Skip to main content

Osteochondral Repair Using a Hybrid Implant Composed of Stem Cells and Biomaterial

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

Osteoarthritis (OA) is a common disease, which could potentially affect the quality of life of both young and elderly populations worldwide. The management of OA remains challenging and controversial. Although there are several clinical options for the treatment of OA, it has proven difficult to restore the damaged articular cartilage due to the limited healing capacity. With the advancements in tissue engineering approaches including cell-based technologies and development of biomaterial scaffolds over the past decade, new therapeutic options for patients with osteochondral lesions may be potentially available. This chapter will highlight the current techniques and recent advances of tissue-engineered biomaterial scaffolds, which can mimic the native osteochondral complex, for osteochondral tissue regeneration. Moreover, we will introduce our novel technique using a hybrid implant composed of artificial bone coupled with a mesenchymal stem cell (MSC)–based scaffold-free tissue-engineered construct (TEC) and show its feasibility for osteochondral repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harris Jr ED. The bone and joint decade: a catalyst for progress. Arthritis Rheum. 2001;44(9):1969–70.

    Article  PubMed  Google Scholar 

  2. Zhang W, Moskowitz RW, Nuki G, et al. OARSI recommendations for the management of hip and knee osteoarthritis, part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthr Cartil. 2007;15(9):981–1000.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang W, Moskowitz RW, Nuki G, et al. OARSI recommendations for the management of hip and knee osteoarthritis, part II: OARSI evidence-based, expert consensus guidelines. Osteoarthr Cartil. 2008;16(2):137–62.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang W, Nuki G, Moskowitz RW, et al. OARSI recommendations for the management of hip and knee osteoarthritis: part III: changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthr Cartil. 2010;18(4):476–99.

    Article  CAS  PubMed  Google Scholar 

  5. Ando W, Tateishi K, Hart DA, et al. Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials. 2007;28(36):5462–70.

    Google Scholar 

  6. Ando W, Tateishi K, Katakai D, et al. In vitro generation of a scaffold-free tissue-engineered construct (TEC) derived from human synovial mesenchymal stem cells: biological and mechanical properties and further chondrogenic potential. Tissue Eng Part A. 2008;14(12):2041–9.

    Article  CAS  PubMed  Google Scholar 

  7. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.

    Article  CAS  PubMed  Google Scholar 

  8. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil. 2002;10(6):432–63.

    Article  CAS  PubMed  Google Scholar 

  9. Kandel RA, Grynpas M, Pilliar R, et al. Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model. Biomaterials. 2006;27(22):4120–31.

    Article  CAS  PubMed  Google Scholar 

  10. Shimomura K, Ando W, Tateishi K, et al. The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials. 2010;31(31):8004–11.

    Article  CAS  PubMed  Google Scholar 

  11. Gomoll AH, Madry H, Knutsen G, et al. The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):434–47.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shimomura K, Moriguchi Y, Nansai R, et al. Comparison of 2 different formulations of artificial bone for a hybrid implant with a tissue-engineered construct derived from synovial mesenchymal stem cells. Am J Sports Med. 2017;45(3):666–75.

    Google Scholar 

  13. Keeney M, Pandit A. The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev. 2009;15(1):55–73.

    Article  CAS  PubMed  Google Scholar 

  14. Nooeaid P, Salih V, Beier JP, Boccaccini AR. Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med. 2012;16(10):2247–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang PJ, Temenoff JS. Engineering orthopedic tissue interfaces. Tissue Eng Part B Rev. 2009;15(2):127–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):419–33.

    Article  PubMed  Google Scholar 

  17. Arvidson K, Abdallah BM, Applegate LA, et al. Bone regeneration and stem cells. J Cell Mol Med. 2011;15(4):718–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Castro NJ, Hacking SA, Zhang LG. Recent progress in interfacial tissue engineering approaches for osteochondral defects. Ann Biomed Eng. 2012;40(8):1628–40.

    Article  PubMed  Google Scholar 

  19. Oegema Jr TR, Carpenter RJ, Hofmeister F, Thompson Jr RC. The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc Res Tech. 1997;37(4):324–32.

    Article  PubMed  Google Scholar 

  20. Mente PL, Lewis JL. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J Orthop Res. 1994;12(5):637–47.

    Article  CAS  PubMed  Google Scholar 

  21. Clark JM, Huber JD. The structure of the human subchondral plate. J Bone Joint Surg Br. 1990;72(5):866–73.

    CAS  PubMed  Google Scholar 

  22. Barr RJ, Gregory JS, Reid DM, et al. Predicting OA progression to total hip replacement: can we do better than risk factors alone using active shape modelling as an imaging biomarker? Rheumatology (Oxford). 2012;51(3):562–70.

    Article  Google Scholar 

  23. Haverkamp DJ, Schiphof D, Bierma-Zeinstra SM, Weinans H, Waarsing JH. Variation in joint shape of osteoarthritic knees. Arthritis Rheum. 2011;63(11):3401–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lynch JA, Parimi N, Chaganti RK, Nevitt MC, Lane NE. Study of osteoporotic fractures research G. The association of proximal femoral shape and incident radiographic hip OA in elderly women. Osteoarthr Cartil. 2009;17(10):1313–8.

    Google Scholar 

  25. Mosher TJ, Walker EA, Petscavage-Thomas J, Guermazi A. Osteoarthritis year 2013 in review: imaging. Osteoarthr Cartil. 2013;21(10):1425–35.

    Google Scholar 

  26. Roemer FW, Guermazi A. Osteoarthritis year 2012 in review: imaging. Osteoarthr Cartil. 2012;20(12):1440–6.

    Google Scholar 

  27. Duan Y, Hao D, Li M, et al. Increased synovial fluid visfatin is positively linked to cartilage degradation biomarkers in osteoarthritis. Rheumatol Int. 2012;32(4):985–90.

    Article  CAS  PubMed  Google Scholar 

  28. Mobasheri A. Osteoarthritis year 2012 in review: biomarkers. Osteoarthr Cartil. 2012;20(12):1451–64.

    Google Scholar 

  29. Jiang CC, Chiang H, Liao CJ, et al. Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J Orthop Res. 2007;25(10):1277–90.

    Article  CAS  PubMed  Google Scholar 

  30. Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M. Novel Nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med. 2011;39(6):1180–90.

    Article  PubMed  Google Scholar 

  31. Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med. 2009;37(5):902–8.

    Article  PubMed  Google Scholar 

  32. Orth P, Cucchiarini M, Kohn D, Madry H. Alterations of the subchondral bone in osteochondral repair–translational data and clinical evidence. Eur Cell Mater. 2013a;25:299–316. discussion 314–296

    Article  CAS  PubMed  Google Scholar 

  33. Orth P, Meyer HL, Goebel L, et al. Improved repair of chondral and osteochondral defects in the ovine trochlea compared with the medial condyle. J Orthop Res. 2013b;31(11):1772–9.

    CAS  PubMed  Google Scholar 

  34. Schek RM, Taboas JM, Segvich SJ, Hollister SJ, Krebsbach PH. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng. 2004;10(9–10):1376–85.

    Article  CAS  PubMed  Google Scholar 

  35. Ahn JH, Lee TH, Oh JS, et al. Novel hyaluronate-atelocollagen/beta-TCP-hydroxyapatite biphasic scaffold for the repair of osteochondral defects in rabbits. Tissue Eng Part A. 2009;15(9):2595–604.

    Article  CAS  PubMed  Google Scholar 

  36. Alhadlaq A, Mao JJ. Tissue-engineered osteochondral constructs in the shape of an articular condyle. J Bone Joint Surg Am. 2005;87(5):936–44.

    Article  PubMed  Google Scholar 

  37. Chen J, Chen H, Li P, et al. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials. 2011;32(21):4793–805.

    Google Scholar 

  38. Gao J, Dennis JE, Solchaga LA, Goldberg VM, Caplan AI. Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng. 2002;8(5):827–37.

    Article  CAS  PubMed  Google Scholar 

  39. Hung CT, Lima EG, Mauck RL, et al. Anatomically shaped osteochondral constructs for articular cartilage repair. J Biomech. 2003;36(12):1853–64.

    Article  PubMed  Google Scholar 

  40. Marquass B, Somerson JS, Hepp P, et al. A novel MSC-seeded triphasic construct for the repair of osteochondral defects. J Orthop Res. 2010;28(12):1586–99.

    Article  CAS  PubMed  Google Scholar 

  41. O’Shea TM, Miao X. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng Part B Rev. 2008;14(4):447–64.

    Article  PubMed  Google Scholar 

  42. Oliveira JM, Rodrigues MT, Silva SS, et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials. 2006;27(36):6123–37.

    Article  CAS  PubMed  Google Scholar 

  43. Sherwood JK, Riley SL, Palazzolo R, et al. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials. 2002;23(24):4739–51.

    Article  CAS  PubMed  Google Scholar 

  44. Shimomura K, Moriguchi Y, Murawski CD, Yoshikawa H, Nakamura N. Osteochondral tissue engineering with biphasic scaffold: current strategies and techniques. Tissue Eng Part B Rev. 2014b;20(5):468–76.

    Article  CAS  PubMed  Google Scholar 

  45. Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30(1):215–24.

    Article  CAS  PubMed  Google Scholar 

  46. Schnabel M, Marlovits S, Eckhoff G, et al. Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthr Cartil. 2002;10(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  47. Takahashi N, Knudson CB, Thankamony S, et al. Induction of CD44 cleavage in articular chondrocytes. Arthritis Rheum. 2010;62(5):1338–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takahashi T, Ogasawara T, Asawa Y, et al. Three-dimensional microenvironments retain chondrocyte phenotypes during proliferation culture. Tissue Eng. 2007;13(7):1583–92.

    Article  CAS  PubMed  Google Scholar 

  49. Marcacci M, Berruto M, Brocchetta D, et al. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res. 2005;435:96–105.

    Article  Google Scholar 

  50. Zheng MH, Willers C, Kirilak L, et al. Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment. Tissue Eng. 2007;13(4):737–46.

    Article  CAS  PubMed  Google Scholar 

  51. Chubinskaya S, Segalite D, Pikovsky D, Hakimiyan AA, Rueger DC. Effects induced by BMPS in cultures of human articular chondrocytes: comparative studies. Growth Factors. 2008;26(5):275–83.

    Article  CAS  PubMed  Google Scholar 

  52. Forsey RW, Tare R, Oreffo RO, Chaudhuri JB. Perfusion bioreactor studies of chondrocyte growth in alginate-chitosan capsules. Biotechnol Appl Biochem. 2012;59(2):142–52.

    Article  CAS  PubMed  Google Scholar 

  53. El-Ayoubi R, DeGrandpre C, DiRaddo R, Yousefi AM, Lavigne P. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. J Biomater Appl. 2011;25(5):429–44.

    Article  CAS  PubMed  Google Scholar 

  54. Kawanishi M, Oura A, Furukawa K, et al. Redifferentiation of dedifferentiated bovine articular chondrocytes enhanced by cyclic hydrostatic pressure under a gas-controlled system. Tissue Eng. 2007;13(5):957–64.

    Article  CAS  PubMed  Google Scholar 

  55. Kurz B, Domm C, Jin M, Sellckau R, Schunke M. Tissue engineering of articular cartilage under the influence of collagen I/III membranes and low oxygen tension. Tissue Eng. 2004;10(7–8):1277–86.

    Article  CAS  PubMed  Google Scholar 

  56. Yasui Y, Chijimatsu R, Hart DA, et al. Preparation of scaffold-free tissue-engineered constructs derived from human synovial mesenchymal stem cells under low oxygen tension enhances their chondrogenic differentiation capacity. Tissue Eng Part A. 2016;22(5–6):490–500.

    Article  CAS  PubMed  Google Scholar 

  57. Albrecht C, Schlegel W, Bartko P, et al. Changes in the endogenous BMP expression during redifferentiation of chondrocytes in 3D cultures. Int J Mol Med. 2010;26(3):317–23.

    CAS  PubMed  Google Scholar 

  58. Levett PA, Melchels FP, Schrobback K, Hutmacher DW, Malda J, Klein TJ. Chondrocyte redifferentiation and construct mechanical property development in single-component photocrosslinkable hydrogels. J Biomed Mater Res A. 2014;102(8):2544–53.

    Article  PubMed  Google Scholar 

  59. Shimomura K, Ando W, Moriguchi Y, et al. Next generation mesenchymal stem cell (MSC)–based cartilage repair using scaffold-free tissue engineered constructs generated with synovial mesenchymal stem cells. Cartilage. 2015;6(Suppl 2):13S–29S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sundelacruz S, Kaplan DL. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol. 2009;20(6):646–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44(8):1928–42.

    Article  PubMed  Google Scholar 

  62. Koga H, Shimaya M, Muneta T, et al. Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect. Arthritis Res Ther. 2008;10(4):R84.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med. 2005;11(2):228–32.

    Article  CAS  PubMed  Google Scholar 

  64. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 2005;52(8):2521–9.

    Article  PubMed  Google Scholar 

  65. Dashtdar H, Rothan HA, Tay T, et al. A preliminary study comparing the use of allogenic chondrogenic pre-differentiated and undifferentiated mesenchymal stem cells for the repair of full thickness articular cartilage defects in rabbits. J Orthop Res. 2011;29(9):1336–42.

    Article  PubMed  Google Scholar 

  66. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  67. Tsumaki N, Okada M, Yamashita A. iPS cell technologies and cartilage regeneration. Bone. 2015;70:48–54.

    Article  CAS  PubMed  Google Scholar 

  68. Mano JF, Reis RL. Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med. 2007;1(4):261–73.

    Article  CAS  PubMed  Google Scholar 

  69. Deng T, Lv J, Pang J, Liu B, Ke J. Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med. 2014;8(7):546–56.

    CAS  PubMed  Google Scholar 

  70. Kon E, Delcogliano M, Filardo G, et al. Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res. 2010;28(1):116–24.

    PubMed  Google Scholar 

  71. Zhang S, Chen L, Jiang Y, et al. Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater. 2013a;9(7):7236–47.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang W, Chen J, Tao J, et al. The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials. 2013b;34(25):6046–57.

    Article  CAS  PubMed  Google Scholar 

  73. Hsu FY, Hung YS, Liou HM, Shen CH. Electrospun hyaluronate-collagen nanofibrous matrix and the effects of varying the concentration of hyaluronate on the characteristics of foreskin fibroblast cells. Acta Biomater. 2010;6(6):2140–7.

    Article  CAS  PubMed  Google Scholar 

  74. Tan W, Twomey J, Guo D, Madhavan K, Li M. Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites. IEEE Trans Nanobiosci. 2010;9(2):111–20.

    Article  CAS  Google Scholar 

  75. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003;5:1–16. discussion 16

    Article  CAS  PubMed  Google Scholar 

  76. Duan P, Pan Z, Cao L, et al. The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds on restoring osteochondral defects in rabbits. J Biomed Mater Res A. 2014;102(1):180–92.

    Article  PubMed  Google Scholar 

  77. Li WJ, Cooper Jr JA, Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater. 2006;2(4):377–85.

    Article  PubMed  Google Scholar 

  78. Li WJ, Mauck RL, Cooper JA, Yuan X, Tuan RS. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech. 2007;40(8):1686–93.

    Article  PubMed  Google Scholar 

  79. Lin H, Zhang D, Alexander PG, et al. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials. 2013;34(2):331–9.

    Article  CAS  PubMed  Google Scholar 

  80. Bhattarai SR, Bhattarai N, Viswanathamurthi P, Yi HK, Hwang PH, Kim HY. Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity. J Biomed Mater Res A. 2006;78(2):247–57.

    Article  PubMed  Google Scholar 

  81. Pena J, Corrales T, Izquierdo-Barba I, et al. Alkaline-treated poly(epsilon-caprolactone) films: degradation in the presence or absence of fibroblasts. J Biomed Mater Res A. 2006;76(4):788–97.

    Article  PubMed  Google Scholar 

  82. Sarasam AR, Krishnaswamy RK, Madihally SV. Blending chitosan with polycaprolactone: effects on physicochemical and antibacterial properties. Biomacromolecules. 2006;7(4):1131–8.

    Article  CAS  PubMed  Google Scholar 

  83. Shafiee A, Soleimani M, Chamheidari GA, et al. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. J Biomed Mater Res A. 2011;99(3):467–78.

    Article  PubMed  Google Scholar 

  84. Chang KY, Cheng LW, Ho GH, Huang YP, Lee YD. Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Acta Biomater. 2009;5(6):1937–47.

    Article  CAS  PubMed  Google Scholar 

  85. Chouzouri G, Xanthos M. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Acta Biomater. 2007;3(5):745–56.

    Article  CAS  PubMed  Google Scholar 

  86. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43.

    Article  CAS  PubMed  Google Scholar 

  87. Martin I, Miot S, Barbero A, Jakob M, Wendt D. Osteochondral tissue engineering. J Biomech. 2007;40(4):750–65.

    Article  PubMed  Google Scholar 

  88. Tamai N, Myoui A, Hirao M, et al. A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2). Osteoarthr Cartil. 2005;13(5):405–17.

    Article  PubMed  Google Scholar 

  89. Yamasaki N, Hirao M, Nanno K, et al. A comparative assessment of synthetic ceramic bone substitutes with different composition and microstructure in rabbit femoral condyle model. J Biomed Mater Res B Appl Biomater. 2009;91(2):788–98.

    Article  PubMed  Google Scholar 

  90. Chen QZ, Boccaccini AR. Poly(D,L-lactic acid) coated 45S5 bioglass-based scaffolds: processing and characterization. J Biomed Mater Res A. 2006;77(3):445–57.

    Article  CAS  PubMed  Google Scholar 

  91. Miao X, Tan DM, Li J, Xiao Y, Crawford R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater. 2008;4(3):638–45.

    Article  CAS  PubMed  Google Scholar 

  92. Ren J, Zhao P, Ren T, Gu S, Pan K. Poly (D,L-lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation. J Mater Sci Mater Med. 2008;19(3):1075–82.

    Article  CAS  PubMed  Google Scholar 

  93. Aroen A, Loken S, Heir S, et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med. 2004;32(1):211–5.

    Article  PubMed  Google Scholar 

  94. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13(4):456–60.

    Article  CAS  PubMed  Google Scholar 

  95. Dawson J, Linsell L, Zondervan K, et al. Epidemiology of hip and knee pain and its impact on overall health status in older adults. Rheumatology (Oxford). 2004;43(4):497–504.

    Article  CAS  Google Scholar 

  96. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy. 2002;18(7):730–4.

    Article  PubMed  Google Scholar 

  97. Peat G, McCarney R, Croft P. Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care. Ann Rheum Dis. 2001;60(2):91–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dhollander AA, Liekens K, Almqvist KF, et al. A pilot study of the use of an osteochondral scaffold plug for cartilage repair in the knee and how to deal with early clinical failures. Arthroscopy. 2012;28(2):225–33.

    Article  PubMed  Google Scholar 

  99. Kon E, Filardo G, Di Martino A, et al. Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Am J Sports Med. 2014;42(1):158–65.

    Article  PubMed  Google Scholar 

  100. Kon E, Filardo G, Robinson D, et al. Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1452–64.

    Article  CAS  PubMed  Google Scholar 

  101. Miot S, Brehm W, Dickinson S, et al. Influence of in vitro maturation of engineered cartilage on the outcome of osteochondral repair in a goat model. Eur Cell Mater. 2012;23:222–36.

    Google Scholar 

  102. Sosio C, Di Giancamillo A, Deponti D, et al. Osteochondral repair by a novel interconnecting collagen-hydroxyapatite substitute: a large-animal study. Tissue Eng Part A. 2015;21(3–4):704–15.

    Article  CAS  PubMed  Google Scholar 

  103. Shimomura K, Moriguchi Y, Ando W, et al. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Tissue Eng Part A. 2014;20(17–18):2291–304.

    Article  CAS  PubMed  Google Scholar 

  104. Shen C, Ma J, Chen XD, Dai LY. The use of beta-TCP in the surgical treatment of tibial plateau fractures. Knee Surg Sports Traumatol Arthrosc. 2009;17(12):1406–11.

    Article  PubMed  Google Scholar 

  105. Tamai N, Myoui A, Kudawara I, Ueda T, Yoshikawa H. Novel fully interconnected porous hydroxyapatite ceramic in surgical treatment of benign bone tumor. J Orthop Sci. 2010;15(4):560–8.

    Article  CAS  PubMed  Google Scholar 

  106. Reyes R, Delgado A, Solis R, et al. Cartilage repair by local delivery of TGF-beta1 or BMP-2 from a novel, segmented polyurethane/polylactic-co-glycolic bilayered scaffold. J Biomed Mater Res A. 2014;102(4):1110–20.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the New Energy and Industrial Technology Development Organization, Japan, and Grant-in-Aid for Scientific Research (B), Japan Society for the promotion of Science, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norimasa Nakamura M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Shimomura, K., Fujie, H., Hart, D.A., Yoshikawa, H., Nakamura, N. (2017). Osteochondral Repair Using a Hybrid Implant Composed of Stem Cells and Biomaterial. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_53

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics