR signaling in osteoclastogenesis and bone disease. Frontiers in Cell and Developmental Biology, 9, 641162.https://doi.org/10.3389/fcell.2021.641162

  196. Søe, K., Delaisse, J. M., & Borggaard, X. G. (2021). Osteoclast formation at the bone Marrow/Bone surface interface: Importance of structural elements, Matrix, and Intercellular Communication. Seminars in Cell & Developmental Biology, 112, 8–15. https://doi.org/10.1016/j.semcdb.2020.05.016

    Article  CAS  Google Scholar 

  197. Yagi, M., Ninomiya, K., Fujita, N., Suzuki, T., Iwasaki, R., Morita, K., Hosogane, N., Matsuo, K., Toyama, Y., Suda, T., et al. (2007). Induction of DC-STAMP by Alternative activation and downstream Signaling Mechanisms. Journal of Bone and Mineral Research, 22, 992–1001. https://doi.org/10.1359/jbmr.070401

    Article  CAS  PubMed  Google Scholar 

  198. Blangy, A., Bompard, G., Guerit, D., Marie, P., Maurin, J., Morel, A., & Vives, V. (2020). The Osteoclast Cytoskeleton – Current understanding and therapeutic perspectives for osteoporosis. Journal of Cell Science, 133, jcs244798. https://doi.org/10.1242/jcs.244798

    Article  CAS  PubMed  Google Scholar 

  199. Paiva, K. B. S., & Granjeiro, J. M. (2017). Chapter Six - Matrix Metalloproteinases in Bone Researchorption, Remodeling, and Repair. In Khalil, R. A. B. T.-P. in M. B. & T.S (Eds.) Matrix Metalloproteinases and Tissue Remodeling in Health and Disease: Target Tissues and Therapy (Vol. 148, pp. 203–303). Academic. ISBN 1877-1173.

  200. Sundaram, K., Nishimura, R., Senn, J., Youssef, R. F., London, S. D., & Reddy, S. (2007). V RANK ligand signaling modulates the Matrix Metalloproteinase-9 gene expression during osteoclast differentiation. Experimental Cell Research, 313, 168–178. https://doi.org/10.1016/j.yexcr.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  201. Dai, R., Wu, Z., Chu, H. Y., Lu, J., Lyu, A., Liu, J., Zhang, G., & Cathepsin, K. (2020). The action in and beyond bone. Frontiers in Cell and Developmental Biology, 8, https://doi.org/10.3389/fcell.2020.00433

  202. Roscher, A., Hasegawa, T., Dohnke, S., Ocaña-Morgner, C., Amizuka, N., Jessberger, R., & Garbe, A. I. (2016). The F-Actin modulator SWAP-70 Controls Podosome patterning in osteoclasts. Bone Reports, 5, 214–221. https://doi.org/10.1016/j.bonr.2016.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  203. Dou, C., Cao, Z., Yang, B., Ding, N., Hou, T., Luo, F., Kang, F., Li, J., Yang, X., Jiang, H., et al. (2016). Changing expression profiles of LncRNAs, MRNAs, CircRNAs and MiRNAs during Osteoclastogenesis. Scientific Reports, 6, 21499. https://doi.org/10.1038/srep21499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wu, H., Xu, G., & Li, Y. P. (2009). Atp6v0d2 is an essential component of the osteoclast-specific Proton Pump that mediates extracellular acidification in bone resorption. Journal of Bone and Mineral Research: Official Journal of the American Society for Bone and Mineral Research, 24, 871–885. https://doi.org/10.1359/jbmr.081239

    Article  CAS  Google Scholar 

  205. Kim, B. H., Oh, J. H., & Lee, N. K. (2017). The inactivation of ERK1/2, P38 and NF-KB is involved in the down-regulation of osteoclastogenesis and function by A2B adenosine receptor stimulation. Molecules and Cells, 40, 752–760. https://doi.org/10.14348/molcells.2017.0098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Liu, Y., Shi, Z., Silveira, A., Liu, J., Sawadogo, M., Yang, H., & Feng, X. (2003). Involvement of Upstream Stimulatory factors 1 and 2 in RANKL-Induced transcription of tartrate-resistant acid phosphatase gene during osteoclast differentiation. Journal of Biological Chemistry, 278, 20603–20611. https://doi.org/10.1074/jbc.M212093200

    Article  CAS  PubMed  Google Scholar 

  207. Zhu, L., Tang, Y., Li, X. Y., Keller, E. T., Yang, J., Cho, J. S., Feinberg, T. Y., & Weiss, S. J. (2020). Osteoclast-mediated bone resorption is controlled by a Compensatory Network of secreted and membrane-tethered metalloproteinases. Science Translational Medicine, 12. https://doi.org/10.1126/scitranslmed.aaw6143

  208. Blair, H., Yaroslavskiy, B., Robinson, L., Mapara, M., Pangrazio, A., Guo, L., Chen, K., Vezzoni, P., Tolar, J., & Orchard, P. (2009). Osteopetrosis with Micro-Lacunar Resorption due to defective integrin Organization. Laboratory Investigation, 89, 1007–1017. https://doi.org/10.1038/labinvest.2009.58

    Article  CAS  PubMed  Google Scholar 

  209. Drake, F. H., Dodds, R. A., James, I. E., Connor, J. R., Debouck, C., Richardson, S., Lee-Rykaczewski, E., Coleman, L., Rieman, D., Barthlow, R., et al., Cathepsin, K., but, Cathepsins, N. (1996). B, L, or S, is abundantly expressed in human osteoclasts (∗). Journal of Biological Chemistry, 271, 12511–12516. https://doi.org/10.1074/jbc.271.21.12511

  210. Hayman, A. (2008). Tartrate-resistant acid phosphatase (TRAP) and the Osteoclast/Immune Cell Dichotomy. Autoimmunity, 41, 218–223. https://doi.org/10.1080/08916930701694667

    Article  CAS  PubMed  Google Scholar 

  211. Paschos, N. K., Brown, W. E., Eswaramoorthy, R., Hu, J. C., & Athanasiou, K. A. (2015). Advances in tissue Engineering through Stem Cell-Based co-culture. Journal of Tissue Engineering and Regenerative Medicine, 9, 488–503. https://doi.org/10.1002/term.1870

    Article  CAS  PubMed  Google Scholar 

  212. Singh, V. K., Kalsan, M., Kumar, N., Saini, A., & Chandra, R. (2015). Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Frontiers in Cell and Developmental Biology, 3(2). https://doi.org/10.3389/fcell.2015.00002

  213. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of Germline-Competent Induced Pluripotent Stem cells. Nature, 448, 313–317. https://doi.org/10.1038/nature05934

    Article  CAS  PubMed  Google Scholar 

  214. Jeon, O. H., Panicker, L. M., Lu, Q., Chae, J. J., Feldman, R. A., & Elisseeff, J. H. (2016). Human IPSC-Derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials. Scientific Reports, 6, 26761. https://doi.org/10.1038/srep26761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Zhang, J., Chen, M., Liao, J., Chang, C., Liu, Y., Padhiar, A. A., Zhou, Y., & Zhou, G. (2021). Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Hold Lower Heterogeneity and Great Promise in Biological Research and Clinical Applications. Frontiers in Cell and Developmental Biology, 9, 716907. https://doi.org/10.3389/fcell.2021.716907

  216. Gultian, K. A., Gandhi, R., Sarin, K., Sladkova-Faure, M., Zimmer, M., de Peppo, G. M., & Vega, S. L. (2022). Human Induced mesenchymal stem cells display increased sensitivity to Matrix Stiffness. Scientific Reports, 12, 8483. https://doi.org/10.1038/s41598-022-12143-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Dupuis, V., & Oltra, E. (2021). Methods to produce Induced pluripotent stem cell-derived mesenchymal stem cells: Mesenchymal stem cells from Induced Pluripotent Stem cells. World Journal of Stem Cells, 13, 1094–1111. https://doi.org/10.4252/wjsc.v13.i8.1094

    Article  PubMed  PubMed Central  Google Scholar 

  218. Phillips, M. D., Kuznetsov, S. A., Cherman, N., Park, K., Chen, K. G., McClendon, B. N., Hamilton, R. S., McKay, R. D. G., Chenoweth, J. G., Mallon, B. S., et al. (2014). Directed differentiation of Human Induced Pluripotent Stem cells toward bone and cartilage: In Vitro versus in vivo assays. Stem Cells Translational Medicine, 3, 867–878. https://doi.org/10.5966/sctm.2013-0154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zou, L., Luo, Y., Chen, M., Wang, G., Ding, M., Petersen, C. C., Kang, R., Dagnaes-Hansen, F., Zeng, Y., Lv, N., et al. (2013). A simple method for deriving functional MSCs and Applied for Osteogenesis in 3D scaffolds. Scientific Reports, 3. https://doi.org/10.1038/srep02243

  220. Zhu, H., Kimura, T., Swami, S., & Wu, J. Y. (2019). Pluripotent stem cells as a source of osteoblasts for bone tissue regeneration. Biomaterials, 196, 31–45. https://doi.org/10.1016/j.biomaterials.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  221. Hu, J., Smith Callahan, L., Feng, K., Liu, X., Sun, H., & Ma, P. (2010). Response of human embryonic stem Cell???Derived mesenchymal stem cells to osteogenic factors and architectures of materials during in Vitro Osteogenesis. Tissue Engineering Part A, 16, 3507–3514. https://doi.org/10.1089/ten.TEA.2010.0097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kurosawa, H. (2007). Methods for inducing embryoid body formation: In Vitro differentiation system of embryonic stem cells. Journal of Bioscience and Bioengineering, 103, 389–398. https://doi.org/10.1263/jbb.103.389

    Article  CAS  PubMed  Google Scholar 

  223. Mora-Roldan, G. A., Ramirez-Ramirez, D., Pelayo, R., & Gazarian, K. (2021). Assessment of the hematopoietic differentiation potential of human pluripotent stem cells in 2D and 3D Culture Systems. Cells, 10. https://doi.org/10.3390/cells10112858

  224. Lim, W. F., Inoue-Yokoo, T., Tan, K. S., Lai, M. I., & Sugiyama, D. (2013). Hematopoietic cell differentiation from Embryonic and Induced Pluripotent Stem cells. Stem Cell Research & Therapy, 4. https://doi.org/10.1186/scrt222

  225. Salvagiotto, G., Burton, S., Daigh, C. A., Rajesh, D., Slukvin, I. I., Seay, N. J. A., & Defined. (2011). Feeder-Free, serum-free system to Generate in Vitro hematopoietic progenitors and differentiated blood cells from HESCs and HiPSCs. PLoS One, 6, e17829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Rössler, U., Hennig, A. F., Stelzer, N., Bose, S., Kopp, J., Søe, K., Cyganek, L., Zifarelli, G., Ali, S., von der Hagen, M., et al. (2021). Efficient generation of osteoclasts from Human Induced Pluripotent Stem cells and functional investigations of Lethal CLCN7-Related osteopetrosis. Journal of Bone and Mineral Research, 36, 1621–1635. https://doi.org/10.1002/jbmr.4322

    Article  CAS  PubMed  Google Scholar 

  227. Khademhosseini, A., Ashammakhi, N., Karp, J. M., Gerecht, S., Ferreira, L., Annabi, N., Darabi, M. A., Sirabella, D., Vunjak-Novakovic, G., & Langer, R. (2020). In Lanza, R., Langer, R., Vacanti, J. P., Atala, A.B.T.-P. of T.E. Chapter 27 - Embryonic Stem Cells as a Cell Source for Tissue Engineering (Fifth E., Eds., pp.467–490). Academic. ISBN 978-0-12-818422-6.

  228. Sobacchi, C., Palagano, E., Villa, A., & Menale, C. (2017). Soluble factors on stage to direct mesenchymal stem cells fate. Frontiers in Bioengineering and Biotechnology, 5, 32. https://doi.org/10.3389/fbioe.2017.00032

  229. Lobov, A., Malashicheva, A., & Osteogenic Differentiation. (2022). A Universal Cell Program of heterogeneous mesenchymal cells or a similar Extracellular Matrix mineralizing phenotype? Biological Communications, 67, 32–48. https://doi.org/10.21638/spbu03.2022.104

    Article  Google Scholar 

  230. Langenbach, F., & Handschel, J. (2013). Effects of Dexamethasone, ascorbic acid and β-Glycerophosphate on the osteogenic differentiation of stem cells in Vitro. Stem Cell Research & Therapy, 4, 117. https://doi.org/10.1186/scrt328

    Article  Google Scholar 

  231. Zujur, D., Kanke, K., Onodera, S., Tani, S., Lai, J., Azuma, T., Xin, X., Lichtler, A. C., Rowe, D. W., Saito, T., et al. (2020). Stepwise strategy for Generating osteoblasts from human pluripotent stem cells under fully defined Xeno-Free Conditions with small-molecule inducers. Regenerative Therapy, 14, 19–31. https://doi.org/10.1016/j.reth.2019.12.010

    Article  PubMed  PubMed Central  Google Scholar 

  232. Kawai, S., Yoshitomi, H., Sunaga, J., Alev, C., Nagata, S., Nishio, M., Hada, M., Koyama, Y., Uemura, M., Sekiguchi, K., et al. (2019). In Vitro Bone-like nodules generated from patient-derived IPSCs recapitulate pathological bone phenotypes. Nature Biomedical Engineering, 3, 1–13. https://doi.org/10.1038/s41551-019-0410-7

    Article  Google Scholar 

  233. Kang, H., Shih, Y. R. V., Nakasaki, M., Kabra, H., & Varghese, S. (2023). Small Molecule–Driven Direct Conversion of Human pluripotent stem cells into functional osteoblasts. Science Advances, 2, e1600691. https://doi.org/10.1126/sciadv.1600691

    Article  CAS  Google Scholar 

  234. Hong, H., Shi, Z., Qiao, P., Li, H., McCoy, E. M., Mao, P., Xu, H., Feng, X., & Wang, S. (2013). Interleukin-3 plays dual roles in Osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the osteoclastogenic process. Biochemical and Biophysical Research Communications, 440, 545–550. https://doi.org/10.1016/j.bbrc.2013.09.098

    Article  CAS  PubMed  Google Scholar 

  235. De Witte, T. M., Fratila-Apachitei, L. E., Zadpoor, A. A., & Peppas, N. A. (2018). Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regenerative Biomaterials, 5, 197–211. https://doi.org/10.1093/rb/rby013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. De Pieri, A., Rochev, Y., & Zeugolis, D. I. (2021). Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. NPJ Regenerative Medicine, 6https://doi.org/10.1038/s41536-021-00133-3

  237. Haraguchi, Y., Shimizu, T., Sasagawa, T., Sekine, H., Sakaguchi, K., Kikuchi, T., Sekine, W., Sekiya, S., Yamato, M., Umezu, M., et al. (2012). Fabrication of Functional three-dimensional tissues by stacking cell sheets in Vitro. Nature Protocols, 7, 850–858. https://doi.org/10.1038/nprot.2012.027

    Article  CAS  PubMed  Google Scholar 

  238. Okawa, H., Kayashima, H., Sasaki, J. I., Miura, J., Kamano, Y., Kosaka, Y., Imazato, S., Yatani, H., Matsumoto, T., & Egusa, H. (2016). Scaffold-free fabrication of osteoinductive cellular constructs using mouse gingiva-derived induced pluripotent stem cells. Stem Cells International, 2016, 6240794. https://doi.org/10.1155/2016/6240794

  239. Ozasa, R., Matsugaki, A., Isobe, Y., Saku, T., Yun, H. S., & Nakano, T. (2018). Construction of Human Induced Pluripotent Stem Cell-Derived oriented bone matrix microstructure by using in Vitro Engineered Anisotropic Culture Model. Journal of Biomedical Materials Research Part A, 106, 360–369. https://doi.org/10.1002/jbm.a.36238

    Article  CAS  PubMed  Google Scholar 

  240. Kang, H., Shih, Y. R. V., Hwang, Y., Wen, C., Rao, V., Seo, T., & Varghese, S. (2014). Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of Human Induced Pluripotent Stem cells. Acta Biomaterialia, 10, 4961–4970. https://doi.org/10.1016/j.actbio.2014.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Mazzoni, E., Mazziotta, C., Iaquinta, M. R., Lanzillotti, C., Fortini, F., D’Agostino, A., Trevisiol, L., Nocini, R., Barbanti-Brodano, G., Mescola, A., et al. (2020). Enhanced osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by a Hybrid Hydroxylapatite/Collagen Scaffold. Frontiers in Cell and Developmental Biology, 8, 610570. https://doi.org/10.3389/fcell.2020.610570

    Article  PubMed  Google Scholar 

  242. Zhang, Y., Xia, L., Zhai, D., Shi, M., Luo, Y., Feng, C., Fang, B., Yin, J., Chang, J., & Wu, C. (2015). Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Nanoscale, 7, 19207–19221. https://doi.org/10.1039/c5nr05421d

    Article  CAS  PubMed  Google Scholar 

  243. Tariverdian, T., Sefat, F., Gelinsky, M., & Mozafari, M. (2019). 10 - Scaffold for bone tissue engineering. In Mozafari, M., Sefat, F., & Atala, A. (Eds.) Handbook of Tissue Engineering Scaffolds: Volume One (pp. 189–209).  Woodhead Publishing Series in Biomaterials; Woodhead Publishing. ISBN 978-0-08-102563-5.

  244. Amirazad, H., Dadashpour, M., & Zarghami, N. (2022). Application of decellularized bone matrix as a bioscaffold in bone tissue engineering. Journal of Biological Engineering, 16, 1. https://doi.org/10.1186/s13036-021-00282-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Borciani, G., Montalbano, G., Baldini, N., Cerqueni, G., Vitale-Brovarone, C., & Ciapetti, G. (2020). Co–culture systems of osteoblasts and osteoclasts: simulating in vitro bone remodeling in regenerative approaches. Acta Biomaterialia, 108, 22–45. https://doi.org/10.1016/j.actbio.2020.03.043

    Article  CAS  PubMed  Google Scholar 

  246. Zheng, Z., Patel, M., & Patel, R. (2022). Hyaluronic acid-based materials for bone regeneration: A review. Reactive & Functional Polymers, 171, 105151. https://doi.org/10.1016/j.reactfunctpolym.2021.105151

    Article  CAS  Google Scholar 

  247. Almeida, A. R., Bessa-Gonçalves, M., Vasconcelos, D. M., Barbosa, M. A., & Santos, S. G. (2020). Osteoclasts degrade fibrinogen scaffolds and induce mesenchymal Stem/Stromal osteogenic differentiation. Journal of Biomedical Materials Research. Part A, 108, 851–862. https://doi.org/10.1002/jbm.a.36863

    Article  CAS  PubMed  Google Scholar 

  248. Bernhardt, A., Skottke, J., von Witzleben, M., & Gelinsky, M. (2021). Triple culture of primary human osteoblasts, osteoclasts and osteocytes as an in vitro bone model. International Journal of Molecular Sciences, 22. https://doi.org/10.3390/ijms22147316

  249. Mansoorifar, A., Gordon, R., Bergan, R., & Bertassoni, L. E. (2021). Bone-on-a-Chip: Microfluidic technologies and microphysiologic models of bone tissue. Advanced Functional Materials, 31. https://doi.org/10.1002/adfm.202006796

  250. Yang, X., Tang, Q., Lai, C., Wu, K., & Shi, X. (2021). Applications and prospects of microfluidic chips in orthopaedic diseases. Frontiers of Materials, 7, 610558. https://doi.org/10.3389/fmats.2020.610558

  251. Mejía-Salazar, J. R., Rodrigues Cruz, K., Materón Vásques, E. M., & Novais de Oliveira, O. J. (2020). Microfluidic point-of-care devices: new trends and future prospects for EHealth Diagnostics. Sensors (Basel), 20. https://doi.org/10.3390/s20071951

  252. Truesdell, S. L., George, E. L., Van Vranken, C. C., Saunders, M. M. A., & Lab-On. (2020). -A-Chip platform for stimulating osteocyte mechanotransduction and analyzing functional outcomes of bone remodeling. Journal of Visualized Experiments: Jove. https://doi.org/10.3791/61076

    Article  PubMed  Google Scholar 

  253. Park, Y., Cheong, E., Kwak, J. G., Carpenter, R., Shim, J. H., & Lee, J. (2021). Trabecular bone Organoid Model for studying the regulation of localized bone remodeling. Science Advances, 7. https://doi.org/10.1126/sciadv.abd6495

  254. Fatehullah, A., Tan, S. H., & Barker, N. (2016). Organoids as an in Vitro Model of Human Development and Disease. Nature Cell Biology, 18, 246–254. https://doi.org/10.1038/ncb3312

    Article  CAS  PubMed  Google Scholar 

  255. Chen, S., Chen, X., Geng, Z., & Su, J. (2022). The Horizon of Bone Organoid: A perspective on construction and application. Bioactive Materials, 18, 15–25. https://doi.org/10.1016/j.bioactmat.2022.01.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Iordachescu, A., Hughes, E. A. B., Joseph, S., Hill, E. J., Grover, L. M., & Metcalfe, A. D. (2021). Trabecular bone organoids: A Micron-Scale ‘Humanised’ Prototype designed to study the Effects of Microgravity and Degeneration. NPJ Microgravity, 7, 17. https://doi.org/10.1038/s41526-021-00146-8

    Article  PubMed  PubMed Central  Google Scholar 

  257. Grosso, A., Burger, M. G., Lunger, A., Schaefer, D. J., Banfi, A., & Di Maggio, N. (2017). It takes two to tango: coupling of angiogenesis and osteogenesis for bone regeneration. Frontiers in Bioengineering and Biotechnology, 5, 68. https://doi.org/10.3389/fbioe.2017.00068

  258. Bessy, T., Itkin, T., & Passaro, D. (2021). Bioengineering the bone marrow vascular niche. Frontiers in Cell and Developmental Biology, 9, 645496. https://doi.org/10.3389/fcell.2021.645496

Download references

Funding

This work was supported by Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2021-1075 dated 09/28/2021).

Author information

Authors and Affiliations

Authors

Contributions

OK - wrote a manuscript, provided graphics and comments.

IN - conceived idea, provided critical revisions of the manuscript. Both authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to I. Neganova.

Ethics declarations

Ethical Approval

It is a review paper.

Consent to Participate

It is a review paper. No animals or humans have been involved.

Consent to Publish

All authors gave consent to publish.

Competing Interests

Authors declare no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnova, O., Neganova, I. Assembling the Puzzle Pieces. Insights for in Vitro Bone Remodeling. Stem Cell Rev and Rep 19, 1635–1658 (2023). https://doi.org/10.1007/s12015-023-10558-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10558-6

Keywords

Navigation