Skip to main content

Osteochondral Tissue Engineering: Translational Research and Turning Research into Products

  • Chapter
  • First Online:
Osteochondral Tissue Engineering

Abstract

Osteochondral (OC) defect repair is a significant clinical challenge. Osteoarthritis results in articular cartilage/subchondral bone tissue degeneration and tissue loss, which in the long run results in cartilage/ostecochondral defect formation. OC defects are commonly approached with autografts and allografts, and both these options have found limitations. Alternatively, tissue engineered strategies with biodegradable scaffolds with and without cells and growth factors have been developed. In order to approach regeneration of complex tissues such as osteochondral, advanced tissue engineered grafts including biphasic, triphasic, and gradient configurations are considered. The graft design is motivated to promote cartilage and bone layer formation with an interdigitating transitional zone (i.e., bone–cartilage interface). Some of the engineered OC grafts with autologous cells have shown promise for OC defect repair and a few of them have advanced into clinical trials. This chapter presents synthetic osteochondral designs and the progress that has been made in terms of the clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy L, Helmick CG (2012) The impact of osteoarthritis in the United States: a population-health perspective. Orthop Nurs 31(2):85–91

    Article  PubMed  Google Scholar 

  2. Pappas AM (1981) Osteochondrosis dissecans. Clin Orthop 158:59–69

    Google Scholar 

  3. Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31(5):706–721

    Article  CAS  PubMed  Google Scholar 

  4. Athanasiou KA, Zhu CF, Wang X, Agrawal CM (2000) Effects of aging and dietary restriction on the structural integrity of rat articular cartilage. Ann Biomed Eng 28(2):143–149

    Article  CAS  PubMed  Google Scholar 

  5. Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765

    Article  PubMed  Google Scholar 

  6. Fazzalari NL (2008) Bone remodeling: a review of the bone microenvironment perspective for fragility fracture (osteoporosis) of the hip. Semin Cell Dev Biol 19(5):467–472

    Article  CAS  PubMed  Google Scholar 

  7. Brandt KD, Dieppe P, Radin EL (2008) Etiopathogenesis of osteoarthritis. Rheum Dis Clin North Am 34(3):531–559

    Article  PubMed  Google Scholar 

  8. Dorcemus DL, George EO, Dealy CN, Nukavarapu SP (2017) Harnessing external cues: development and evaluation of an in vitro culture system for osteochondral tissue engineering. Tissue Eng Part A 23(15–16):719–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nukavarapu S, Freeman J, Laurencin C (2015) Regenerative engineering of musculoskeletal tissues and interfaces. Elsevier Science & Technology, Amsterdam

    Google Scholar 

  10. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jeong CG, Zhang H, Hollister SJ (2012) Three-dimensional polycaprolactone scaffold-conjugated bone morphogenetic protein-2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification. J Biomed Mater Res A 100A(8):2088–2096

    Article  CAS  Google Scholar 

  12. Chu CR, Dounchis JS, Yoshioka M, Sah RL, Coutts RD, Amiel D (1997) Osteochondral repair using perichondrial cells. A 1-year study in rabbits. Clin Orthop 340:220–229

    Article  Google Scholar 

  13. Jiang C-C et al (2007) Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J Orthop Res 25(10):1277–1290

    Article  CAS  PubMed  Google Scholar 

  14. Dresing I, Zeiter S, Auer J, Alini M, Eglin D (2014) Evaluation of a press-fit osteochondral poly(ester-urethane) scaffold in a rabbit defect model. J Mater Sci Mater Med 25(7):1691–1700

    Article  CAS  PubMed  Google Scholar 

  15. Frenkel SR et al (2005) Regeneration of articular cartilage—evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthritis Cartilage 13(9):798–807

    Article  CAS  PubMed  Google Scholar 

  16. Jeon JE, Vaquette C, Klein TJ, Hutmacher DW (2014) Perspectives in multiphasic osteochondral tissue engineering. Anat Rec 297(1):26–35

    Article  CAS  Google Scholar 

  17. Marquass B et al (2010) A novel MSC-seeded triphasic construct for the repair of osteochondral defects. J Orthop Res Off Publ Orthop Res Soc 28(12):1586–1599

    Article  CAS  Google Scholar 

  18. Da H et al (2013) The impact of compact layer in biphasic scaffold on osteochondral tissue engineering. PLoS One 8(1):e54838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Woodfield T b f, Blitterswijk CAV, Wijn JD, Sims T j, Hollander A p, Riesle J (2005) Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Eng 11(9–10):1297–1311

    Article  CAS  PubMed  Google Scholar 

  20. Oh SH, Kim TH, Im GI, Lee JH (2010) Investigation of pore size effect on chondrogenic differentiation of adipose stem cells using a pore size gradient scaffold. Biomacromolecules 11(8):1948–1955

    Article  CAS  PubMed  Google Scholar 

  21. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  CAS  PubMed  Google Scholar 

  22. Eichmann A, Le Noble F, Autiero M, Carmeliet P (2005) Guidance of vascular and neural network formation. Curr Opin Neurobiol 15(1):108–115

    Article  CAS  PubMed  Google Scholar 

  23. Parent CA, Devreotes PN (1999) A cell’s sense of direction. Science 284(5415):765–770

    Article  CAS  PubMed  Google Scholar 

  24. Chen G, Deng C, Li Y-P (2012) TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8(2):272–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wozney JM (1992) The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 32(2):160–167

    Article  CAS  PubMed  Google Scholar 

  26. Nukavarapu SP, Laurencin CT, Amini AR, Dorcemus DL (2017) Gradient porous scaffolds. US 9,707,322 B2

    Google Scholar 

  27. Majumdar S, Pothirajan P, Dorcemus D, Nukavarapu S, Kotecha M (2016) High field sodium MRI assessment of stem cell chondrogenesis in a tissue-engineered matrix. Ann Biomed Eng 44(4):1120–1127

    Article  PubMed  Google Scholar 

  28. Dorcemus DL, Nukavarapu SP (2014) Novel and unique matrix design for osteochondral tissue engineering. MRS Online Proc Libr Arch 1621:17–23

    Google Scholar 

  29. Sherwood JK et al (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24):4739–4751

    Article  CAS  PubMed  Google Scholar 

  30. Singh M et al (2010) Three-dimensional macroscopic scaffolds with a gradient in stiffness for functional regeneration of interfacial tissues. J Biomed Mater Res A 94(3):870–876

    PubMed  PubMed Central  Google Scholar 

  31. Guo J, Li C, Ling S, Huang W, Chen Y, Kaplan DL (2017) Multiscale design and synthesis of biomimetic gradient protein/biosilica composites for interfacial tissue engineering. Biomaterials 145(Supplement C):44–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu C, Han Z, Czernuszka JT (2009) Gradient collagen/nanohydroxyapatite composite scaffold: development and characterization. Acta Biomater 5(2):661–669

    Article  CAS  PubMed  Google Scholar 

  33. Dormer NH, Singh M, Wang L, Berkland CJ, Detamore MS (2010) Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals. Ann Biomed Eng 38(6):2167–2182

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dormer NH, Busaidy K, Berkland CJ, Detamore MS (2011) Osteochondral interface regeneration of rabbit mandibular condyle with bioactive signal gradients. J Oral Maxillofac Surg 69(6):e50–e57

    Article  PubMed  PubMed Central  Google Scholar 

  35. Di Luca A, Klein-Gunnewiek M, Vancso JG, van Blitterswijk CA, Benetti EM, Moroni L (2017) Covalent binding of bone morphogenetic protein-2 and transforming growth factor-β3 to 3D plotted scaffolds for osteochondral tissue regeneration. Biotechnol J

    Google Scholar 

  36. Erisken C, Kalyon DM, Wang H, Örnek-Ballanco C, Xu J (2010) Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and beta-glycerophosphate concentrations. Tissue Eng Part A 17(9–10):1239–1252

    Google Scholar 

  37. Kon E et al (2015) Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model. J Orthop Surg 10

    Google Scholar 

  38. Kon E et al (2014) Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model. Knee Surg Sports Traumatol Arthrosc 22(6):1452–1464

    Article  CAS  PubMed  Google Scholar 

  39. Demers C, Hamdy CR, Corsi K, Chellat F, Tabrizian M, Yahia L (2002) Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 12(1):15–35

    PubMed  Google Scholar 

  40. Roudier M et al (1995) The resorption of bone-implanted corals varies with porosity but also with the host reaction. J Biomed Mater Res 29(8):909–915

    Article  CAS  PubMed  Google Scholar 

  41. Doherty MJ, Schlag G, Schwarz N, Mollan RA, Nolan PC, Wilson DJ (1994) Biocompatibility of xenogeneic bone, commercially available coral, a bioceramic and tissue sealant for human osteoblasts. Biomaterials 15(8):601–608

    Article  CAS  PubMed  Google Scholar 

  42. Petite H et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963

    Article  CAS  PubMed  Google Scholar 

  43. Chung C, Burdick JA (2009) Influence of 3D hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng Part A 15(2):243–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Amann E, Wolff P, Breel E, van Griensven M, Balmayor ER (2017) Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures. Acta Biomater 52(Supplement C):130–144

    Article  CAS  PubMed  Google Scholar 

  45. Kon E, Drobnic M, Davidson PA, Levy A, Zaslav K, Robinson D (2014) Chronic posttraumatic cartilage lesion of the knee treated with an acellular osteochondral-regenerating implant: case history with rehabilitation guidelines. J Sport Rehabil 23(3):270–275

    Article  PubMed  Google Scholar 

  46. Melton JTK, Wilson AJ, Chapman-Sheath P, Cossey AJ (2010) TruFit CB bone plug: chondral repair, scaffold design, surgical technique and early experiences. Expert Rev Med Devices 7(3):333–341

    Article  CAS  PubMed  Google Scholar 

  47. Verhaegen J, Clockaerts S, Van Osch GJVM, Somville J, Verdonk P, Mertens P (2015) TruFit plug for repair of osteochondral defects—where is the evidence? Systematic review of literature. Cartilage 6(1):12–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Williams RJ, Gamradt SC (2008) Articular cartilage repair using a resorbable matrix scaffold. Instr Course Lect 57:563–571

    PubMed  Google Scholar 

  49. Dhollander AAM et al (2012) A pilot study of the use of an osteochondral scaffold plug for cartilage repair in the knee and how to deal with early clinical failures. Arthrosc J Arthrosc Relat Surg 28(2):225–233

    Article  Google Scholar 

  50. Saithna A, Dunne K, Kuchenbecker T, Thompson P, Dhillon M, Spalding T (2010) Qualitative MRI related to clinical results following cartilage repair using Trufit plugs: a two year follow up study. Orthop Proc 92-B(SUPP III):423

    Google Scholar 

  51. Joshi N, Reverte-Vinaixa M, Díaz-Ferreiro EW, Domínguez-Oronoz R (2012) Synthetic resorbable scaffolds for the treatment of isolated patellofemoral cartilage defects in young patients: magnetic resonance imaging and clinical evaluation. Am J Sports Med 40(6):1289–1295

    Article  PubMed  Google Scholar 

  52. Carmont MR, Carey-Smith R, Saithna A, Dhillon M, Thompson P, Spalding T (2009) Delayed incorporation of a TruFit plug: perseverance is recommended. Arthrosc J Arthrosc Relat Surg 25(7):810–814

    Article  Google Scholar 

  53. Barber FA, Dockery WD (2011) A computed tomography scan assessment of synthetic multiphase polymer scaffolds used for osteochondral defect repair. Arthrosc J Arthrosc Relat Surg 27(1):60–64

    Article  Google Scholar 

  54. Pearce CJ, Gartner LE, Mitchell A, Calder JD (2012) Synthetic osteochondral grafting of ankle osteochondral lesions. Foot Ankle Surg 18(2):114–118

    Article  PubMed  Google Scholar 

  55. Kon E, Filardo G, Perdisa F, Venieri G, Marcacci M (2014) Clinical results of multilayered biomaterials for osteochondral regeneration. J Exp Orthop 1:10

    Article  PubMed  PubMed Central  Google Scholar 

  56. Delcogliano M et al (2014) Use of innovative biomimetic scaffold in the treatment for large osteochondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22(6):1260–1269

    Google Scholar 

  57. Winthrop Z, Pinkowsky G, Hennrikus W (2015) Surgical treatment for osteochondritis dessicans of the knee. Curr Rev Musculoskelet Med 8(4):467–475

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kon E et al (2014) Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Am J Sports Med 42(1):158–165

    Article  PubMed  Google Scholar 

  59. Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M (2011) Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med 39(6):1180–1190

    Article  PubMed  Google Scholar 

  60. Brix M et al (2016) Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee. Int Orthop 40(3):625–632

    Article  PubMed  Google Scholar 

  61. Christensen BB, Foldager CB, Jensen J, Jensen NC, Lind M (2016) Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24(7):2380–2387

    Article  Google Scholar 

  62. Farr J, Gracitelli GC, Shah N, Chang EY, Gomoll AH (2016) High failure rate of a decellularized osteochondral allograft for the treatment of cartilage lesions. Am J Sports Med 44(8):2015–2022

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from AO Foundation, Musculoskeletal Transplant Foundation, and NSF (EFRI and AIR). Dr. Nukavarapu acknowledges funding from Bioscience Connecticut through Technology Translation Pipe-line program and University of Connecticut through SPARK technology commercialization program. Dr. Nukavarapu also acknowledges funding support from the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (Award Number R01EB020640).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syam Nukavarapu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spencer, V., Illescas, E., Maltes, L., Kim, H., Sathe, V., Nukavarapu, S. (2018). Osteochondral Tissue Engineering: Translational Research and Turning Research into Products. In: Oliveira, J., Pina, S., Reis, R., San Roman, J. (eds) Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1058. Springer, Cham. https://doi.org/10.1007/978-3-319-76711-6_17

Download citation

Publish with us

Policies and ethics