Skip to main content

Advertisement

Log in

The Challenge in Using Mesenchymal Stromal Cells for Recellularization of Decellularized Cartilage

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Some decellularized musculoskeletal extracellular matrices (ECM)s derived from tissues such as bone, tendon and fibrocartilaginous meniscus have already been clinical use for tissue reconstruction. Repair of articular cartilage with its unique zonal ECM architecture and composition is still an unsolved problem, and the question is whether allogenic or xenogeneic decellularized cartilage ECM could serve as a biomimetic scaffold for this purpose.

Hence, this survey outlines the present state of preparing decellularized cartilage ECM-derived scaffolds or composites for reconstruction of different cartilage types and of reseeding it particularly with mesenchymal stromal cells (MSCs).

The preparation of natural decellularized cartilage ECM scaffolds hampers from the high density of the cartilage ECM and lacking interconnectivity of the rather small natural pores within it: the chondrocytes lacunae. Nevertheless, the reseeding of decellularized ECM scaffolds before implantation provided superior results compared with simply implanting cell-free constructs in several other tissues, but cartilage recellularization remains still challenging. Induced by cartilage ECM-derived scaffolds MSCs underwent chondrogenesis.

Major problems to be addressed for the application of cell-free cartilage were discussed such as to maintain ECM structure, natural chemistry, biomechanics and to achieve a homogenous and stable cell recolonization, promote chondrogenic and prevent terminal differentiation (hypertrophy) and induce the deposition of a novel functional ECM. Some promising approaches were proposed including further processing of the decellularized ECM before recellularization of the ECM with MSCs, co-culturing of MSCs with chondrocytes and establishing bioreactor culture e.g. with mechanostimulation, flow perfusion pressure and lowered oxygen tension.

Synopsis of tissue engineering approaches based on cartilage-derived ECM

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Steinert, A. F., Ghivizzani, S. C., Rethwilm, A., et al. (2007). Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Research & Therapy, 9(3), 213.

    Article  CAS  Google Scholar 

  2. Asik, M., Ciftci, F., Sen, C., et al. (2008). The microfracture technique for the treatment of full-thickness articular cartilage lesions of the knee: midterm results. Arthroscopy, 24(11), 1214–1220.

    Article  PubMed  Google Scholar 

  3. Bekkers, J. E., Inklaar, M., & Saris, D. B. (2009). Treatment selection in articular cartilage lesions of the knee: a systematic review. American Journal Sports Medicine, 37(Suppl 1), 148S–155S.

    Article  Google Scholar 

  4. Bugbee, W.D. and F.R. Convery, Osteochondral allograft transplantation (1999). Clin Sports Medicine, 18(1), 67–75.

  5. Chu, C. R., Convery, F. R., Akeson, W. H., et al. (1999). Articular cartilage transplantation. Clinical results in the knee. Clinical Orthopaedics and Related Research, 360, 159–168.

    Article  Google Scholar 

  6. Brittberg, M., Lindahl, A., Nilsson, A., et al. (1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New England Journal of Medicine, 331(14), 889–895.

    Article  CAS  PubMed  Google Scholar 

  7. Logerstedt, D. S., Snyder-Mackler, L., Ritter, R. C., et al. (2010). Knee pain and mobility impairments: meniscal and articular cartilage lesions. The Journal of Orthopaedic and Sports Physical Therapy, 40(6), A1–A35.

    Article  Google Scholar 

  8. Mandelbaum, B. R., Browne, J. E., Fu, F., et al. (1998). Articular cartilage lesions of the knee. American Journal of Sports Medicine, 26(6), 853–861.

    CAS  PubMed  Google Scholar 

  9. Loeser, R. F. (2008). Molecular mechanisms of cartilage destruction in osteoarthritis. Journal of Musculoskeletal & Neuronal Interactions, 8(4), 303–306.

    CAS  Google Scholar 

  10. Pattappa, G., M. Peroglio, D. Sakai, et al., CCL5/RANTES is a key chemoattractant released by degenerative intervertebral discs in organ culture (2014). European Cells & Materials, 27, 124–136; discussion 136.

  11. Safran, M. R., Kim, H., Zaffagnini, S., & The use of scaffolds in the management of articular cartilage injury (2008). The Journal of the American Academy of Orthopaedic Surgeons, 16(6), 306–311.

    Article  PubMed  Google Scholar 

  12. Wang, J., Yang, Q., Cheng, N., et al. (2016). Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair. Material Science & Enginering C Material Biological Applications, 61, 705–711.

    Article  CAS  Google Scholar 

  13. Zimoch-Korzycka, A., Bobak, L., & Jarmoluk, A. (2016). Antimicrobial and antioxidant activity of chitosan/hydroxypropyl methylcellulose film-forming hydrosols hydrolyzed by cellulase. International Journal of Molecular Sciences, 17, 9.

    Article  CAS  Google Scholar 

  14. Wong, M. L., & Griffiths, L. G. (2014). Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomaterialia, 10(5), 1806–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mandal, B. B., & Kundu, S. C. (2009). Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials, 30(15), 2956–2965.

    Article  CAS  PubMed  Google Scholar 

  16. Ko, C. S., Huang, J. P., Huang, C. W., & Chu, I. M. (2009). Type II collagen-chondroitin sulfate-hyaluronan scaffold cross-linked by genipin for cartilage tissue engineering. Journal of Bioscience and Bioengineering, 107(2), 177–182.

    Article  CAS  PubMed  Google Scholar 

  17. Tuan, R. S., Chen, A. F., & Klatt, B. A. (2013). Cartilage regeneration. The Journal of the American Academy of Orthopaedic Surgeons, 21(5), 303–311.

    PubMed  PubMed Central  Google Scholar 

  18. Lohan, A., Marzahn, U., El Sayed, K., et al. (2011). In vitro and in vivo neo-cartilage formation by heterotopic chondrocytes seeded on PGA scaffolds. Histochemistry and Cell Biology, 136(1), 57–69.

    Article  CAS  PubMed  Google Scholar 

  19. Schwarz, S., Koerber, L., Elsaesser, A. F., et al. (2012). Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Engineering Part A, 18(21–22), 2195–2209.

    Article  CAS  PubMed  Google Scholar 

  20. Cissell, D. D., Hu, J. C., Griffiths, L. G., & Athanasiou, K. A. (2014). Antigen removal for the production of biomechanically functional, xenogeneic tissue grafts. Journal of Biomechanics, 47(9), 1987–1996.

    Article  PubMed  Google Scholar 

  21. Liao, J., Guo, X., Grande-Allen, K. J., et al. (2010). Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering. Biomaterials, 31(34), 8911–8920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haleem, A. M., Singergy, A. A., Sabry, D., et al. (2010). The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage, 1(4), 253–261.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fan, J., Varshney, R. R., Ren, L., et al. (2009). Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Engineering. Part B, Reviews, 15(1), 75–86.

    Article  CAS  PubMed  Google Scholar 

  24. Steinwachs, M. R., Waibl, B., & Niemeyer, P. (2011). Use of human progenitor cells in the treatment of cartilage damage. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 54(7), 797–802.

    Article  CAS  PubMed  Google Scholar 

  25. Steinwachs, M. R., Waibl, B., Wopperer, S., & Mumme, M. (2014). Matrix-associated chondroplasty: A novel platelet-rich plasma and concentrated nucleated bone marrow cell-enhanced cartilage restoration technique. Arthroscopy Techniques, 3(2), e279–e282.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hunziker, E. B., Quinn, T. M., & Hauselmann, H. J. (2002). Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis Cartilage, 10(7), 564–572.

    Article  CAS  PubMed  Google Scholar 

  27. Cole, A. G. (2011). A review of diversity in the evolution and development of cartilage: the search for the origin of the chondrocyte. European Cells & Materials, 21, 122–129.

    Article  CAS  Google Scholar 

  28. Han, L., Grodzinsky, A. J., & Ortiz, C. (2011). Nanomechanics of the cartilage extracellular matrix. Annual Review Material Research, 41, 133–168.

    Article  CAS  Google Scholar 

  29. Chung, C., & Burdick, J. A. (2008). Engineering cartilage tissue. Advance Drug Delivery Review, 60(2), 243–262.

    Article  CAS  Google Scholar 

  30. Yang, Q., Peng, J., Lu, S. B., et al. (2011). In vitro cartilage tissue engineering with cartilage extracellular matrix-derived porous scaffolds and bone marrow mesenchymal stem cells. Zhonghua Yi Xue Za Zhi, 91(17), 1161–1166.

    CAS  PubMed  Google Scholar 

  31. Kojima, K., & Vacanti, C. A. (2014). Tissue engineering in the trachea. Anatomical Record (Hoboken), 297(1), 44–50.

    Article  CAS  Google Scholar 

  32. Grevemeyer, B., L. Bogdanovic, S. Canton, et al., Regenerative medicine approach to reconstruction of the equine upper airway (2014). Tissue Engineering Part A, 20(7–8), 1213–1221.

  33. Ma, A., Jiang, L., Song, L., et al. (2013). Reconstruction of cartilage with clonal mesenchymal stem cell-acellular dermal matrix in cartilage defect model in nonhuman primates. Internatinal Immunopharmacology, 16(3), 399–408.

    Article  CAS  Google Scholar 

  34. Elder, B. D., Kim, D. H., & Athanasiou, K. A. (2010). Developing an articular cartilage decellularization process toward facet joint cartilage replacement. Neurosurgery, 66(4), 722–727 discussion 727.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Colnot, C., Zhang, X., & Knothe Tate, M. L. (2012). Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. Journal of Orthopaedic Research, 30(12), 1869–1878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Matzenauer, C., Reckert, A., & Ritz-Timme, S. (2013). Estimation of age at death based on aspartic acid racemization in elastic cartilage of the epiglottis. International Journal of Legal Medicine, 128(6), 995–1000.

    Article  PubMed  Google Scholar 

  37. Sterodimas, A., de Faria, J., Correa, W. E., & Pitanguy, I. (2009). Tissue engineering and auricular reconstruction: a review. Journal of Plastic, Reconstructive & Aesthetic Surgery, 62(4), 447–452.

    Article  Google Scholar 

  38. Mizuno, M., Kobayashi, S., Takebe, T., et al. (2014). Brief report: Reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage. Stem Cells, 32(3), 816–821.

    Article  PubMed  Google Scholar 

  39. Goldberg-Bockhorn, E., Schwarz, S., Elsasser, A., et al. (2014). Physical characterization of decellularized cartilage matrix for reconstructive rhinosurgery. Laryngorhinootologie, 93(11), 756–763.

    Article  CAS  PubMed  Google Scholar 

  40. Uppal, R. S., Sabbagh, W., Chana, J., & Gault, D. T. (2008). Donor-site morbidity after autologous costal cartilage harvest in ear reconstruction and approaches to reducing donor-site contour deformity. Plastic and Reconstructive Surgery, 121(6), 1949–1955.

    Article  CAS  PubMed  Google Scholar 

  41. Utomo, L., Pleumeekers, M. M., Nimeskern, L., et al. (2015). Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction. Biomedical Materials, 10(1), 015010.

    Article  PubMed  CAS  Google Scholar 

  42. Xu, H., Xu, B., Yang, Q., et al. (2013). Fabrication and analysis of a novel tissue engineered composite biphasic scaffold for annulus fibrosus and nucleus pulposus. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 27(4), 475–480.

    CAS  PubMed  Google Scholar 

  43. Yuan, M., Yeung, C. W., Li, Y. Y., et al. ((2013). Effects of nucleus pulposus cell-derived acellular matrix on the differentiation of mesenchymal stem cells. Biomaterials, 34(16), 3948–3961.

    Article  CAS  PubMed  Google Scholar 

  44. Shoukry, M., Li, J., & Pei, M. (2013). Reconstruction of an in vitro niche for the transition from intervertebral disc development to nucleus pulposus regeneration. Stem Cells and Development, 22(8), 1162–1176.

    Article  CAS  PubMed  Google Scholar 

  45. Chan, L. K., Leung, V. Y., Tam, V., et al. (2013). Decellularized bovine intervertebral disc as a natural scaffold for xenogenic cell studies. Acta Biomaterialia, 9(2), 5262–5272.

    Article  CAS  PubMed  Google Scholar 

  46. Mercuri, J. J., Gill, S. S., & Simionescu, D. T. (2011). Novel tissue-derived biomimetic scaffold for regenerating the human nucleus pulposus. Journal of Biomedical Materials Research. Part A, 96(2), 422–435.

    Article  PubMed  CAS  Google Scholar 

  47. Wu, L. C., Chiang, C. J., Liu, Z. H., et al. (2014). Fabrication and properties of acellular porcine anulus fibrosus for tissue engineering in spine surgery. Journal of Orthopaedic Surgery and Research, 9, 118.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pattappa, G., Z. Li, M. Peroglio, et al., Diversity of intervertebral disc cells: phenotype and function (2012). Journal of Anatomy, 221(6), 480–496.

  49. Fisher, M. B., Henning, E. A., Soegaard, N., et al. (2013). Organized nanofibrous scaffolds that mimic the macroscopic and microscopic architecture of the knee meniscus. Acta Biomaterialia, 9(1), 4496–4504.

    Article  CAS  PubMed  Google Scholar 

  50. Stabile, K. J., Odom, D., Smith, T. L., et al. ((2010). An acellular, allograft-derived meniscus scaffold in an ovine model. Arthroscopy, 26(7), 936–948.

    Article  PubMed  Google Scholar 

  51. Jiang, D., Zhao, L. H., Tian, M., et al. (2012). Meniscus transplantation using treated xenogeneic meniscal tissue: viability and chondroprotection study in rabbits. Arthroscopy, 28(8), 1147–1159.

    Article  PubMed  Google Scholar 

  52. Chen, Y. C., Chen, R. N., Jhan, H. J., et al. (2015). Development and characterization of acellular extracellular matrix scaffolds from porcine menisci for use in cartilage tissue engineering. Tissue Engineering Part C Methods, 21(9), 971–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stapleton, T. W., Ingram, J., Katta, J., et al. (2008). Development and characterization of an acellular porcine medial meniscus for use in tissue engineering. Tissue Engineering Part A, 14(4), 505–518.

    Article  CAS  PubMed  Google Scholar 

  54. Stapleton, T. W., Ingram, J., Fisher, J., & Ingham, E. (2011). Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissue engineering applications. Tissue Engineering Part A, 17(1–2), 231–242.

    Article  CAS  PubMed  Google Scholar 

  55. Rothrauff, B. B., & Tuan, R. S. (2014). Cellular therapy in bone-tendon interface regeneration. Organogenesis, 10(1), 13–28.

    Article  PubMed  Google Scholar 

  56. Benjamin, M., & McGonagle, D. (2009). Entheses: Tendon and ligament attachment sites. Scandinavian Journal of Medicine & Science in Sports, 19(4), 520–527.

    Article  CAS  Google Scholar 

  57. Beaulieu, M. L., Carey, G. E., Schlecht, S. H., et al. (2015). Quantitative comparison of the microscopic anatomy of the human ACL femoral and tibial entheses. Journal of Orthopaedic Research, 33(12), 1811–1817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cooper, J. O., Bumgardner, J. D., Cole, J. A., et al. (2014). Co-cultured tissue-specific scaffolds for tendon/bone interface engineering. Journal of Tissue Engineering, 5, 2041731414542294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Rana, D., Zreiqat, H., Benkirane-Jessel, N., et al. (2015). Development of decellularized scaffolds for stem cell-driven tissue engineering. Journal of Tissue Engineering Regenerative Medicine. doi:10.1002/term.2061.

    PubMed  Google Scholar 

  60. Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials, 27(19), 3675–3683.

    CAS  PubMed  Google Scholar 

  61. Sutherland, A. J., Converse, G. L., Hopkins, R. A., Detamore, M. S., & The bioactivity of cartilage extracellular matrix in articular cartilage regeneration (2015). Advance Healthcare Materials, 4(1), 29–39.

    Article  CAS  Google Scholar 

  62. Gawlitta, D., Benders, K. E., Visser, J., et al. (2015). Decellularized cartilage-derived matrix as substrate for endochondral bone regeneration. Tissue of Engineering Part A, 21(3–4), 694–703.

    Article  CAS  Google Scholar 

  63. Kang, H., S. Lu, J. Peng, et al., In vivo construction of tissue-engineered cartilage using adipose-derived stem cells and bioreactor technology (2014). Cell and Tissue Banking. 16(1):123–133.

  64. Bronstein, J. A., Woon, C. Y., Farnebo, S., et al. (2013). Physicochemical decellularization of composite flexor tendon-bone interface grafts. Plastic and Reconstructive Surgery, 132(1), 94–102.

    Article  CAS  PubMed  Google Scholar 

  65. Zang, M., Zhang, Q., Chang, E. I., et al. (2012). Decellularized tracheal matrix scaffold for tissue engineering. Plastic and Reconstructive Surgery, 130(3), 532–540.

    Article  CAS  PubMed  Google Scholar 

  66. Elder, B. D., Eleswarapu, S. V., & Athanasiou, K. A. (2009). Extraction techniques for the decellularization of tissue engineered articular cartilage constructs. Biomaterials, 30(22), 3749–3756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, Q., Peng, J., Guo, Q., et al. (2008). A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials, 29(15), 2378–2387.

    Article  CAS  PubMed  Google Scholar 

  68. Zhao, Y. H., Yang, Q., Xia, Q., et al. (2013). In vitro cartilage production using an extracellular matrix-derived scaffold and bone marrow-derived mesenchymal stem cells. Chinese Medical Journal (Engl), 126(16), 3130–3137.

    Google Scholar 

  69. Kim, H. W., Knowles, J. C., & Kim, H. E. (2005). Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. Journal of Biomedical Materials Research. Part A, 72(2), 136–145.

    Article  PubMed  CAS  Google Scholar 

  70. Lu, H., Hoshiba, T., Kawazoe, N., & Chen, G. (2011). Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials, 32(10), 2489–2499.

    Article  CAS  PubMed  Google Scholar 

  71. Yang, Q., Peng, J., Lu, S. B., et al. (2011). Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chinese Medical Journal (Engl), 124(23), 3930–3938.

    CAS  Google Scholar 

  72. Huang, Z., Kohl, B., Kokozidou, M., et al. (2016). Establishment of a Cytocompatible Cell-Free Intervertebral Disc Matrix for Chondrogenesis with Human Bone Marrow-Derived Mesenchymal Stromal Cells. Cells Tissues Organs, 201(5), 354–365.

    Article  PubMed  CAS  Google Scholar 

  73. Giancola, C., De Sena, C., Fessas, D., et al. (1997). DSC studies on bovine serum albumin denaturation. Effects of ionic strength and SDS concentration. International Journal of Biological Macromolecules, 20(3), 193–204.

    Article  CAS  PubMed  Google Scholar 

  74. Kelley, D., & McClements, D. J. (2003). Interactions of bovine serum albumin with ionic surfactants in aqueous solutions. Food Hydrocolloids, 17(1), 73–85.

    Article  CAS  Google Scholar 

  75. Price, A. P., England, K. A., Matson, A. M., et al. (2010). Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Engineering. Part A, 16(8), 2581–2591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kheir, E., Stapleton, T., Shaw, D., et al. (2011). Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. Journal of Biomedical Materials Research. Part A, 99(2), 283–294.

    Article  PubMed  CAS  Google Scholar 

  77. Youngstrom, D. W., Barrett, J. G., Jose, R. R., & Kaplan, D. L. (2013). Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications. PLoS One, 8(5), e64151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mendoza-Novelo, B., Avila, E. E., Cauich-Rodriguez, J. V., et al. (2011). Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta Biomaterialia, 7(3), 1241–1248.

    Article  CAS  PubMed  Google Scholar 

  79. Lumpkins, S. B., Pierre, N., & McFetridge, P. S. (2008). A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomaterialia, 4(4), 808–816.

    Article  PubMed  Google Scholar 

  80. Ding, Y., Ruan, D., Luk, K. D., et al. (2014). The effect of gamma irradiation on the biological properties of intervertebral disc allografts: in vitro and in vivo studies in a beagle model. PLoS One, 9(6), e100304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Gorbet, M. B., & Sefton, M. V. (2005). Endotoxin: the uninvited guest. Biomaterials, 26(34), 6811–6817.

    Article  CAS  PubMed  Google Scholar 

  82. Conconi, M. T., De Coppi, P., Di Liddo, R., et al. (2005). Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transplant International, 18(6), 727–734.

    Article  CAS  PubMed  Google Scholar 

  83. Dettin, M., Conconi, M. T., Gambaretto, R., et al. (2005). Effect of synthetic peptides on osteoblast adhesion. Biomaterials, 26(22), 4507–4515.

    Article  CAS  PubMed  Google Scholar 

  84. Burra, P., Tomat, S., Conconi, M. T., et al. (2004). Acellular liver matrix improves the survival and functions of isolated rat hepatocytes cultured in vitro. International Journal of Molecular Medicine, 14(4), 511–515.

    PubMed  Google Scholar 

  85. Song, J. J., & Ott, H. C. (2011). Organ engineering based on decellularized matrix scaffolds. Trends Molecular Medicine, 17(8), 424–432.

    Article  CAS  Google Scholar 

  86. Sutherland, A. J., Beck, E. C., Dennis, S. C., et al. (2015). Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering. PLoS One, 10(5), e0121966.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Yin, H., Wang, Y., Sun, Z., et al. (2016). Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomaterialia, 33, 96–109.

    Article  CAS  PubMed  Google Scholar 

  88. Hutter, H., Vogel, B. E., Plenefisch, J. D., et al. (2000). Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science, 287(5455), 989–994.

    Article  CAS  PubMed  Google Scholar 

  89. Sutherland, A. J., Converse, G. L., Hopkins, R. A., & Detamore, M. S. (2014). The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Advance Healthcare Materials, 4(1), 29-39. doi:10.1002/adhm.201400165.

  90. Hoshiba, T., Lu, H., Kawazoe, N., et al. (2013). Effects of extracellular matrix proteins in chondrocyte-derived matrices on chondrocyte functions. Biotechnology Progress, 29(5), 1331–1336.

    Article  CAS  PubMed  Google Scholar 

  91. Xu, Y., Xu, G. Y., Tang, C., et al. (2015). Preparation and characterization of bone marrow mesenchymal stem cell-derived extracellular matrix scaffolds. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 103(3), 670–678.

    Article  PubMed  CAS  Google Scholar 

  92. Pei, M., Li, J. T., Shoukry, M., & Zhang, Y. (2011). A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. European Cell & Materials, 22, 333–343 discussion 343.

    Article  CAS  Google Scholar 

  93. Zhou, Y., Zimber, M., Yuan, H., et al. (2016). Effects of human fibroblast-derived extracellular matrix on mesenchymal stem cells. Stem Cell Reviews., 12(5), 560–572.

    Article  CAS  PubMed  Google Scholar 

  94. Wei, F., Qu, C., Song, T., et al. (2012). Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regeneration by elevating telomerase activity. Journal of Cellular Physiology, 227(9), 3216–3224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rowland, C. R., Colucci, L. A., & Guilak, F. (2016). Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds. Biomaterials, 91, 57–72.

    Article  CAS  PubMed  Google Scholar 

  96. Sadr, N., Pippenger, B. E., Scherberich, A., et al. (2012). Enhancing the biological performance of synthetic polymeric materials by decoration with engineered, decellularized extracellular matrix. Biomaterials, 33(20), 5085–5093.

    Article  CAS  PubMed  Google Scholar 

  97. Johnson, C., Sheshadri, P., Ketchum, J. M., et al. (2016). In vitro characterization of design and compressive properties of 3D–biofabricated/decellularized hybrid grafts for tracheal tissue engineering. Journal of the Mechanical Behavior Biomedical Materials, 59, 572–585.

    Article  CAS  Google Scholar 

  98. Jia, S., T. Zhang, Z. Xiong, et al., In vivo evaluation of a novel oriented scaffold-bmsc construct for enhancing full-thickness articular cartilage repair in a rabbit model (2015). PLoS One, 10(12), e0145667.

  99. Mercuri, J. J., Patnaik, S., Dion, G., et al. (2013). Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies. Tissue Engineering. Part A, 19(7–8), 952–966.

    Article  CAS  PubMed  Google Scholar 

  100. Wu, J., Ding, Q., Dutta, A., et al. (2015). An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomaterialia, 16, 49–59.

    Article  CAS  PubMed  Google Scholar 

  101. Agrawal, V., Brown, B. N., Beattie, A. J., et al. (2009). Evidence of innervation following extracellular matrix scaffold mediated remodeling of muscular tissues. Journal of Tissue Engineering and Regenerative Medicine, 3(8), 590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal, 17(Suppl 4), 467–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nakayama, K. H., Batchelder, C. A., Lee, C. I., & Tarantal, A. F. (2011). Renal tissue engineering with decellularized rhesus monkey kidneys: age-related differences. Tissue Engineering. Part A, 17(23–24), 2891–2901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lohan, A., Stoll, C., Albrecht, M., et al. (2013). Human hamstring tenocytes survive when seeded into a decellularized porcine Achilles tendon extracellular matrix. Connect Tissue Researc, 54(4–5), 305–312.

    Google Scholar 

  105. Schulze-Tanzil, G., Al-Sadi, O., Ertel, W., & Lohan, A. (2012). Decellularized tendon extracellular matrix—a valuable approach for tendon reconstruction? Cells, 1(4), 1010–1028.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Haykal, S., Zhou, Y., Marcus, P., et al. (2013). The effect of decellularization of tracheal allografts on leukocyte infiltration and of recellularization on regulatory T cell recruitment. Biomaterials, 34(23), 5821–5832.

    Article  CAS  PubMed  Google Scholar 

  107. Lynch, K., & Pei, M. (2014). Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies. Organogenesis, 10(3), 289–298.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kretlow, J. D., Jin, Y. Q., Liu, W., et al. (2008). Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biology, 9, 60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Maredziak, M., Marycz, K., Tomaszewski, K. A., et al. (2016). The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells. Stem Cells International, 2016, 2152435.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zheng, L., Fan, H. S., Sun, J., et al. (2010). Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: an in vivo study. Journal of Biomedical Materials Research. Part A, 93(2), 783–792.

    CAS  PubMed  Google Scholar 

  111. Bhardwaj, N., & Kundu, S. C. (2012). Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials, 33(10), 2848–2857.

    Article  CAS  PubMed  Google Scholar 

  112. Eslaminejad, M. B., Mirzadeh, H., Mohamadi, Y., & Nickmahzar, A. (2007). Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalcium phosphate-alginate-gelatin hybrid scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 1(6), 417–424.

    Article  CAS  PubMed  Google Scholar 

  113. Mauck, R. L., Yuan, X., & Tuan, R. S. (2006). Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage, 14(2), 179–189.

    Article  CAS  PubMed  Google Scholar 

  114. Chung, C., & Burdick, J. A. (2009). Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Engineering Part A, 15(2), 243–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Han, Y., Wei, Y., Wang, S., & Song, Y. (2010). Cartilage regeneration using adipose-derived stem cells and the controlled-released hybrid microspheres. Joint Bone Spine, 77(1), 27–31.

    Article  CAS  PubMed  Google Scholar 

  116. Fan, H., Hu, Y., Zhang, C., et al. (2006). Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials, 27(26), 4573–4580.

    Article  CAS  PubMed  Google Scholar 

  117. Rackwitz, L., Djouad, F., Janjanin, S., et al. (2014). Functional cartilage repair capacity of de-differentiated, chondrocyte- and mesenchymal stem cell-laden hydrogels in vitro. Osteoarthritis Cartilage, 22(8), 1148–1157.

    Article  CAS  PubMed  Google Scholar 

  118. Chimal-Monroy, J., & Diaz de Leon, L. (1999). Expression of N-cadherin, N-CAM, fibronectin and tenascin is stimulated by TGF-beta1, beta2, beta3 and beta5 during the formation of precartilage condensations. International Journal of Developmental Biology, 43(1), 59–67.

    CAS  PubMed  Google Scholar 

  119. Jian, H., Shen, X., Liu, I., et al. (2006). Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes & Development, 20(6), 666–674.

    Article  CAS  Google Scholar 

  120. O'Sullivan, J., D'Arcy, S., Barry, F. P., et al. (2011). Mesenchymal chondroprogenitor cell origin and therapeutic potential. Stem Cell Research & Theraphy, 2(1), 8.

    Article  CAS  Google Scholar 

  121. Murphy, M. B., Moncivais, K., & Caplan, A. I. (2013). Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Experimental & Molecular Medicine, 45, e54.

    Article  CAS  Google Scholar 

  122. Cameron, T. L., Belluoccio, D., Farlie, P. G., et al. (2009). Global comparative transcriptome analysis of cartilage formation in vivo. BMC Developmental Biology, 9, 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    Article  CAS  PubMed  Google Scholar 

  124. Krampera, M., Pizzolo, G., Aprili, G., & Franchini, M. (2006). Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone, 39(4), 678–683.

    Article  CAS  PubMed  Google Scholar 

  125. Arinzeh, T. L. (2005). Mesenchymal stem cells for bone repair: preclinical studies and potential orthopedic applications. Foot and Ankle Clinics, 10(4), 651–665 viii.

    Article  PubMed  Google Scholar 

  126. Cornelissen, A. S., Maijenburg M. W., Nolte M. A., & Voermans C. (2015) Organ-specific migration of mesenchymal stromal cells: Who, when, where and why? Immunol Lett, 168(2), 159-169.

  127. Bocker, W., Docheva, D., Prall, W. C., et al. (2008). IKK-2 is required for TNF-alpha-induced invasion and proliferation of human mesenchymal stem cells. Journal Molecular Medicine (Berl), 86(10), 1183–1192.

    Article  CAS  Google Scholar 

  128. Bobis, S., Jarocha, D., & Majka, M. (2006). Mesenchymal stem cells: characteristics and clinical applications. Folia Histochemica et Cytobiologica, 44(4), 215–230.

    CAS  PubMed  Google Scholar 

  129. Ozawa, K., Sato, K., Oh, I., et al. (2008). Cell and gene therapy using mesenchymal stem cells (MSCs). Journal of Autoimmunity, 30(3), 121–127.

    Article  CAS  PubMed  Google Scholar 

  130. Kotobuki, N., Katsube, Y., Katou, Y., et al. (2008). In vivo survival and osteogenic differentiation of allogeneic rat bone marrow mesenchymal stem cells (MSCs). Cell Transplantation, 17(6), 705–712.

    Article  PubMed  Google Scholar 

  131. Cipriani, P., Di Benedetto, P., Liakouli, V., et al. (2013). Mesenchymal stem cells (MSCs) from scleroderma patients (SSc) preserve their immunomodulatory properties although senescent and normally induce T regulatory cells (Tregs) with a functional phenotype: implications for cellular-based therapy. Clinical and Experimental Immunology, 173(2), 195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fazekasova, H., Lechler, R., Langford, K., & Lombardi, G. (2011). Placenta-derived MSCs are partially immunogenic and less immunomodulatory than bone marrow-derived MSCs. Journal of Tissue Engineering and Regenerative Medicine, 5(9), 684–694.

    Article  CAS  PubMed  Google Scholar 

  133. Glenn, J. D., & Whartenby, K. A. (2014). Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World Journal of Stem Cells, 6(5), 526–539.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Paebst, F., Piehler, D., Brehm, W., et al. (2014). Comparative immunophenotyping of equine multipotent mesenchymal stromal cells: an approach toward a standardized definition. Cytometry. Part A, 85(8), 678–687.

    Article  CAS  Google Scholar 

  135. Carrade, D. D., Affolter, V. K., Outerbridge, C. A., et al. (2011). Intradermal injections of equine allogeneic umbilical cord-derived mesenchymal stem cells are well tolerated and do not elicit immediate or delayed hypersensitivity reactions. Cytotherapy, 13(10), 1180–1192.

    Article  PubMed  Google Scholar 

  136. Pigott, J. H., Ishihara, A., Wellman, M. L., et al. (2013). Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Veterinary Immunology Immunopathology, 156(1–2), 99–106.

    Article  CAS  PubMed  Google Scholar 

  137. Chen, K., Wang, D., Du, W. T., et al. (2010). Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clinical Immunology, 135(3), 448–458.

    Article  CAS  PubMed  Google Scholar 

  138. Jui, H. Y., Lin, C. H., Hsu, W. T., et al. (2012). Autologous mesenchymal stem cells prevent transplant arteriosclerosis by enhancing local expression of interleukin-10, interferon-gamma, and indoleamine 2,3-dioxygenase. Cell Transplantation, 21(5), 971–984.

    Article  PubMed  Google Scholar 

  139. Yoo, K. H., Jang, I. K., Lee, M. W., et al. (2009). Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunology, 259(2), 150–156.

    Article  CAS  Google Scholar 

  140. Montespan, F., Deschaseaux, F., Sensebe, L., et al. (2014). Osteodifferentiated mesenchymal stem cells from bone marrow and adipose tissue express HLA-G and display immunomodulatory properties in HLA-mismatched settings: implications in bone repair therapy. Journal of Immunology Research, 2014, 230346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Chung, D. J., Choi, C. B., Lee, S. H., et al. (2009). Intraarterially delivered human umbilical cord blood-derived mesenchymal stem cells in canine cerebral ischemia. Journal of Neuroscience Research, 87(16), 3554–3567.

    Article  CAS  PubMed  Google Scholar 

  142. Dharmasaroja, P. (2009). Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke. Journal of Clinical Neuroscience, 16(1), 12–20.

    Article  PubMed  Google Scholar 

  143. Noel, D., Djouad, F., Bouffi, C., et al. (2007). Multipotent mesenchymal stromal cells and immune tolerance. Leukemia & Lymphoma, 48(7), 1283–1289.

    Article  CAS  Google Scholar 

  144. Carrade, D. D., Lame, M. W., Kent, M. S., et al. (2012). Comparative analysis of the immunomodulatory properties of equine adult-derived mesenchymal stem cells(). Cell Medicine, 4(1), 1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Carrade Holt, D. D., Wood, J. A., Granick, J. L., et al. (2014). Equine mesenchymal stem cells inhibit T cell proliferation through different mechanisms depending on tissue source. Stem Cells and Development, 23(11), 1258–1265.

    Article  CAS  PubMed  Google Scholar 

  146. Gore, A. V., Bible, L. E., Song, K., et al. (2015). Mesenchymal stem cells increase T-regulatory cells and improve healing following trauma and hemorrhagic shock. Journal of Trauma and Acute Care Surgery, 79(1), 48–52.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Duffy, M. M., Ritter, T., Ceredig, R., & Griffin, M. D. (2011). Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Research and Ther, 2(4), 34.

    Article  CAS  Google Scholar 

  148. Kang, J. W., Koo, H. C., Hwang, S. Y., et al. (2012). Immunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells. Journal of Veterinary Science, 13(1), 23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ryan, J. M., Barry, F. P., Murphy, J. M., & Mahon, B. P. (2005). Mesenchymal stem cells avoid allogeneic rejection. Journal of Inflammation (Lond), 2, 8.

    Article  CAS  Google Scholar 

  150. Zhang, Y., Li, J., Davis, M. E., & Pei, M. (2015). Delineation of in vitro chondrogenesis of human synovial stem cells following preconditioning using decellularized matrix. Acta Biomaterialia, 20, 39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dickhut, A., Pelttari, K., Janicki, P., et al. (2009). Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. Journal of Cellular Physiology, 219(1), 219–226.

    Article  CAS  PubMed  Google Scholar 

  152. Burk, J., I. Ribitsch, C. Gittel, et al., Growth and differentiation characteristics of equine mesenchymal stromal cells derived from different sources (2013). Veterinary Journal, 195(1), 98–106.

  153. Fan, J., Gong, Y., Ren, L., et al. (2010). In vitro engineered cartilage using synovium-derived mesenchymal stem cells with injectable gellan hydrogels. Acta Biomaterialia, 6(3), 1178–1185.

    Article  CAS  PubMed  Google Scholar 

  154. Fan, J., Ren, L., Liang, R., et al. (2010). Chondrogenesis of synovium-derived mesenchymal stem cells in photopolymerizing hydrogel scaffolds. Journal of Biomaterials Science. Polymer Edition, 21(12), 1653–1667.

    Article  CAS  PubMed  Google Scholar 

  155. Luo, L., Eswaramoorthy, R., Mulhall, K. J., & Kelly, D. J. (2015). Decellularization of porcine articular cartilage explants and their subsequent repopulation with human chondroprogenitor cells. Journal of Mechanical Behavior Biomedical Materials, 55, 21–31.

    Article  CAS  Google Scholar 

  156. Bautista, C. A., Park, H. J., Mazur, C. M., et al. (2016). Effects of chondroitinase abc-mediated proteoglycan digestion on decellularization and recellularization of articular cartilage. PLoS One, 11(7), e0158976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Meretoja, V. V., Dahlin, R. L., Kasper, F. K., & Mikos, A. G. (2012). Enhanced chondrogenesis in co-cultures with articular chondrocytes and mesenchymal stem cells. Biomaterials, 33(27), 6362–6369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Farrell, E., Both, S. K., Odorfer, K. I., et al. (2011). In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskeletal Disorders, 12, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Levorson, E. J., Hu, O., Mountziaris, P. M., et al. (2013). Cell-derived polymer/extracellular matrix composite scaffolds for cartilage regeneration, Part 2: construct devitalization and determination of chondroinductive capacity. Tissue Engineering. Part C, Methods, 20(4), 358–372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Tsai, T. L., Nelson, B. C., Anderson, P. A., et al. (2014). Intervertebral disc and stem cells cocultured in biomimetic extracellular matrix stimulated by cyclic compression in perfusion bioreactor. Spine Journal., 14(9), 2127–2140.

    Article  PubMed  Google Scholar 

  161. Holzwarth, C., Vaegler, M., Gieseke, F., et al. (2010). Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biology, 11, 11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. D'Ippolito, G., Diabira, S., Howard, G. A., et al. (2006). Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone, 39(3), 513–522.

    Article  PubMed  CAS  Google Scholar 

  163. Grayson, W. L., Zhao, F., Bunnell, B., & Ma, T. (2007). Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 358(3), 948–953.

    Article  CAS  PubMed  Google Scholar 

  164. Fermor, B., Christensen, S. E., Youn, I., et al. (2007). Oxygen, nitric oxide and articular cartilage. European Cell Materials, 13, 56–65 discussion 65.

    Article  CAS  Google Scholar 

  165. Kanichai, M., Ferguson, D., Prendergast, P. J., & Campbell, V. A. (2008). Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha. Journal of Cellular Physiology, 216(3), 708–715.

    Article  CAS  PubMed  Google Scholar 

  166. Loboda, A., Jozkowicz, A., & Dulak, J. (2010). HIF-1 and HIF-2 transcription factors--similar but not identical. Molecules and Cells, 29(5), 435–442.

    Article  CAS  PubMed  Google Scholar 

  167. Adesida, A. B., Mulet-Sierra, A., & Jomha, N. M. (2012). Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Research & Theraphy, 3(2), 9.

    Article  CAS  Google Scholar 

  168. Duval, E., Bauge, C., Andriamanalijaona, R., et al. (2012). Molecular mechanism of hypoxia-induced chondrogenesis and its application in in vivo cartilage tissue engineering. Biomaterials, 33(26), 6042–6051.

    Article  CAS  PubMed  Google Scholar 

  169. Meretoja, V. V., Dahlin, R. L., Wright, S., et al. (2013). The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds. Biomaterials, 34(17), 4266–4273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Xu, Y., Malladi, P., Chiou, M., et al. (2007). In vitro expansion of adipose-derived adult stromal cells in hypoxia enhances early chondrogenesis. Tissue Engineering, 13(12), 2981–2993.

    Article  CAS  PubMed  Google Scholar 

  171. Ceradini, D. J., & Gurtner, G. C. (2005). Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends in Cardiovascular Medicine, 15(2), 57–63.

    Article  CAS  PubMed  Google Scholar 

  172. Rafii, S., & Lyden, D. (2003). Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. National Medical, 9(6), 702–712.

    Article  CAS  Google Scholar 

  173. Hillebrandt, K., Polenz, D., Butter, A., et al. (2015). Procedure for decellularization of rat livers in an oscillating-pressure perfusion device. Journal of Visualized Experiments, 102, e53029.

    Google Scholar 

  174. Partington, L., Mordan, N. J., Mason, C., et al. (2013). Biochemical changes caused by decellularization may compromise mechanical integrity of tracheal scaffolds. Acta Biomaterialia, 9(2), 5251–5261.

    Article  CAS  PubMed  Google Scholar 

  175. Shaari, C. M., Farber, D., Brandwein, M. S., et al. (1998). Characterizing the antigenic profile of the human trachea: implications for tracheal transplantation. Head & Neck, 20(6), 522–527.

    Article  CAS  Google Scholar 

  176. Ye, K., Felimban, R., Moulton, S. E., et al. (2013). Bioengineering of articular cartilage: past, present and future. Regenerative Medicine, 8(3), 333–349.

    Article  CAS  PubMed  Google Scholar 

  177. Hammer, N., Huster, D., Boldt, A., et al. (2016). A preliminary technical study on sodium dodecyl sulfate-induced changes of the nano-structural and macro-mechanical properties in human iliotibial tract specimens. Journal of Mechanical Behavior Biomedical Materials, 61, 164–173.

    Article  CAS  Google Scholar 

  178. Urist, M. R. (1965). Bone: formation by autoinduction. Science, 150(3698), 893–899.

    Article  CAS  PubMed  Google Scholar 

  179. Kajbafzadeh, A. M., Sabetkish, S., Sabetkish, N., et al. (2015). In-vivo trachea regeneration: fabrication of a tissue-engineered trachea in nude mice using the body as a natural bioreactor. Surgery Today, 45(8), 1040–1048.

    Article  CAS  PubMed  Google Scholar 

  180. Elsaesser, A. F., Bermueller, C., Schwarz, S., et al. (2014). In vitro cytotoxicity and in vivo effects of a decellularized xenogeneic collagen scaffold in nasal cartilage repair. Tissue Engineering Part A, 20(11–12), 1668–1678.

    Article  CAS  PubMed  Google Scholar 

  181. Batioglu-Karaaltin, A., Karaaltin, M. V., Ovali, E., et al. (2015). In vivo tissue-engineered allogenic trachea transplantation in rabbits: a preliminary report. Stem Cell Reviews, 11(2), 347–356.

    Article  CAS  PubMed  Google Scholar 

  182. Macchiarini, P., Jungebluth, P., Go, T., et al. (2008). Clinical transplantation of a tissue-engineered airway. Lancet, 372(9655), 2023–2030.

    Article  PubMed  Google Scholar 

  183. Gonfiotti, A., Jaus, M. O., Barale, D., et al. (2014). The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet, 383(9913), 238–244.

    Article  PubMed  Google Scholar 

  184. Cheng, N. C., Estes, B. T., Awad, H. A., & Guilak, F. (2009). Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Engineering. Part A, 15(2), 231–241.

    Article  CAS  PubMed  Google Scholar 

  185. Yang, B., Zhang, Y., Zhou, L., et al. (2010). Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Engineering. Part C, Methods, 16(5), 1201–1211.

  186. Gong, Y. Y., Xue, J. X., Zhang, W. J., et al. (2011). A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials, 32(9), 2265–2273.

  187. Azhim, A., Ono, T., Fukui, Y., et al. (2013). Preparation of decellularized meniscal scaffolds using sonication treatment for tissue engineering. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2013, 6953–6956.

  188. Petersen, T. H., Calle, E. A., Colehour, M. B., & Niklason, L. E. (2012). Matrix composition and mechanics of decellularized lung scaffolds. Cells, Tissues, Organs, 195(3), 222–231.

  189. Schwarz, S., Elsaesser, A. F., Koerber, L., et al. (2015). Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function. Journal of Tissue Engineering and Regenerative Medicine, 9(12), E239–E251.

  190. Giraldo-Gomez, D. M., Leon-Mancilla, B., Del Prado-Audelo, M. L., et al. (2016). Trypsin as enhancement in cyclical tracheal decellularization: morphological and biophysical characterization. Materials Science & Engineering, C: Materials for Biological Applications, 59, 930–937.

  191. Guo, L., Qu, J., Zheng, C., et al. (2015). Preparation and characterization of a novel decellularized fibrocartilage “book” scaffold for use in tissue engineering. PloS One, 10(12), e0144240.

  192. Pinheiro, A., Cooley, A., Liao, J., et al. (2016). Comparison of natural crosslinking agents for the stabilization of xenogenic articular cartilage. Journal of Orthopaedic Research, 34(6), 1037–1046.

  193. Kato, T., Miyaki, S., Ishitobi, H., et al. (2014). Exosomes from IL-1beta stimulated synovial fibroblasts induce osteoarthritic changes in particular chondrocytes. Arthritis Research & Therapy, 16(4), R163.

Download references

Acknowledgments

None.

Authors Contribution

GST and ZH wrote the manuscript and arranged tables and figs. OG revised the manuscript carefully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gundula Schulze-Tanzil.

Ethics declarations

Funding

All authors received no funding for this work.

Conflict of Interest

All authors declare that there exists no potential conflict of interest.

Electronic supplementary material

ESM 1

(DOC 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Godkin, O. & Schulze-Tanzil, G. The Challenge in Using Mesenchymal Stromal Cells for Recellularization of Decellularized Cartilage. Stem Cell Rev and Rep 13, 50–67 (2017). https://doi.org/10.1007/s12015-016-9699-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9699-8

Keywords

Navigation