Skip to main content

Advertisement

Log in

Bone cells and their role in physiological remodeling

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose:

This work compiles the characteristics of bone cells involved in the physiological bone remodeling.

Methods:

A narrative review of the literature was performed.

Results:

Remodeling is a different process from modeling. Remodeling allows old or damaged bone tissue to be renewed, ensuring the maintenance of bone fracture resistance, as well as maintaining calcium and phosphorus homeostasis. We present the role of osteoclasts, a multinucleated cell with hematopoietic origin responsible for resorbing bone. The formation of osteoclasts depends on the cytokines macrophage colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL) and can be blocked by osteoprotegerin. Furthermore, this review highlights the features of osteoblasts, polarized cubic cells of mesenchymal origin that deposit bone and also covers osteocytes and bone lining cells. This review presents the five fundamental phases of bone remodeling and addresses aspects of its regulation through hormones and growth factors.

Conclusions:

Knowledge of the current concepts of physiological bone remodeling is necessary for the study of the different pathologies that affect the bone tissue and thus helps in the search for new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kodama J, Kaito T (2020) Osteoclast multinucleation: review of current literature. Int J Mol Sci 21(16):1–35. https://doi.org/10.3390/ijms21165685

    Article  CAS  Google Scholar 

  2. Guo YF, Su T, Yang M, Li C, jun, Guo Q, Xiao Y, Huang Y, Liu Y, Luo X (2021) The role of autophagy in bone homeostasis. J Cell Physiol 236(6):4152–4173. https://doi.org/10.1002/jcp.30111

    Article  CAS  PubMed  Google Scholar 

  3. Pant A, Paul E, Niebur GL, Vahdati A (2021) Integration of mechanics and biology in computer simulation of bone remodeling. Prog Biophys Mol Biol 164:33–45. https://doi.org/10.1016/j.pbiomolbio.2021.05.001

    Article  CAS  PubMed  Google Scholar 

  4. Sims NA, Martin TJ (2020) Osteoclasts provide coupling signals to osteoblast lineage cells through multiple mechanisms. Annu Rev Physiol 82:507–529. https://doi.org/10.1146/annurev-physiol-021119-034425

    Article  CAS  PubMed  Google Scholar 

  5. Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C (2018) Osteoblast-osteoclast interactions. Connect Tissue Res 59(2):99–107. https://doi.org/10.1080/03008207.2017.1290085

    Article  CAS  PubMed  Google Scholar 

  6. Singh S, Bray TJP, Hall-Craggs MA (2018) Quantifying bone structure, micro-architecture, and pathophysiology with MRI. Clin Radiol 73(3):221–230. https://doi.org/10.1016/j.crad.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  7. Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C, Tsuda E (2021) Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab 2021;39(1):19–26. https://doi.org/10.1007/s00774-020-01162-6

  8. Nagy V, Penninger JM (2015) The RANKL-RANK story. Gerontology 61(6):534–542. https://doi.org/10.1159/000371845

    Article  CAS  PubMed  Google Scholar 

  9. Bonewald LF (2017) The role of the Osteocyte in Bone and Nonbone Disease. Endocrinol Metab Clin North Am 46(1):1–18. https://doi.org/10.1016/j.ecl.2016.09.003

    Article  PubMed  Google Scholar 

  10. Buck DW, Dumanian GA (2012) Bone biology and physiology: Part I. the fundamentals. Plast Reconstr Surg 129(6):1314–1320. DOI: https://doi.org/10.1097/PRS.0b013e31824eca94

    Article  CAS  PubMed  Google Scholar 

  11. Boyce BF, Li J, Xing L, Yao Z (2018) Bone remodeling and the role of TRAF3 in Osteoclastic Bone Resorption. Front Immunol 9:2263. https://doi.org/10.3389/fimmu.2018.02263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Drissi H, Sanjay A (2016) The multifaceted osteoclast; Far and Beyond Bone Resorption. J Cell Biochem 1756:1753–1756. https://doi.org/10.1002/jcb.25560

    Article  CAS  Google Scholar 

  13. Rossi M, Battafarano G, Pepe J, Minisola S, Fattore AD (2019) The endocrine function of osteocalcin regulated by bone resorption: a lesson from reduced and increased bone Mass Diseases. Int J Mol Sci 20(18):4502. https://doi.org/10.3390/ijms20184502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J (2018) Regulation of osteoclast differentiation by cytokine networks. Immune Netw 18(1):1–18. https://doi.org/10.4110/in.2018.18.e8

    Article  Google Scholar 

  15. Anesi A, Generali L, Sandoni L, Pozzi S, Grande A (2019) From osteoclast differentiation to osteonecrosis of the jaw: Molecular and clinical insights. Int J Mol Sci 20(19):1–17. https://doi.org/10.3390/ijms20194925

    Article  CAS  Google Scholar 

  16. Matsumoto T, Endo I (2021) RANKL as a target for the treatment of osteoporosis. J Bone Miner Metab 39(1):91–105. https://doi.org/10.1007/s00774-020-01153-7

    Article  CAS  PubMed  Google Scholar 

  17. Miyamoto T (2011) Regulators of osteoclast differentiation and cell-cell fusion. Keio J Med 60(4):101–105. https://doi.org/10.2302/kjm.60.101

    Article  CAS  PubMed  Google Scholar 

  18. Ralston SH (2017) Bone structure and metabolism. Med (United Kingdom) 45(9):560–564. https://doi.org/10.1016/j.mpmed.2017.06.008

    Article  Google Scholar 

  19. Wang H, Zheng X, Zhang Y, Huang J, Zhou W, Li X, Tian H, Wang B, Xing D, Fu W, Chen T, Wang X, Zhang X, Wu A (2021) The endocrine role of bone: novel functions of bone-derived cytokines. Biochem Pharmacol 183. https://doi.org/10.1016/j.bcp.2020.114308

    Article  Google Scholar 

  20. Salhotra A, Shah HN, Levi B, Longaker MT (2020) Mechanisms of bone development and repair. Nat Rev Mol Cell Biol 21:696–711. https://doi.org/10.1038/s41580-020-00279-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Simões MJ, Cerri OS (2015) Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. Biomed Res Int. 2015. https://doi.org/10.1155/2015/421746

  22. Mizoguchi T, Ono N (2021) The diverse origin of bone-forming osteoblasts. J Bone Miner Res 36(8):1432–1447. https://doi.org/10.1002/jbmr.4410

    Article  PubMed  Google Scholar 

  23. Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH (2020) Osteoblast-osteoclast communication and bone homeostasis. Cells 9(9):1–14. https://doi.org/10.3390/cells9092073

    Article  CAS  Google Scholar 

  24. Grabowski P (2015) Physiology of bone. Endocr Dev 28:33–55. https://doi.org/10.1159/000380991

    Article  CAS  PubMed  Google Scholar 

  25. Duan P, Bonewald LF (2016) The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol 77:23–29. https://doi.org/10.1016/j.biocel.2016.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maeda K, Kobayashi Y, Koide M, Uehara S, Okamoto M, Ishihara A, Kayma T, Saito M, Marumo K (2019) The regulation of bone metabolism and disordersby wnt signaling. Int J Mol Sci 20(22). https://doi.org/10.3390/ijms20225525

  27. Donsante S, Palmisano B, Serafini M, Robey PG, Corsi A, Riminucci M (2021) From stem cells to bone-forming cells 1–23. https://doi.org/10.3390/ijms22083989

  28. Haridy Y, Osenberg M, Hilger A, Manke I, Davesne D, Witzmann F (2021) Bone metabolism and evolutionary origin of osteocytes: novel application of FIB-SEM tomography. Sci Adv 7(14):1–12. https://doi.org/10.1126/sciadv.abb9113

    Article  CAS  Google Scholar 

  29. Schaffler MB, Cheung WY, Majeska R, Kennedy O (2014) Osteocytes: Master orchestrators of bone. Calcif Tissue Int 94(1):5–24. https://doi.org/10.1007/s00223-013-9790-y

    Article  CAS  PubMed  Google Scholar 

  30. Ono T, Nakashima T (2022) Oral bone biology. J Oral Biosci 64(1):8–17. https://doi.org/10.1016/j.job.2022.01.008

    Article  CAS  PubMed  Google Scholar 

  31. Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285(33):25103–25108. https://doi.org/10.1074/jbc.R109.041087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Manzini BM, Machado LMR, Noritomi PY, da Silva JVL (2021) Advances in Bone tissue engineering: A fundamental review. J Biosci 46(1) PMID: 33737501

  33. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3Suppl3:131–139. https://doi.org/10.2215/CJN.04151206

    Article  CAS  Google Scholar 

  34. Charles JF, Aliprantis AO (2014) Osteoclasts: more than ‘bone eaters’. Trends Mol Med 20(8):449–459. https://doi.org/10.1016/j.molmed.2014.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lerner UH, Kindstedt E, Lundberg P (2019) The critical interplay between bone resorbing and bone forming cells. J Clin Periodontol 46(S21):33–51. https://doi.org/10.1111/jcpe.13051

    Article  PubMed  Google Scholar 

  36. Kenkre JS, Bassett JHD (2018) The bone remodelling cycle. Ann Clin Biochem 55:308–327. https://doi.org/10.1177/0004563218759371

    Article  CAS  PubMed  Google Scholar 

  37. Katsimbri P (2017) The biology of normal bone remodelling. Eur J Cancer Care (Engl) 26(6):1–5. https://doi.org/10.1111/ecc.12740

    Article  Google Scholar 

  38. Siddiqui JA, Partridge NC (2016) Physiological bone remodeling: systemic regulation and growth factor. Involv Physiol 31(3):233–245. https://doi.org/10.1152/physiol.00061.2014

    Article  CAS  Google Scholar 

  39. Li C, Shi C, Kim J, Chen Y, Ni S, Jiang L, Zheng C, Li D, Hou J, Taichman RS, Sun H (2015) Erythropoietin promotes bone formation through EphrinB2/EphB4 signaling. J Dent Res 94(3):455–463. https://doi.org/10.1177/0022034514566431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaur M, Nagpal M, Singh M (2020) Osteoblast-n-Osteoclast: making headway to osteoporosis treatment. Curr Drug Targets 21(16):1640–1651. https://doi.org/10.2174/1389450121666200731173522

    Article  CAS  PubMed  Google Scholar 

  41. Khosla S, Oursler MJ, Monroe DG (2012) Estrogen and the skeleton. Trends Endocrinol Metab 23(11):576–581. https://doi.org/10.1016/j.tem.2012.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Silva BC, Bilezikian JP (2015) Chap. 15 - Anabolic and Catabolic Pathways of Parathyroid Hormone on the Skeleton, Editor(s): John P. Bilezikian,The Parathyroids (Third Edition), Academic Press: 233–244, ISBN 9780123971661 https://doi.org/10.1016/B978-0-12-397166-1.00015-1

  43. Wein MN, Kronenberg HM (2018) Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb Perspect Med 8(8). https://doi.org/10.1101/cshperspect.a031237

  44. Raisz LG (1999) Prostaglandins and bone: physiology and pathophysiology. Osteoarthr Cartil 7(4):419–421. https://doi.org/10.1053/joca.1998.0230

    Article  CAS  Google Scholar 

  45. Itkin T, Kaufmann KB, Gur-Cohen S, Ludin A, Lapidot T (2013) Fibroblast growth factor signaling promotes physiological bone remodeling and stem cell self-renewal. Curr Opin Hematol 20(3):237–244. https://doi.org/10.1097/MOH.0b013e3283606162

    Article  CAS  PubMed  Google Scholar 

  46. Crane JL, Cao X (2014) Function of matrix IGF-1 in coupling bone resorption and formation. J Mol Med (Berl) 92(2):107–115. https://doi.org/10.1007/s00109-013-1084-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Bassan Marinho Maciel.

Ethics declarations

Conflict of interest

All authors declare that they have no confict of interest to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Research involving human and animal participants

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maciel, G.B.M., Maciel, R.M. & Danesi, C.C. Bone cells and their role in physiological remodeling. Mol Biol Rep 50, 2857–2863 (2023). https://doi.org/10.1007/s11033-022-08190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08190-7

Keywords

Navigation