Skip to main content

Advertisement

Log in

Comparison of the efficacy of the mouse hepatic and renal antioxidant systems against inflammation-induced oxidative stress

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study was conducted to compare the efficacy of the mouse hepatic and renal antioxidant systems against inflammation-induced oxidative stress. Increased Il-1 and Il-6 expressions, markers of inflammation, were represented by inflammation models in mouse liver and kidney tissues injected intraperitoneally with LPS. After establishing the model, the GSH level and the GSH/GSSG ratio, which are oxidative stress markers, were investigated in both tissues treated with LPS and the control group. The expression of Trx1, TrxR, and Txnip genes increased in the liver tissues of LPS-treated mice. In the kidney tissue, while Trx1 expression decreased, no change was observed in TrxR1 expression, and Txnip expression increased. In the kidneys, TRXR1 and GR activities decreased, whereas GPx activity increased. In both tissues, the TRXR1 protein expression decreased significantly, while TXNIP expression increased. In conclusion, different behaviors of antioxidant system members were observed during acute inflammation in both tissues. Additionally, it can be said that the kidney tissue is more sensitive and takes earlier measures than the liver tissue against cellular damage caused by inflammation and inflammation-induced oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data created and analyzed during this study were added to the additional information files.

References

  1. Wynn, T. A., & Vanella, K. M. (2016). Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 44(3), 450–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jeljeli, M., Riccio, L. G. C., Doridot, L., Chêne, C., Nicco, C., Chouzenoux, S., Deletang, Q., Allanore, Y., Kavian, N., & Batteux, F. (2019). Trained immunity modulates inflammation-induced fibrosis. Nat Commun, 10(1), 5670.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wilhelmsen, K., Farrar, K., Tran, A., Khakpour, S., Sundar, S., Prakash, A., Wang, J., Gray, N. S., & Hellman, J. (2015). Extracellular signal-regulated kinase 5 promotes acute cellular and systemic inflammation. Sci Signal, 8(391), ra86.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ying, Y., Jiang, C., Zhang, M., Ge, S., & Wang, X. (2019). Phloretin protects against cardiac damage and remodeling via restoring SIRT1 and anti-inflammatory effects in the streptozotocin-induced diabetic mouse model. Aging, 11(9), 2822–2835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kolaczkowska, E. (2016). The older the faster: aged neutrophils in inflammation. Blood, 128(19), 2280–2282.

    Article  CAS  PubMed  Google Scholar 

  6. Luo, B., Wang, J., Liu, Z., Shen, Z., Shi, R., Liu, Y., Liu, Y., Jiang, M., Wu, Y., & Zhang, Z. (2016). Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution. Nat Commun, 7, 12177.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Amor, S., Puentes, F., Baker, D., & Van der Valk, P. (2010). Inflammation in neurodegenerative diseases. Immunology, 129, 154–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich, G. M. (2019). Chronic inflammation in the etiology of disease across the life span. Nat Med, 12, 1822–1832.

    Article  Google Scholar 

  9. Greten, F. R., & Grivennikov, S. I. (2019). Inflammation and cancer: triggers, mechanisms, and consequences. Immunity, 51(1), 27–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tremellen, K. (2008). Oxidative stress and male infertility–a clinical perspective. Hum Reprod Update, 14(3), 243–58.

    Article  CAS  PubMed  Google Scholar 

  11. Sena, L. A., & Chandel, N. S. (2012). Physiological roles of mitochondrial reactive oxygen species. Mol Cell, 48(2), 158–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Andrisic, L., Dudzik, D., Barbas, C., Milkovic, L., Grune, T., & Zarkovic, N. (2018). Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. Redox Biol, 14, 47–58.

    Article  CAS  PubMed  Google Scholar 

  13. Förstermann, U. (2008). Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med, 5(6), 338–49.

    Article  PubMed  Google Scholar 

  14. Budak, H., Gonul, N., Ceylan, H., & Kocpinar, E. F. (2014). Impact of long-term Fe3+ toxicity on expression of glutathione system in rat liver. Environ Toxicol Pharmacol, 37(1), 365–70.

    Article  CAS  PubMed  Google Scholar 

  15. Robaczewska, J., Kedziora-Kornatowska, K., Kozakiewicz, M., Zary-Sikorska, E., Pawluk, H., Pawliszak, W., & Kedziora, J. (2016). Role of glutathione metabolism and glutathione-related antioxidant defense systems in hypertension. J Physiol Pharmacol, 67(3), 331–7.

    CAS  PubMed  Google Scholar 

  16. Prigge, J. R., Coppo, L., Martin, S. S., Ogata, F., Miller, C. G., Bruschwein, M. D., Orlicky, D. J., Shearn, C. T., Kundert, J. A., Lytchier, J., Herr, A. E., Mattsson, Å., Taylor, M. P., Gustafsson, T. N., Arnér, E. S. J., Holmgren, A., & Schmidt, E. E. (2017). Hepatocyte hyperproliferation upon liver-specific co-disruption of Thioredoxin-1, Thioredoxin Reductase-1, and Glutathione Reductase. Cell Rep, 19(13), 2771–2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chong, C. R., Chan, W. P. A., Nguyen, T. H., Liu, S., Procter, N. E. K., Ngo, D. T., Sverdlov, A. L., Chirkov, Y. Y., & Horowitz, J. D. (2014). Thioredoxin-interacting protein: pathophysiology and emerging pharmacotherapeutics in cardiovascular disease and diabetes. Cardiovasc Drugs Ther, 28(4), 347–60.

    Article  CAS  PubMed  Google Scholar 

  18. Lundberg, M., Mattsson, Å., Reiser, K., Holmgren, A., & Curbo, S. (2019). Inhibition of the thioredoxin system by PX-12 (1-methylpropyl 2-imidazolyl disulfide) impedes HIV-1 infection in TZM-bl cells. Sci Rep, 9(1), 5656.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Silva-Adaya, D., Gonsebatt, M. E., & Guevara, J. (2014). Thioredoxin system regulation in the central nervous system: experimental models and clinical evidence. Oxid Med Cell Longev, 2014, 590808.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang, J., Li, X., Han, X., Liu, R., & Fang, J. (2017). Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci, 38(9), 794–808.

    Article  CAS  PubMed  Google Scholar 

  21. Wu, X. L., Li, X., Li, Y., Kong, L. P., Fang, J. L., Zhou, X. S., Li, M., Jia, J. J., & Bai, J. (2016). The overexpression of Thioredoxin-1 suppressing inflammation induced by methamphetamine in spleen. Drug Alcohol Depend, 159, 66–71.

    Article  CAS  PubMed  Google Scholar 

  22. Hamada, Y., Fujii, H., Kitazawa, R., Yodoi, J., Kitazawa, S., & Fukagawa, M. (2009). Thioredoxin-1 overexpression in transgenic mice attenuates streptozotocin-induced diabetic osteopenia: a novel role of oxidative stress and therapeutic implications. Bone, 44(5), 936–41.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, Z., Jing, Y., Yin, J., Mu, J., Yao, T., & Gao, L. (2013). Downregulation of thioredoxin reductase 1 expression in the substantia nigra pars compacta of Parkinson’s disease mice. Neural Regen Res, 8(35), 3275–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rusetskaya, N. Y., Fedotov, I. V., Koftina, V. A., & Borodulin, V. B. (2019). [Selenium compounds in redox regulation of inflammation and apoptosis]. Biomed Khim, 65(3), 165–179.

    Article  CAS  PubMed  Google Scholar 

  25. Chiang, J. (2014). Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms. Rootstown, OH, USA: Northeast Ohio Medical University.

    Google Scholar 

  26. Kubes, P., & Jenne, C. (2018). Immune responses in the liver. Annu Rev Immunol, 36, 247–277.

    Article  CAS  PubMed  Google Scholar 

  27. Robinson, M. W., Harmon, C., & O’Farrelly, C. (2016). Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol, 3, 267–76.

    Article  Google Scholar 

  28. Sönmez Aydın, F., Hukkamlı, B., & Budak, H. (2021). Coaction of hepatic thioredoxin and glutathione systems in iron overload-induced oxidative stress. J Biochem Mol Toxicol, 35(4), e22704.

    Article  PubMed  Google Scholar 

  29. Ellman, G. L. (1959). Tissue sulfhydryl groups. Arch Biochem Biophys, 82(1), 70–7.

    Article  CAS  PubMed  Google Scholar 

  30. Ceylan, H., Budak, H., Kocpinar, E. F., Baltaci, N. G., & Erdogan, O. (2019). Examining the link between dose-dependent dietary iron intake and Alzheimer’s disease through oxidative stress in the rat cortex. J Trace Elem Med Biol, 56, 198–206.

    Article  CAS  PubMed  Google Scholar 

  31. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402–8.

    Article  CAS  PubMed  Google Scholar 

  32. Ozgencli, I., Kilic, D., Guller, U., Ciftci, M., Kufrevioglu, O. I., & Budak, H. (2018). A comparison of the inhibitory effects of anti-cancer drugs on thioredoxin reductase and glutathione s-transferase in rat liver. Anticancer Agents Med Chem, 18(14), 2053–2061.

    Article  CAS  PubMed  Google Scholar 

  33. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem, 72, 248–54.

    Article  CAS  Google Scholar 

  34. Mahmood, T., & Yang, P. C. (2012). Western blot: technique, theory, and trouble shooting. N Am J Med Scİ, 4(9), 429–34.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Güller, P., Budak, H., Şişecioğlu, M., & Çiftci, M. (2020). An in vivo and in vitro comparison of the effects of amoxicillin, gentamicin, and cefazolin sodium antibiotics on the mouse hepatic and renal glutathione reductase enzyme. J Biochem Mol Toxicol, 34(7), e22496.

    Article  PubMed  Google Scholar 

  36. Ni, J., Zhao, Y., Su, J., Liu, Z., Fang, S., Li, L., Deng, J., & Fan, G. (2020). Toddalolactone protects lipopolysaccharide-induced sepsis and attenuates lipopolysaccharide-induced inflammatory response by modulating HMGB1-NF-κB translocation. Front Pharmacol, 11, 109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ahmed, M. B., Islam, S. U. I., & Lee, Y. S. (2020). Decursin negatively regulates LPS-induced upregulation of the TLR4 and JNK signaling stimulated by the expression of PRP4 in vitro. Anim Cells Syst, 24(1), 44–52.

    Article  CAS  Google Scholar 

  38. Bieghs, V., & Trautwein, C. (2013). The innate immune response during liver inflammation and metabolic disease. Trends Immunol, 34(9), 446–52.

    Article  CAS  PubMed  Google Scholar 

  39. Ciliberto, G., Arcone, R., Wagner, E. F., & Rüther, U. (1987). Inducible and tissue-specific expression of human C-reactive protein in transgenic mice. EMBO J, 6(13), 4017–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rose, S., Melnyk, S., Pavliv, O., Bai, S., Nick, T. G., Frye, R. E., & James, S. J. (2012). Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry, 2(7), e134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nguyen, S., Castellanos, K. A., Abraham, A., & Ferrini, M. G. (2021). Reduction of oxidative stress markers in the corpora cavernosa and media of penile dorsal artery in middle-aged rats treated with COMP-4. Int J Impot Res, 33(1), 67–74.

    Article  CAS  PubMed  Google Scholar 

  42. Singh, M., Hamid, A. A., Maurya, A. K., Prakash, O., Khan, F., Kumar, A., Aiyelaagbe, O. O., Negi, A. S., & Bawankule, D. U. (2014). Synthesis of diosgenin analogues as potential anti-inflammatory agents. J Steroid Biochem Mol Biol, 143, 323–33.

    Article  CAS  PubMed  Google Scholar 

  43. Clinton, S. K., Fleet, J. C., Loppnow, H., Salomon, R. N., Clark, B. D., Cannon, J. G., Shaw, A. R., Dinarello, C. A., & Libby, P. (1991). Interleukin-1 gene expression in rabbit vascular tissue in vivo. Am J Pathol, 138(4), 1005–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Starr, M. E., Evers, B. M., & Saito, H. (2009). Age-associated increase in cytokine production during systemic inflammation: adipose tissue as a major source of IL-6. J Gerontol A Biol Sci Med Sci, 64(7), 723–30.

    Article  PubMed  Google Scholar 

  45. Li, L., Ma, P., Liu, Y., Huang, C., O, W., Tang, F., & Zhang, J. V. (2013). Intermedin attenuates LPS-induced inflammation in the rat testis. PLoS One, 8(6), e65278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zitka, O., Skalickova, S., Gumulec, J., Masarik, M., Adam, V., Hubalek, J., Trnkova, L., Kruseova, J., Eckschlager, T., & Kizek, R. (2012). Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett, 4(6), 1247–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Budak, H., Kocpinar, E. F., Gonul, N., Ceylan, H., Erol, H. S., & Erdogan, O. (2014). Stimulation of gene expression and activity of antioxidant-related enzyme in Sprague Dawley rat kidney induced by long-term iron toxicity. Comp Biochem Physiol C Toxicol Pharmacol, 166, 44–50.

    Article  CAS  PubMed  Google Scholar 

  48. Suleyman, H., Dursun, H., Bilici, M., Cadirci, E., Halici, Z., Gulaboglu, M., & Albayrak, F. (2009). Relation of adrenergic receptors, which have roles in gastroprotective and anti-inflammatory effect of adrenal gland hormones, with cyclooxygenase enzyme levels in rats. J Physiol Pharmacol, 60(4), 129–34.

    CAS  PubMed  Google Scholar 

  49. Mahmood, D. F. D., Abderrazak, A., El Hadri, K., Simmet, T., & Rouis, M. (2013). The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal, 19(11), 1266–303.

    Article  CAS  PubMed  Google Scholar 

  50. Arnér, E. S. J., & Holmgren, A. (2006). The thioredoxin system in cancer. Semin Cancer Biol, 16(6), 420–6.

    Article  PubMed  Google Scholar 

  51. Bian, M., Fan, R., Zhao, S., & Liu, W. (2019). Targeting the thioredoxin system as a strategy for cancer therapy. J Med Chem, 62(16), 7309–7321.

    Article  CAS  PubMed  Google Scholar 

  52. Lu, J., & Holmgren, A. (2014). The thioredoxin antioxidant system. Free Radic Biol Med, 66, 75–87.

    Article  CAS  PubMed  Google Scholar 

  53. Watson, W. H., Yang, X., Choi, Y. E., Jones, D. P., & Kehrer, J. P. (2004). Thioredoxin and its role in toxicology. Toxicol Sci, 78(1), 3–14.

    Article  CAS  PubMed  Google Scholar 

  54. Matsui, M., Oshima, M., Oshima, H., Takaku, K., Maruyama, T., Yodoi, J., & Taketo, M. M. (1996). Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol, 178(1), 179–85.

    Article  CAS  PubMed  Google Scholar 

  55. Nonn, L., Williams, R. R., Erickson, R. P., & Powis, G. (2003). The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol Cell Biol, 23(3), 916–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee, S., Kim, S. M., & Lee, R. T. (2013). Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal, 18(10), 1165–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kamimoto, Y., Sugiyama, T., Kihira, T., Zhang, L., Murabayashi, N., Umekawa, T., Nagao, K., Ma, N., Toyoda, N., Yodoi, J., & Sagawa, N. (2010). Transgenic mice overproducing human thioredoxin-1, an antioxidative and anti-apoptotic protein, prevents diabetic embryopathy. Diabetologia, 53(9), 2046–55.

    Article  CAS  PubMed  Google Scholar 

  58. Salmon AB, Flores LC, Li Y, Remmen HV, Richardson A, Ikeno Y. (2012). Reduction of glucose intolerance with high-fat feeding is associated with anti-inflammatory effects of thioredoxin 1 overexpression in mice. Pathobiol Aging Age Relat Dis, 2.

  59. Okuyama, H., Nakamura, H., Shimahara, Y., Araya, S., Kawada, N., Yamaoka, Y., & Yodoi, J. (2003). Overexpression of thioredoxin prevents acute hepatitis caused by thioacetamide or lipopolysaccharide in mice. Hepatology, 37(5), 1015–25.

    Article  CAS  PubMed  Google Scholar 

  60. Okuyama, H., Nakamura, H., Shimahara, Y., Uyama, N., Kwon, Y. W., Kawada, N., Yamaoka, Y., & Yodoi, J. (2005). Overexpression of thioredoxin prevents thioacetamide-induced hepatic fibrosis in mice. J Hepatol, 42(1), 117–23.

    Article  CAS  PubMed  Google Scholar 

  61. Shalev, A. (2014). Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic β-cell. Mol Endocrinol, 28(8), 1211–20.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Alhawiti, N. M., Mahri, S. A., Aziz, M. A., Malik, S. S., & Mohammad, S. (2017). TXNIP in metabolic regulation: physiological role and therapeutic outlook. Curr Drug Targets, 18(9), 1095–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jia, J., Geng, W., Wang, Z., Chen, L., & Zeng, X. (2019). The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol, 84(3), 453–470.

    Article  CAS  PubMed  Google Scholar 

  64. Becker, K., Gromer, S., Schirmer, R. H., & Müller, S. (2000). Thioredoxin reductase as a pathophysiological factor and drug target. Eur J Biochem, 267(20), 6118–25.

    Article  CAS  PubMed  Google Scholar 

  65. Grogan, T. M., Fenoglio-Prieser, C., Zeheb, R., Bellamy, W., Frutiger, Y., Vela, E., Stemmerman, G., Macdonald, J., Richter, L., Gallegos, A., & Powis, G. (2000). Thioredoxin, a putative oncogene product, is overexpressed in gastric carcinoma and associated with increased proliferation and increased cell survival. Hum Pathol, 31(4), 475–81.

    Article  CAS  PubMed  Google Scholar 

  66. Kakolyris, S., Giatromanolaki, A., Koukourakis, M., Powis, G., Souglakos, J., Sivridis, E., Georgoulias, V., Gatter, K. C., & Harris, A. L. (2001). Thioredoxin expression is associated with lymph node status and prognosis in early operable non-small cell lung cancer. Clin Cancer Res, 7(10), 3087–91.

    CAS  PubMed  Google Scholar 

  67. Cadenas, C., Franckenstein, D., Schmidt, M., Gehrmann, M., Hermes, M., Geppert, B., Schormann, W., Maccoux, L. J., Schug, M., Schumann, A., Wilhelm, C., Freis, E., Ickstadt, K., Rahnenführer, J., Baumbach, J. I., Sickmann, A., & Hengstler, J. G. (2010). Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer. Breast Cancer Res, 12(3), R44.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bhatia, M., Lovitt, C. J., Raninga, P. V., Avery, V. M., Di Trapani, G., & Tonissen, K. F. (2016). Expression of the thioredoxin system in an in vivo-like cancer cell environment upon auranofin treatment. Eur J Cell Biol, 95(10), 378–388.

    Article  CAS  PubMed  Google Scholar 

  69. Lei, H., Wang, G., Zhang, J., & Han, Q. (2018). Inhibiting TrxR suppresses liver cancer by inducing apoptosis and eliciting potent antitumor immunity. Oncol Rep, 40(6), 3447–3457.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou, J., & Chng, W. J. (2012). Roles of thioredoxin binding protein (TXNIP) in oxidative stress, apoptosis and cancer. Mitochondrion, 13(3), 163–9.

    Article  PubMed  Google Scholar 

  71. Sheth, S. S., Bodnar, J. S., Ghazalpour, A., Thipphavong, C. K., Tsutsumi, S., Tward, A. D., Demant, P., Kodama, T., Aburatani, H., & Lusis, A. J. (2006). Hepatocellular carcinoma in Txnip-deficient mice. Oncogene, 25(25), 3528–36.

    Article  CAS  PubMed  Google Scholar 

  72. Minn, A. H., Hafele, C., & Shalev, A. (2005). Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology, 146(5), 2397–405.

    Article  CAS  PubMed  Google Scholar 

  73. Alhawiti, N. M., Al Mahri, S., Aziz, M. A., Malik, S. S., & Mohammad, S. (2017). TXNIP in metabolic regulation: physiological role and therapeutic outlook. Curr Drug Targets, 18(9), 1095–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Conterato, G. M. M., Quatrin, A., Somacal, S., Ruviaro, A. R., Vicentini, J., Augusti, P. R., Sobieski, R., Figueiredo, C., Dos Santos, C. M. M., Pereira, T. C., Bogo, M. R., Flores, E. M. M., & Emanuelli, T. (2014). Acute exposure to low lead levels and its implications on the activity and expression of cytosolic thioredoxin reductase in the kidney. Basic Clin Pharmacol Toxicol, 114(6), 476–84.

    Article  CAS  PubMed  Google Scholar 

  75. Kasuno, K., Nakamura, H., Ono, T., Muso, E., & Yodoi, J. (2003). Protective roles of thioredoxin, a redox-regulating protein, in renal ischemia/reperfusion injury. Kidney InT, 64(4), 1273–82.

    Article  CAS  PubMed  Google Scholar 

  76. Hou, X., Yang, S., & Yin, J. (2019). Blocking the REDD1/TXNIP axis ameliorates LPS-induced vascular endothelial cell injury through repressing oxidative stress and apoptosis. Am J Physiol Cell Physiol, 316(1), C104–C110.

    Article  CAS  PubMed  Google Scholar 

  77. De Marinis, Y., Cai, M., Bompada, P., Atac, D., Kotova, O., Johansson, M. E., Garcia-Vaz, E., Gomez, M. F., Laakso, M., & Groop, L. (2016). Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney. Kidney Int, 89(2), 342–53.

    Article  PubMed  Google Scholar 

  78. He, Q., Li, Y., Zhang, W., Chen, J., Deng, W., Liu, Q., Liu, Y., & Liu, D. (2021). Role and mechanism of TXNIP in ageing-related renal fibrosis. Mech Ageing Dev, 196, 111475.

    Article  CAS  PubMed  Google Scholar 

  79. Hamada, Y., & Fukagawa (2007). A possible role of thioredoxin interacting protein in the pathogenesis of streptozotocin-induced diabetic nephropathy. M Kobe J Med Sci, 53(1-2), 53–61.

    CAS  Google Scholar 

  80. Chen, Y., Ning, J., Cao, W., Wang, S., Du, T., Jiang, J., Feng, X., & Zhang, B. (2020). Research progress of TXNIP as a tumor suppressor gene participating in the metabolic reprogramming and oxidative stress of cancer cells in various cancers. Front Oncol, 10, 568574.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Huang, C., Zhang, Y., Kelly, D. J., Tan, C. Y., Gill, A., Cheng, D., Braet, F., Park, J. S., Sue, C. M., Pollock, C. A., & Chen, X. M. (2016). Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway. Sci Rep, 6, 29196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Qayyum, N., Haseeb, M., Kim, M. S., & Choi, S. (2021). Role of Thioredoxin-interacting protein in diseases and its therapeutic outlook. Int J Mol Sci, 22(5), 2754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cebula, M., Schmidt, E. E., & Arnér, E. S. J. (2015). TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal, 23(10), 823–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Branco, V., Coppo, L., Solá, S., Lu, J., Rodrigues, C. M. P., Holmgren, A., & Carvalho, C. (2017). Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1-mediated apoptosis in neuronal cells exposed to mercury. Redox Biol, 13, 278–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, Y., Zhang, Y., Gao, Y., Zhang, W., Cui, X., Liu, J., & Wei, Y. (2018). Arsenic induces Thioredoxin 1 and Apoptosis in human liver HHL-5 Cells. Biol Trace Elem Res, 181(2), 234–241.

    Article  CAS  PubMed  Google Scholar 

  86. Ratnayake, S., Dias, I. H. K., Lattman, E., & Griffiths, H. R. (2013). Stabilising cysteinyl thiol oxidation and nitrosation for proteomic analysis. J Proteomics, 92, 160–70.

    Article  CAS  PubMed  Google Scholar 

  87. Ungerstedt, J., Du, Y., Zhang, H., Nair, D., & Holmgren, A. (2012). In vivo redox state of human thioredoxin and redox shift by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Free Radic Biol Med, 53(11), 2002–7.

    Article  CAS  PubMed  Google Scholar 

  88. Wright, D. E., Altaany, Z., Bi, Y., Alperstein, Z., & O’Donoghue, P. (2018). Acetylation regulates thioredoxin reductase oligomerization and activity. Antioxid Redox Signal, 29(4), 377–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ooi, K. K., Yeo, C. I., Ang, K. P., Akim, A. M., Cheah, Y. K., Halim, S. N., Seng, H. L., & Tiekink, E. R. (2015). Phosphanegold(I) thiolates, Ph3PAu[SC(OR)=NC6H4Me-4] for R = Me, Et and iPr, induce apoptosis, cell cycle arrest and inhibit cell invasion of HT-29 colon cancer cells through modulation of the nuclear factor-κB activation pathway and ubiquitination. J Biol Inorg Chem, 20(5), 855–73..

  90. Engelman, R., Weisman-Shomer, P., Ziv, T., Xu, J., Arnér, E. S. J., & Benhar (2013). Multilevel regulation of 2-Cys peroxiredoxin reaction cycle by S-nitrosylation. M J Biol Chem, 288(16), 11312–24.

    Article  CAS  Google Scholar 

  91. Qin, H., Liang, W., Xu, Z., Ye, F., Li, X., & Zhong, L. (2015). Mechanistic insights into the inhibitory effects of palmitoylation on cytosolic thioredoxin reductase and thioredoxin. Biochimie, 110, 25–35.

    Article  CAS  PubMed  Google Scholar 

  92. Yuan, Y., Jiao, X., Lau, W. B., Wang, Y., Christopher, T. A., Lopez, B. L., Ramachandrarao, S. P., Tao, L., & Ma, X. L. (2010). Thioredoxin glycation: A novel posttranslational modification that inhibits its antioxidant and organ protective actions. Free Radic Biol Med, 49(3), 332–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sheth, S. S., Castellani, L. W., Chari, S., Wagg, C., Thipphavong, C. K., Bodnar, J. S., Tontonoz, P., Attie, A. D., Lopaschuk, G. D., & Lusis, A. J. (2005). Thioredoxin-interacting protein deficiency disrupts the fasting-feeding metabolic transition. J Lipid Res, 46(1), 123–34.

    Article  CAS  PubMed  Google Scholar 

  94. Yoshioka, J., Imahashi, K., Gabel, S. A., Chutkow, W. A., Burds, A. A., Gannon, J., Schulze, P. C., MacGillivray, C., London, R. E., Murphy, E., & Lee, R. T. (2007). Targeted deletion of thioredoxin-interacting protein regulates cardiac dysfunction in response to pressure overload. Circ Res, 101(12), 1328–38.

    Article  CAS  PubMed  Google Scholar 

  95. Hui, T. Y., Sheth, S. S., Diffley, J. M., Potter, D. W., Lusis, A. J., Attie, A. D., & Davis, R. A. (2004). Mice lacking thioredoxin-interacting protein provide evidence linking cellular redox state to appropriate response to nutritional signals. J Biol Chem, 279(23), 24387–93.

    Article  CAS  PubMed  Google Scholar 

  96. Lian, D., Dai, L., Xie, Z., Zhou, X., Liu, X., Zhang, Y., Huang, Y., & Chen, Y. (2018). Periodontal ligament fibroblasts migration injury via ROS/TXNIP/Nlrp3 inflammasome pathway with Porphyromonas gingivalis lipopolysaccharide. Mol Immunol, 103, 209–219.

    Article  CAS  PubMed  Google Scholar 

  97. Jirillo, E., Caccavo, D., Magrone, T., Piccigallo, E., Amati, L., Lembo, A., Kalis, C., & Gumenscheimer, M. (2002). The role of the liver in the response to LPS: experimental and clinical findings. J Endotoxin Res, 8(5), 319–27.

    CAS  PubMed  Google Scholar 

  98. Park, Y. S., Fujiwara, N., Koh, Y. H., Miyamoto, Y., Suzuki, K., Honke, K., & Taniguchi, N. (2002). Induction of thioredoxin reductase gene expression by peroxynitrite in human umbilical vein endothelial cells. Biol Chem, 383(3-4), 683–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author contributions

Each of the authors contributed to the paper. The preparation of the materials, the experiments, and the collection and analysis of the data were done by BH, BD, FSA, and HB. The research text was written by BH and HB. Furthermore, all authors confirmed the recent version of the article.

Funding

This work was financed by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) (Project No. 114Z277) and the Scientific Research Projects Coordination Commission of Atatürk University (Project no. PRJ2016/151). Furthermore, one author (Feyza Sönmez Aydın, Ph.D.) was supported by the Council of Higher Education (CoHE) Scientific and Technological Research of Türkiye (TÜBİTAK) 2211- A Ph.D. Scholarship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harun Budak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Humans were not used in the experiments in this study. Experiments using animals were carried out following the Laboratory Animal Care and Use Guidelines after approval was obtained from the local animal care committee of Atatürk University (Protocol no: 55885869-381).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hukkamlı, B., Dağdelen, B., Sönmez Aydın, F. et al. Comparison of the efficacy of the mouse hepatic and renal antioxidant systems against inflammation-induced oxidative stress. Cell Biochem Biophys 81, 299–311 (2023). https://doi.org/10.1007/s12013-023-01126-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01126-3

Keywords

Navigation