Skip to main content

Advertisement

Log in

The role of thioredoxin system in cancer: strategy for cancer therapy

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Cancer, a major public health problem, exhibits significant redox alteration. Thioredoxin (Trx) system, including Trx and Trx reductase (TrxR), as well as Trx-interacting protein (TXNIP) play important roles in controlling the cellular redox balance in cancer cells. In most cancers, Trx and TrxR are usually overexpressed and TXNIP is underexpressed. In recent years, some agents targeting Trx, TrxR, and TXNIP were used to explore a therapy approach for cancer patients.

Methods

A systematic search of PMC and the PubMed Database was conducted to summarize the potential of Trx system inhibitors for cancer treatment.

Results

In this article, we first summarize the functions of Trx, TrxR, and TXNIP in cancers. We also review some small molecule inhibitors of Trx/TrxR and d-allose (TXNIP inducer) and discuss their antitumor mechanisms. We highlight the combined inhibition of Trx system and GSH system in cancer therapy. We expect that a highly specific and selective antitumor agent with no cytotoxicity on human normal cells could be developed in the future.

Conclusion

In conclusion, Trx system may be very promising for clinical therapy of cancer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mikkelsen RB, Wardman P (2003) Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22(37):5734–5754. https://doi.org/10.1038/sj.onc.1206663

    Article  CAS  PubMed  Google Scholar 

  2. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192(1):1–15. https://doi.org/10.1002/jcp.10119

    Article  CAS  PubMed  Google Scholar 

  3. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591. https://doi.org/10.1038/nrd2803

    Article  CAS  PubMed  Google Scholar 

  4. Sabharwal SS, Schumacker PT (2014) Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer 14(11):709–721. https://doi.org/10.1038/nrc3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Polimeni M, Gazzano E (2014) Is redox signaling a feasible target for overcoming multidrug resistance in cancer chemotherapy? Front Pharmacol 5:286. https://doi.org/10.3389/fphar.2014.00286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun X, Wang W, Chen J, Cai X, Yang J, Yang Y, Yan H, Cheng X, Ye J, Lu W, Hu C, Sun H, Pu J, Cao P (2017) The natural diterpenoid isoforretin a inhibits thioredoxin-1 and triggers potent ROS-mediated antitumor effects. Cancer Res 77(4):926–936. https://doi.org/10.1158/0008-5472.CAN-16-0987

    Article  CAS  PubMed  Google Scholar 

  7. Benhar M, Shytaj IL, Stamler JS, Savarino A (2016) Dual targeting of the thioredoxin and glutathione systems in cancer and HIV. J Clin Invest 126(5):1630–1639. https://doi.org/10.1172/JCI85339

    Article  PubMed  PubMed Central  Google Scholar 

  8. Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, Yung KY, Brenner D, Knobbe-Thomsen CB, Cox MA, Elia A, Berger T, Cescon DW, Adeoye A, Brustle A, Molyneux SD, Mason JM, Li WY, Yamamoto K, Wakeham A, Berman HK, Khokha R, Done SJ, Kavanagh TJ, Lam CW, Mak TW (2015) Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27(2):211–222. https://doi.org/10.1016/j.ccell.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  9. Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, Tolliday NJ, Golub TR, Carr SA, Shamji AF, Stern AM, Mandinova A, Schreiber SL, Lee SW (2011) Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475(7355):231–234. https://doi.org/10.1038/nature10167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Laurent TC, Moore EC, Reichard P (1964) Enzymatic synthesis of deoxyribonucleotides. Iv. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem 239:3436–3444

    CAS  PubMed  Google Scholar 

  11. Zeng XS, Jia JJ, Kwon Y, Wang SD, Bai J (2014) The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease. Free Radic Biol Med 67:10–18. https://doi.org/10.1016/j.freeradbiomed.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  12. Zeng XS, Geng WS, Chen L, Jia JJ (2018) Thioredoxin as a therapeutic target in cerebral ischemia. Curr Pharm Des. https://doi.org/10.2174/1381612824666180820143853

    Article  PubMed  Google Scholar 

  13. Williams CH, Arscott LD, Muller S, Lennon BW, Ludwig ML, Wang PF, Veine DM, Becker K, Schirmer RH (2000) Thioredoxin reductase two modes of catalysis have evolved. Eur J Biochem 267(20):6110–6117

    Article  CAS  PubMed  Google Scholar 

  14. Rybnikova E, Damdimopoulos AE, Gustafsson JA, Spyrou G, Pelto-Huikko M (2000) Expression of novel antioxidant thioredoxin-2 in the rat brain. Eur J Neurosci 12(5):1669–1678

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, Lu J, Ren X, Du Y, Zheng Y, Ioannou PV, Holmgren A (2015) Oxidation of structural cysteine residues in thioredoxin 1 by aromatic arsenicals enhances cancer cell cytotoxicity caused by the inhibition of thioredoxin reductase 1. Free Radic Biol Med 89:192–200. https://doi.org/10.1016/j.freeradbiomed.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  16. Scalcon V, Bindoli A, Rigobello MP (2018) Significance of the mitochondrial thioredoxin reductase in cancer cells: an update on role, targets and inhibitors. Free Radic Biol Med 127:62–79. https://doi.org/10.1016/j.freeradbiomed.2018.03.043

    Article  CAS  PubMed  Google Scholar 

  17. Zhang B, Zhang J, Peng S, Liu R, Li X, Hou Y, Han X, Fang J (2017) Thioredoxin reductase inhibitors: a patent review. Expert Opin Ther Pat 27(5):547–556. https://doi.org/10.1080/13543776.2017.1272576

    Article  CAS  PubMed  Google Scholar 

  18. Zhong L, Arner ES, Holmgren A (2000) Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc Natl Acad Sci USA 97(11):5854–5859. https://doi.org/10.1073/pnas.100114897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346(Pt 1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miranda-Vizuete A, Damdimopoulos AE, Pedrajas JR, Gustafsson JA, Spyrou G (1999) Human mitochondrial thioredoxin reductase cDNA cloning, expression and genomic organization. Eur J Biochem 261(2):405–412

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Li X, Han X, Liu R, Fang J (2017) Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci 38(9):794–808. https://doi.org/10.1016/j.tips.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  22. Arner ES (2009) Focus on mammalian thioredoxin reductases–important selenoproteins with versatile functions. Biochim Biophys Acta 1790(6):495–526. https://doi.org/10.1016/j.bbagen.2009.01.014

    Article  CAS  PubMed  Google Scholar 

  23. Arai RJ, Masutani H, Yodoi J, Debbas V, Laurindo FR, Stern A, Monteiro HP (2006) Nitric oxide induces thioredoxin-1 nuclear translocation: possible association with the p21Ras survival pathway. Biochem Biophys Res Commun 348(4):1254–1260. https://doi.org/10.1016/j.bbrc.2006.07.178

    Article  CAS  PubMed  Google Scholar 

  24. Koharyova M, Kolarova M (2008) Oxidative stress and thioredoxin system. Gen Physiol Biophys 27(2):71–84

    CAS  PubMed  Google Scholar 

  25. Muri J, Heer S, Matsushita M, Pohlmeier L, Tortola L, Fuhrer T, Conrad M, Zamboni N, Kisielow J, Kopf M (2018) The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation. Nat Commun 9(1):1851. https://doi.org/10.1038/s41467-018-04274-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17(9):2596–2606. https://doi.org/10.1093/emboj/17.9.2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schroeder P, Popp R, Wiegand B, Altschmied J, Haendeler J (2007) Nuclear redox-signaling is essential for apoptosis inhibition in endothelial cells—important role for nuclear thioredoxin-1. Arterioscler Thromb Vasc Biol 27(11):2325–2331. https://doi.org/10.1161/ATVBAHA.107.149419

    Article  CAS  PubMed  Google Scholar 

  28. Zhao L, Li W, Zhou Y, Zhang Y, Huang S, Xu X, Li Z, Guo Q (2015) The overexpression and nuclear translocation of Trx-1 during hypoxia confers on HepG2 cells resistance to DDP, and GL-V9 reverses the resistance by suppressing the Trx-1/Ref-1 axis. Free Radic Biol Med 82:29–41. https://doi.org/10.1016/j.freeradbiomed.2015.01.014

    Article  CAS  PubMed  Google Scholar 

  29. Gurusamy N, Malik G, Gorbunov NV, Das DK (2007) Redox activation of Ref-1 potentiates cell survival following myocardial ischemia reperfusion injury. Free Radic Biol Med 43(3):397–407. https://doi.org/10.1016/j.freeradbiomed.2007.04.025

    Article  CAS  PubMed  Google Scholar 

  30. Freemerman AJ, Gallegos A, Powis G (1999) Nuclear factor kappaB transactivation is increased but is not involved in the proliferative effects of thioredoxin overexpression in MCF-7 breast cancer cells. Cancer Res 59(16):4090–4094

    CAS  PubMed  Google Scholar 

  31. Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci USA 94(8):3633–3638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Flores LC, Ortiz M, Dube S, Hubbard GB, Lee S, Salmon A, Zhang Y, Ikeno Y (2012) Thioredoxin, oxidative stress, cancer and aging. Longev Healthspan 1:4. https://doi.org/10.1186/2046-2395-1-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Billiet L, Furman C, Larigauderie G, Copin C, Brand K, Fruchart JC, Rouis M (2005) Extracellular human thioredoxin-1 inhibits lipopolysaccharide-induced interleukin-1beta expression in human monocyte-derived macrophages. J Biol Chem 280(48):40310–40318. https://doi.org/10.1074/jbc.M503644200

    Article  CAS  PubMed  Google Scholar 

  34. Huang Q, Zhou HJ, Zhang H, Huang Y, Hinojosa-Kirschenbaum F, Fan P, Yao L, Belardinelli L, Tellides G, Giordano FJ, Budas GR, Min W (2015) Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function. Circulation 131(12):1082–1097. https://doi.org/10.1161/circulationaha.114.012725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tanaka T, Hosoi F, Yamaguchi-Iwai Y, Nakamura H, Masutani H, Ueda S, Nishiyama A, Takeda S, Wada H, Spyrou G, Yodoi J (2002) Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J 21(7):1695–1703. https://doi.org/10.1093/emboj/21.7.1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Damdimopoulos AE, Miranda-Vizuete A, Pelto-Huikko M, Gustafsson JA, Spyrou G (2002) Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death. J Biol Chem 277(36):33249–33257. https://doi.org/10.1074/jbc.m203036200

    Article  CAS  PubMed  Google Scholar 

  37. Lowes DA, Galley HF (2011) Mitochondrial protection by the thioredoxin-2 and glutathione systems in an in vitro endothelial model of sepsis. Biochem J 436(1):123–132. https://doi.org/10.1042/BJ20102135

    Article  CAS  PubMed  Google Scholar 

  38. Lu J, Holmgren A (2012) Thioredoxin system in cell death progression. Antioxid Redox Signal 17(12):1738–1747. https://doi.org/10.1089/ars.2012.4650

    Article  CAS  PubMed  Google Scholar 

  39. Kang JW, Choi HS, Lee SM (2018) Resolvin D1 attenuates liver ischaemia/reperfusion injury through modulating thioredoxin 2-mediated mitochondrial quality control. Br J Pharmacol 175(12):2441–2453. https://doi.org/10.1111/bph.14212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu C, Zhang H, Qiao Z, Wang Y, Zhang P, Yang D (2018) Loss of thioredoxin 2 alters mitochondrial respiratory function and induces cardiomyocyte hypertrophy. Exp Cell Res 372(1):61–72. https://doi.org/10.1016/j.yexcr.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  41. Holzerova E, Danhauser K, Haack TB, Kremer LS, Melcher M, Ingold I, Kobayashi S, Terrile C, Wolf P, Schaper J, Mayatepek E, Baertling F, Friedmann Angeli JP, Conrad M, Strom TM, Meitinger T, Prokisch H, Distelmaier F (2016) Human thioredoxin 2 deficiency impairs mitochondrial redox homeostasis and causes early-onset neurodegeneration. Brain 139(Pt 2):346–354. https://doi.org/10.1093/brain/awv350

    Article  PubMed  Google Scholar 

  42. Conrad M, Jakupoglu C, Moreno SG, Lippl S, Banjac A, Schneider M, Beck H, Hatzopoulos AK, Just U, Sinowatz F, Schmahl W, Chien KR, Wurst W, Bornkamm GW, Brielmeier M (2004) Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol 24(21):9414–9423. https://doi.org/10.1128/mcb.24.21.9414-9423.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yoshioka J (2015) Thioredoxin reductase 2 (Txnrd2) regulates mitochondrial integrity in the progression of age-related heart failure. J Am Heart Assoc. https://doi.org/10.1161/jaha.115.002278

    Article  PubMed  PubMed Central  Google Scholar 

  44. Folda A, Citta A, Scalcon V, Cali T, Zonta F, Scutari G, Bindoli A, Rigobello MP (2016) Mitochondrial thioredoxin system as a modulator of cyclophilin D redox state. Sci Rep 6:23071. https://doi.org/10.1038/srep23071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Samaranayake GJ, Troccoli CI, Huynh M, Lyles RDZ, Kage K, Win A, Lakshmanan V, Kwon D, Ban Y, Chen SX, Zarco ER, Jorda M, Burnstein KL, Rai P (2017) Thioredoxin-1 protects against androgen receptor-induced redox vulnerability in castration-resistant prostate cancer. Nat Commun 8(1):1204. https://doi.org/10.1038/s41467-017-01269-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhatia M, McGrath KL, Di Trapani G, Charoentong P, Shah F, King MM, Clarke FM, Tonissen KF (2016) The thioredoxin system in breast cancer cell invasion and migration. Redox Biol 8:68–78. https://doi.org/10.1016/j.redox.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  47. Esen H, Feyzioglu B, Erdi F, Keskin F, Kaya B, Demir LS (2015) High thioredoxin reductase 1 expression in meningiomas undergoing malignant progression. Brain Tumor Pathol 32(3):195–201. https://doi.org/10.1007/s10014-015-0212-x

    Article  CAS  PubMed  Google Scholar 

  48. Raffel J, Bhattacharyya AK, Gallegos A, Cui H, Einspahr JG, Alberts DS, Powis G (2003) Increased expression of thioredoxin-1 in human colorectal cancer is associated with decreased patient survival. J Lab Clin Med 142(1):46–51. https://doi.org/10.1016/S0022-2143(03)00068-4

    Article  CAS  PubMed  Google Scholar 

  49. Zhu X, Huang C, Peng B (2011) Overexpression of thioredoxin system proteins predicts poor prognosis in patients with squamous cell carcinoma of the tongue. Oral Oncol 47(7):609–614. https://doi.org/10.1016/j.oraloncology.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  50. Iwasawa S, Yamano Y, Takiguchi Y, Tanzawa H, Tatsumi K, Uzawa K (2011) Upregulation of thioredoxin reductase 1 in human oral squamous cell carcinoma. Oncol Rep 25(3):637–644. https://doi.org/10.3892/or.2010.1131

    Article  CAS  PubMed  Google Scholar 

  51. Banerjee S, Mukherjee S, Mitra S, Singhal P (2017) Altered expression of mitochondrial antioxidants in oral squamous cell carcinoma. J Oral Sci 59(3):439–446. https://doi.org/10.2334/josnusd.16-0655

    Article  CAS  PubMed  Google Scholar 

  52. Lin F, Zhang P, Zuo Z, Wang F, Bi R, Shang W, Wu A, Ye J, Li S, Sun X, Wu J, Jiang L (2017) Thioredoxin-1 promotes colorectal cancer invasion and metastasis through crosstalk with S100P. Cancer Lett 401:1–10. https://doi.org/10.1016/j.canlet.2017.04.036

    Article  CAS  PubMed  Google Scholar 

  53. Bu L, Li W, Ming Z, Shi J, Fang P, Yang S (2017) Inhibition of TrxR2 suppressed NSCLC cell proliferation, metabolism and induced cell apoptosis through decreasing antioxidant activity. Life Sci 178:35–41. https://doi.org/10.1016/j.lfs.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  54. Soini Y, Kahlos K, Napankangas U, Kaarteenaho-Wiik R, Saily M, Koistinen P, Paaakko P, Holmgren A, Kinnula VL (2001) Widespread expression of thioredoxin and thioredoxin reductase in non-small cell lung carcinoma. Clin Cancer Res 7(6):1750–1757

    CAS  PubMed  Google Scholar 

  55. Shao L, Diccianni MB, Tanaka T, Gribi R, Yu AL, Pullen JD, Camitta BM, Yu J (2001) Thioredoxin expression in primary T-cell acute lymphoblastic leukemia and its therapeutic implication. Cancer Res 61(19):7333–7338

    CAS  PubMed  Google Scholar 

  56. Li H, Li M, Wang G, Shao F, Chen W, Xia C, Wang S, Li Y, Zhou G, Liu Z (2016) EM23, a natural sesquiterpene lactone from elephantopus mollis, induces apoptosis in human myeloid leukemia cells through thioredoxin- and reactive oxygen species-mediated signaling pathways. Front Pharmacol 7:77. https://doi.org/10.3389/fphar.2016.00077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kamal AM, El-Hefny NH, Hegab HM, El-Mesallamy HO (2016) Expression of thioredoxin-1 (TXN) and its relation with oxidative DNA damage and treatment outcome in adult AML and ALL: a comparative study. Hematology 21(10):567–575. https://doi.org/10.1080/10245332.2016.1173341

    Article  CAS  PubMed  Google Scholar 

  58. Hou P, Zhao L, Li Y, Luo F, Wang S, Song J, Bai J (2014) Comparative expression of thioredoxin-1 in uterine leiomyomas and myometrium. Mol Hum Reprod 20(2):148–154. https://doi.org/10.1093/molehr/gat069

    Article  CAS  PubMed  Google Scholar 

  59. Shan W, Zhong W, Zhao R, Oberley TD (2010) Thioredoxin 1 as a subcellular biomarker of redox imbalance in human prostate cancer progression. Free Radic Biol Med 49(12):2078–2087. https://doi.org/10.1016/j.freeradbiomed.2010.10.691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maeda R, Tabata C, Tabata R, Eguchi R, Fujimori Y, Nakano T (2011) Is serum thioredoxin-1 a useful clinical marker for malignant pleural mesothelioma? Antioxid Redox Signal 15(3):685–689. https://doi.org/10.1089/ars.2011.3978

    Article  CAS  PubMed  Google Scholar 

  61. Nipp M, Elsner M, Balluff B, Meding S, Sarioglu H, Ueffing M, Rauser S, Unger K, Hofler H, Walch A, Zitzelsberger H (2012) S100-A10, thioredoxin, and S100-A6 as biomarkers of papillary thyroid carcinoma with lymph node metastasis identified by MALDI imaging. J Mol Med (Berl) 90(2):163–174. https://doi.org/10.1007/s00109-011-0815-6

    Article  CAS  Google Scholar 

  62. Arner ESJ (2017) Targeting the selenoprotein thioredoxin reductase 1 for anticancer therapy. Adv Cancer Res 136:139–151. https://doi.org/10.1016/bs.acr.2017.07.005

    Article  PubMed  Google Scholar 

  63. Yamada M, Tomida A, Yoshikawa H, Taketani Y, Tsuruo T (1996) Increased expression of thioredoxin/adult T-cell leukemia-derived factor in cisplatin-resistant human cancer cell lines. Clin Cancer Res 2(2):427–432

    CAS  PubMed  Google Scholar 

  64. Kim SJ, Miyoshi Y, Taguchi T, Tamaki Y, Nakamura H, Yodoi J, Kato K, Noguchi S (2005) High thioredoxin expression is associated with resistance to docetaxel in primary breast cancer. Clin Cancer Res 11(23):8425–8430. https://doi.org/10.1158/1078-0432.ccr-05-0449

    Article  CAS  PubMed  Google Scholar 

  65. Penney RB, Roy D (2013) Thioredoxin-mediated redox regulation of resistance to endocrine therapy in breast cancer. Biochim Biophys Acta 1836(1):60–79. https://doi.org/10.1016/j.bbcan.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  66. Li C, Thompson MA, Tamayo AT, Zuo Z, Lee J, Vega F, Ford RJ, Pham LV (2012) Over-expression of thioredoxin-1 mediates growth, survival, and chemoresistance and is a druggable target in diffuse large B-cell lymphoma. Oncotarget 3(3):314–326. https://doi.org/10.18632/oncotarget.463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang J, Yang H, Li W, Xu H, Yang X, Gan L (2015) Thioredoxin 1 upregulates FOXO1 transcriptional activity in drug resistance in ovarian cancer cells. Biochim Biophys Acta 1852(3):395–405. https://doi.org/10.1016/j.bbadis.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  68. Sartelet H, Rougemont AL, Fabre M, Castaing M, Duval M, Fetni R, Michiels S, Beaunoyer M, Vassal G (2011) Activation of the phosphatidylinositol 3′-kinase/AKT pathway in neuroblastoma and its regulation by thioredoxin 1. Hum Pathol 42(11):1727–1739. https://doi.org/10.1016/j.humpath.2011.01.019

    Article  CAS  PubMed  Google Scholar 

  69. Kaimul AM, Nakamura H, Masutani H, Yodoi J (2007) Thioredoxin and thioredoxin-binding protein-2 in cancer and metabolic syndrome. Free Radic Biol Med 43(6):861–868. https://doi.org/10.1016/j.freeradbiomed.2007.05.032

    Article  CAS  PubMed  Google Scholar 

  70. Naranjo-Suarez S, Carlson BA, Tobe R, Yoo MH, Tsuji PA, Gladyshev VN, Hatfield DL (2013) Regulation of HIF-1alpha activity by overexpression of thioredoxin is independent of thioredoxin reductase status. Mol Cells 36(2):151–157. https://doi.org/10.1007/s10059-013-0121-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tobe R, Yoo MH, Fradejas N, Carlson BA, Calvo S, Gladyshev VN, Hatfield DL (2012) Thioredoxin reductase 1 deficiency enhances selenite toxicity in cancer cells via a thioredoxin-independent mechanism. Biochem J 445(3):423–430. https://doi.org/10.1042/BJ20120618

    Article  CAS  PubMed  Google Scholar 

  72. Poerschke RL, Moos PJ (2011) Thioredoxin reductase 1 knockdown enhances selenazolidine cytotoxicity in human lung cancer cells via mitochondrial dysfunction. Biochem Pharmacol 81(2):211–221. https://doi.org/10.1016/j.bcp.2010.09.024

    Article  CAS  PubMed  Google Scholar 

  73. Lincoln DT, Ali Emadi EM, Tonissen KF, Clarke FM (2003) The thioredoxin-thioredoxin reductase system: over-expression in human cancer. Anticancer Res 23(3B):2425–2433

    CAS  PubMed  Google Scholar 

  74. Lou M, Liu Q, Ren G, Zeng J, Xiang X, Ding Y, Lin Q, Zhong T, Liu X, Zhu L, Qi H, Shen J, Li H, Shao J (2017) Physical interaction between human ribonucleotide reductase large subunit and thioredoxin increases colorectal cancer malignancy. J Biol Chem 292(22):9136–9149. https://doi.org/10.1074/jbc.M117.783365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Choksi S, Lin Y, Pobezinskaya Y, Chen L, Park C, Morgan M, Li T, Jitkaew S, Cao X, Kim YS, Kim HS, Levitt P, Shih G, Birre M, Deng CX, Liu ZG (2011) A HIF-1 target, ATIA, protects cells from apoptosis by modulating the mitochondrial thioredoxin, TRX2. Mol Cell 42(5):597–609. https://doi.org/10.1016/j.molcel.2011.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang X, Zheng Y, Fried LE, Du Y, Montano SJ, Sohn A, Lefkove B, Holmgren L, Arbiser JL, Holmgren A, Lu J (2011) Disruption of the mitochondrial thioredoxin system as a cell death mechanism of cationic triphenylmethanes. Free Radic Biol Med 50(7):811–820. https://doi.org/10.1016/j.freeradbiomed.2010.12.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu Y, Fang F, Zhang J, Josson S, St Clair WH, St Clair DK (2010) miR-17* suppresses tumorigenicity of prostate cancer by inhibiting mitochondrial antioxidant enzymes. PLoS One 5(12):e14356. https://doi.org/10.1371/journal.pone.0014356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang H, Du Y, Zhang X, Lu J, Holmgren A (2014) Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal. Antioxid Redox Signal 21(5):669–681. https://doi.org/10.1089/ars.2013.5499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. You BR, Shin HR, Park WH (2014) PX-12 inhibits the growth of A549 lung cancer cells via G2/M phase arrest and ROS-dependent apoptosis. Int J Oncol 44(1):301–308. https://doi.org/10.3892/ijo.2013.2152

    Article  CAS  PubMed  Google Scholar 

  80. You BR, Shin HR, Han BR, Park WH (2015) PX-12 induces apoptosis in Calu-6 cells in an oxidative stress-dependent manner. Tumour Biol 36(3):2087–2095. https://doi.org/10.1007/s13277-014-2816-x

    Article  CAS  PubMed  Google Scholar 

  81. Shin HR, You BR, Park WH (2013) PX-12-induced HeLa cell death is associated with oxidative stress and GSH depletion. Oncol Lett 6(6):1804–1810. https://doi.org/10.3892/ol.2013.1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tan Y, Bi L, Zhang P, Wang F, Lin F, Ni W, Wu J, Jiang L (2014) Thioredoxin-1 inhibitor PX-12 induces human acute myeloid leukemia cell apoptosis and enhances the sensitivity of cells to arsenic trioxide. Int J Clin Exp Pathol 7(8):4765–4773

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang F, Lin F, Zhang P, Ni W, Bi L, Wu J, Jiang L (2015) Thioredoxin-1 inhibitor, 1-methylpropyl 2-imidazolyl disulfide, inhibits the growth, migration and invasion of colorectal cancer cell lines. Oncol Rep 33(2):967–973. https://doi.org/10.3892/or.2014.3652

    Article  CAS  PubMed  Google Scholar 

  84. Konig J, Wyllie S, Wells G, Stevens MF, Wyatt PG, Fairlamb AH (2011) Antitumor quinol PMX464 is a cytocidal anti-trypanosomal inhibitor targeting trypanothione metabolism. J Biol Chem 286(10):8523–8533. https://doi.org/10.1074/jbc.M110.214833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hall G, Bradshaw TD, Laughton CA, Stevens MF, Emsley J (2011) Structure of Mycobacterium tuberculosis thioredoxin in complex with quinol inhibitor PMX464. Protein Sci 20(1):210–215. https://doi.org/10.1002/pro.533

    Article  CAS  PubMed  Google Scholar 

  86. Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11(12):3013–3069. https://doi.org/10.1089/ARS.2009.2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mukherjee A, Martin SG (2008) The thioredoxin system: a key target in tumour and endothelial cells. Br J Radiol 81(Spec No 1):S57–S68. https://doi.org/10.1259/bjr/34180435

    Article  CAS  PubMed  Google Scholar 

  88. Mukherjee A, Huber K, Evans H, Lakhani N, Martin S (2007) A cellular and molecular investigation of the action of PMX464, a putative thioredoxin inhibitor, in normal and colorectal cancer cell lines. Br J Pharmacol 151(8):1167–1175. https://doi.org/10.1038/sj.bjp.0707342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lu H, Yang XF, Tian XQ, Tang SL, Li LQ, Zhao S, Zheng HC (2016) The in vitro and vivo anti-tumor effects and molecular mechanisms of suberoylanilide hydroxamic acid (SAHA) and MG132 on the aggressive phenotypes of gastric cancer cells. Oncotarget 7(35):56508–56525. https://doi.org/10.18632/oncotarget.10643

    Article  PubMed  PubMed Central  Google Scholar 

  90. You BR, Park WH (2016) The levels of HDAC1 and thioredoxin1 are related to the death of mesothelioma cells by suberoylanilide hydroxamic acid. Int J Oncol 48(5):2197–2204. https://doi.org/10.3892/ijo.2016.3402

    Article  CAS  PubMed  Google Scholar 

  91. You BR, Park WH (2014) Suberoylanilide hydroxamic acid-induced HeLa cell death is closely correlated with oxidative stress and thioredoxin 1 levels. Int J Oncol 44(5):1745–1755. https://doi.org/10.3892/ijo.2014.2337

    Article  CAS  PubMed  Google Scholar 

  92. Ungerstedt J, Du Y, Zhang H, Nair D, Holmgren A (2012) In vivo redox state of human thioredoxin and redox shift by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Free Radic Biol Med 53(11):2002–2007. https://doi.org/10.1016/j.freeradbiomed.2012.09.019

    Article  CAS  PubMed  Google Scholar 

  93. Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA, Marks PA, Richon VM (2002) The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci USA 99(18):11700–11705. https://doi.org/10.1073/pnas.182372299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. You BR, Park WH (2017) Suberoylanilide hydroxamic acid induces thioredoxin1-mediated apoptosis in lung cancer cells via up-regulation of miR-129-5p. Mol Carcinog 56(12):2566–2577. https://doi.org/10.1002/mc.22701

    Article  CAS  PubMed  Google Scholar 

  95. Zhang B, Liu Y, Li X, Xu J, Fang J (2018) Small molecules to target the selenoprotein thioredoxin reductase. Chem Asian J 13(23):3593–3600. https://doi.org/10.1002/asia.201801136

    Article  CAS  PubMed  Google Scholar 

  96. Zhang J, Zhang B, Li X, Han X, Liu R, Fang J (2019) Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: an update. Med Res Rev 39(1):5–39. https://doi.org/10.1002/med.21507

    Article  CAS  PubMed  Google Scholar 

  97. Ouyang Y, Peng Y, Li J, Holmgren A, Lu J (2018) Modulation of thiol-dependent redox system by metal ions via thioredoxin and glutaredoxin systems. Metallomics 10(2):218–228. https://doi.org/10.1039/c7mt00327g

    Article  CAS  PubMed  Google Scholar 

  98. Gandin V, Fernandes AP, Rigobello MP, Dani B, Sorrentino F, Tisato F, Bjornstedt M, Bindoli A, Sturaro A, Rella R, Marzano C (2010) Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase. Biochem Pharmacol 79(2):90–101. https://doi.org/10.1016/j.bcp.2009.07.023

    Article  CAS  PubMed  Google Scholar 

  99. Wang H, Bouzakoura S, de Mey S, Jiang H, Law K, Dufait I, Corbet C, Verovski V, Gevaert T, Feron O, Van den Berge D, Storme G, De Ridder M (2017) Auranofin radiosensitizes tumor cells through targeting thioredoxin reductase and resulting overproduction of reactive oxygen species. Oncotarget 8(22):35728–35742. https://doi.org/10.18632/oncotarget.16113

    Article  PubMed  PubMed Central  Google Scholar 

  100. Fiskus W, Saba N, Shen M, Ghias M, Liu J, Gupta SD, Chauhan L, Rao R, Gunewardena S, Schorno K, Austin CP, Maddocks K, Byrd J, Melnick A, Huang P, Wiestner A, Bhalla KN (2014) Auranofin induces lethal oxidative and endoplasmic reticulum stress and exerts potent preclinical activity against chronic lymphocytic leukemia. Cancer Res 74(9):2520–2532. https://doi.org/10.1158/0008-5472.CAN-13-2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cohen-Kutner M, Khomsky L, Trus M, Aisner Y, Niv MY, Benhar M, Atlas D (2013) Thioredoxin-mimetic peptides (TXM) reverse auranofin induced apoptosis and restore insulin secretion in insulinoma cells. Biochem Pharmacol 85(7):977–990. https://doi.org/10.1016/j.bcp.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  102. Roder C, Thomson MJ (2015) Auranofin: repurposing an old drug for a golden new age. Drugs R D 15(1):13–20. https://doi.org/10.1007/s40268-015-0083-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Karaca O, Scalcon V, Meier-Menches SM, Bonsignore R, Brouwer J, Tonolo F, Folda A, Rigobello MP, Kuhn FE, Casini A (2017) Characterization of hydrophilic gold(I) N-heterocyclic carbene (NHC) complexes as potent TrxR inhibitors using biochemical and mass spectrometric approaches. Inorg Chem 56(22):14237–14250. https://doi.org/10.1021/acs.inorgchem.7b02345

    Article  CAS  PubMed  Google Scholar 

  104. Schuh E, Pfluger C, Citta A, Folda A, Rigobello MP, Bindoli A, Casini A, Mohr F (2012) Gold(I) carbene complexes causing thioredoxin 1 and thioredoxin 2 oxidation as potential anticancer agents. J Med Chem 55(11):5518–5528. https://doi.org/10.1021/jm300428v

    Article  CAS  PubMed  Google Scholar 

  105. Cheng X, Holenya P, Can S, Alborzinia H, Rubbiani R, Ott I, Wolfl S (2014) A TrxR inhibiting gold(I) NHC complex induces apoptosis through ASK1-p38-MAPK signaling in pancreatic cancer cells. Mol Cancer 13:221. https://doi.org/10.1186/1476-4598-13-221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Reddy TS, Priver SH, Mirzadeh N, Bhargava SK (2018) Synthesis of gold(I) phosphine complexes containing the 2-Br C6F4PPh2 ligand: evaluation of anticancer activity in 2D and 3D spheroidal models of HeLa cancer cells. Eur J Med Chem 145:291–301. https://doi.org/10.1016/j.ejmech.2017.12.048

    Article  CAS  PubMed  Google Scholar 

  107. Engman L, McNaughton M, Gajewska M, Kumar S, Birmingham A, Powis G (2006) Thioredoxin reductase and cancer cell growth inhibition by organogold(III) compounds. Anticancer Drugs 17(5):539–544

    Article  CAS  PubMed  Google Scholar 

  108. Saggioro D, Rigobello MP, Paloschi L, Folda A, Moggach SA, Parsons S, Ronconi L, Fregona D, Bindoli A (2007) Gold(III)-dithiocarbamato complexes induce cancer cell death triggered by thioredoxin redox system inhibition and activation of ERK pathway. Chem Biol 14(10):1128–1139. https://doi.org/10.1016/j.chembiol.2007.08.016

    Article  CAS  PubMed  Google Scholar 

  109. Cattaruzza L, Fregona D, Mongiat M, Ronconi L, Fassina A, Colombatti A, Aldinucci D (2011) Antitumor activity of gold(III)-dithiocarbamato derivatives on prostate cancer cells and xenografts. Int J Cancer 128(1):206–215. https://doi.org/10.1002/ijc.25311

    Article  CAS  PubMed  Google Scholar 

  110. He L, Chen T, You Y, Hu H, Zheng W, Kwong WL, Zou T, Che CM (2014) A cancer-targeted nanosystem for delivery of gold(III) complexes: enhanced selectivity and apoptosis-inducing efficacy of a gold(III) porphyrin complex. Angew Chem Int Ed Engl 53(46):12532–12536. https://doi.org/10.1002/anie.201407143

    Article  CAS  PubMed  Google Scholar 

  111. Cai W, Zhang L, Song Y, Wang B, Zhang B, Cui X, Hu G, Liu Y, Wu J, Fang J (2012) Small molecule inhibitors of mammalian thioredoxin reductase. Free Radic Biol Med 52(2):257–265. https://doi.org/10.1016/j.freeradbiomed.2011.10.447

    Article  CAS  PubMed  Google Scholar 

  112. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7(8):573–584. https://doi.org/10.1038/nrc2167

    Article  CAS  PubMed  Google Scholar 

  113. Zhang J, Wang X, Lu H (2008) Amifostine increases cure rate of cisplatin on ascites hepatoma 22 via selectively protecting renal thioredoxin reductase. Cancer Lett 260(1–2):127–136. https://doi.org/10.1016/j.canlet.2007.10.023

    Article  CAS  PubMed  Google Scholar 

  114. Zatloukal P, Petruzelka L (2002) Gemcitabine/carboplatin in advanced non-small cell lung cancer. Lung Cancer 38(Suppl 2):S33–S36

    Article  PubMed  Google Scholar 

  115. Xie Q, Lan G, Zhou Y, Huang J, Liang Y, Zheng W, Fu X, Fan C, Chen T (2014) Strategy to enhance the anticancer efficacy of X-ray radiotherapy in melanoma cells by platinum complexes, the role of ROS-mediated signaling pathways. Cancer Lett 354(1):58–67. https://doi.org/10.1016/j.canlet.2014.07.046

    Article  CAS  PubMed  Google Scholar 

  116. Wang FY, Tang XM, Wang X, Huang KB, Feng HW, Chen ZF, Liu YN, Liang H (2018) Mitochondria-targeted platinum(II) complexes induce apoptosis-dependent autophagic cell death mediated by ER-stress in A549 cancer cells. Eur J Med Chem 155:639–650. https://doi.org/10.1016/j.ejmech.2018.06.018

    Article  CAS  PubMed  Google Scholar 

  117. Qin QP, Wang SL, Tan MX, Wang ZF, Luo DM, Zou BQ, Liu YC, Yao PF, Liang H (2018) Novel tacrine platinum(II) complexes display high anticancer activity via inhibition of telomerase activity, dysfunction of mitochondria, and activation of the p53 signaling pathway. Eur J Med Chem 158:106–122. https://doi.org/10.1016/j.ejmech.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  118. Fang J, Lu J, Holmgren A (2005) Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J Biol Chem 280(26):25284–25290. https://doi.org/10.1074/jbc.M414645200

    Article  CAS  PubMed  Google Scholar 

  119. Shao FY, Du ZY, Ma DL, Chen WB, Fu WY, Ruan BB, Rui W, Zhang JX, Wang S, Wong NS, Xiao H, Li MM, Liu X, Liu QY, Zhou XD, Yan HZ, Wang YF, Chen CY, Liu Z, Chen HY (2015) B5, a thioredoxin reductase inhibitor, induces apoptosis in human cervical cancer cells by suppressing the thioredoxin system, disrupting mitochondrion-dependent pathways and triggering autophagy. Oncotarget 6(31):30939–30956. https://doi.org/10.18632/oncotarget.5132

    Article  PubMed  PubMed Central  Google Scholar 

  120. Li Y, Zhang LP, Dai F, Yan WJ, Wang HB, Tu ZS, Zhou B (2015) hexamethoxylated monocarbonyl analogues of curcumin cause G2/M cell cycle arrest in NCI-H460 cells via michael acceptor-dependent redox intervention. J Agric Food Chem 63(35):7731–7742. https://doi.org/10.1021/acs.jafc.5b02011

    Article  CAS  PubMed  Google Scholar 

  121. Jayakumar S, Patwardhan RS, Pal D, Singh B, Sharma D, Kutala VK, Sandur SK (2017) Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity. Free Radic Biol Med 113:530–538. https://doi.org/10.1016/j.freeradbiomed.2017.10.378

    Article  CAS  PubMed  Google Scholar 

  122. Zhao R, Holmgren A (2002) A novel antioxidant mechanism of ebselen involving ebselen diselenide, a substrate of mammalian thioredoxin and thioredoxin reductase. J Biol Chem 277(42):39456–39462. https://doi.org/10.1074/jbc.M206452200

    Article  CAS  PubMed  Google Scholar 

  123. Liu C, Liu Z, Li M, Li X, Wong YS, Ngai SM, Zheng W, Zhang Y, Chen T (2013) Enhancement of auranofin-induced apoptosis in MCF-7 human breast cells by selenocystine, a synergistic inhibitor of thioredoxin reductase. PLoS One 8(1):e53945. https://doi.org/10.1371/journal.pone.0053945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fan C, Zheng W, Fu X, Li X, Wong YS, Chen T (2014) Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo. Cell Death Dis 5:e1191. https://doi.org/10.1038/cddis.2014.132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zou Q, Chen YF, Zheng XQ, Ye SF, Xu BY, Liu YX, Zeng HH (2018) Novel thioredoxin reductase inhibitor butaselen inhibits tumorigenesis by down-regulating programmed death-ligand 1 expression. J Zhejiang Univ Sci B 19(9):689–698. https://doi.org/10.1631/jzus.B1700219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zheng X, Ma W, Sun R, Yin H, Lin F, Liu Y, Xu W, Zeng H (2018) Butaselen prevents hepatocarcinogenesis and progression through inhibiting thioredoxin reductase activity. Redox Biol 14:237–249. https://doi.org/10.1016/j.redox.2017.09.014

    Article  CAS  PubMed  Google Scholar 

  127. Zheng X, Xu W, Sun R, Yin H, Dong C, Zeng H (2017) Synergism between thioredoxin reductase inhibitor ethaselen and sodium selenite in inhibiting proliferation and inducing death of human non-small cell lung cancer cells. Chem Biol Interact 275:74–85. https://doi.org/10.1016/j.cbi.2017.07.020

    Article  CAS  PubMed  Google Scholar 

  128. Liang YW, Zheng J, Li X, Zheng W, Chen T (2014) Selenadiazole derivatives as potent thioredoxin reductase inhibitors that enhance the radiosensitivity of cancer cells. Eur J Med Chem 84:335–342. https://doi.org/10.1016/j.ejmech.2014.07.032

    Article  CAS  PubMed  Google Scholar 

  129. Xie Q, Zhou Y, Lan G, Yang L, Zheng W, Liang Y, Chen T (2014) Sensitization of cancer cells to radiation by selenadiazole derivatives by regulation of ROS-mediated DNA damage and ERK and AKT pathways. Biochem Biophys Res Commun 449(1):88–93. https://doi.org/10.1016/j.bbrc.2014.04.151

    Article  CAS  PubMed  Google Scholar 

  130. Purohit MP, Verma NK, Kar AK, Singh A, Ghosh D, Patnaik S (2017) Inhibition of thioredoxin reductase by targeted selenopolymeric nanocarriers synergizes the therapeutic efficacy of doxorubicin in MCF7 human breast cancer cells. ACS Appl Mater Interfaces 9(42):36493–36512. https://doi.org/10.1021/acsami.7b07056

    Article  CAS  PubMed  Google Scholar 

  131. von Nida J, Quirk C (2003) Successful treatment of in-transit melanoma metastases using topical 2–4 dinitrochlorobenzene. Australas J Dermatol 44(4):277–280

    Article  Google Scholar 

  132. Nordberg J, Zhong L, Holmgren A, Arner ES (1998) Mammalian thioredoxin reductase is irreversibly inhibited by dinitrohalobenzenes by alkylation of both the redox active selenocysteine and its neighboring cysteine residue. J Biol Chem 273(18):10835–10842

    Article  CAS  PubMed  Google Scholar 

  133. Cenas N, Prast S, Nivinskas H, Sarlauskas J, Arner ES (2006) Interactions of nitroaromatic compounds with the mammalian selenoprotein thioredoxin reductase and the relation to induction of apoptosis in human cancer cells. J Biol Chem 281(9):5593–5603. https://doi.org/10.1074/jbc.M511972200

    Article  CAS  PubMed  Google Scholar 

  134. Tian C, Gao P, Zheng Y, Yue W, Wang X, Jin H, Chen Q (2008) Redox status of thioredoxin-1 (TRX1) determines the sensitivity of human liver carcinoma cells (HepG2) to arsenic trioxide-induced cell death. Cell Res 18(4):458–471. https://doi.org/10.1038/cr.2007.112

    Article  CAS  PubMed  Google Scholar 

  135. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, Chen Y, Zhou L, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z, Wang ZY (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89(9):3354–3360

    CAS  PubMed  Google Scholar 

  136. Lu J, Chew EH, Holmgren A (2007) Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc Natl Acad Sci USA 104(30):12288–12293. https://doi.org/10.1073/pnas.0701549104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu Y, Duan D, Yao J, Zhang B, Peng S, Ma H, Song Y, Fang J (2014) Dithiaarsanes induce oxidative stress-mediated apoptosis in HL-60 cells by selectively targeting thioredoxin reductase. J Med Chem 57(12):5203–5211. https://doi.org/10.1021/jm500221p

    Article  CAS  PubMed  Google Scholar 

  138. Yao XF, Zheng BL, Bai J, Jiang LP, Zheng Y, Qi BX, Geng CY, Zhong LF, Yang G, Chen M, Liu XF, Sun XC (2015) Low-level sodium arsenite induces apoptosis through inhibiting TrxR activity in pancreatic beta-cells. Environ Toxicol Pharmacol 40(2):486–491. https://doi.org/10.1016/j.etap.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  139. Lillig CH, Holmgren A (2007) Thioredoxin and related molecules—from biology to health and disease. Antioxid Redox Signal 9(1):25–47. https://doi.org/10.1089/ars.2007.9.25

    Article  CAS  PubMed  Google Scholar 

  140. Ghezzi P (2013) Protein glutathionylation in health and disease. Biochim Biophys Acta 1830(5):3165–3172. https://doi.org/10.1016/j.bbagen.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  141. Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10(10):721–732. https://doi.org/10.1038/nrm2764

    Article  CAS  PubMed  Google Scholar 

  142. Mandal PK, Schneider M, Kolle P, Kuhlencordt P, Forster H, Beck H, Bornkamm GW, Conrad M (2010) Loss of thioredoxin reductase 1 renders tumors highly susceptible to pharmacologic glutathione deprivation. Cancer Res 70(22):9505–9514. https://doi.org/10.1158/0008-5472.CAN-10-1509

    Article  CAS  PubMed  Google Scholar 

  143. Habermann KJ, Grunewald L, van Wijk S, Fulda S (2017) Targeting redox homeostasis in rhabdomyosarcoma cells: GSH-depleting agents enhance auranofin-induced cell death. Cell Death Dis 8(10):e3067. https://doi.org/10.1038/cddis.2017.412

    Article  PubMed  PubMed Central  Google Scholar 

  144. Rodman SN, Spence JM, Ronnfeldt TJ, Zhu Y, Solst SR, O’Neill RA, Allen BG, Guan X, Spitz DR, Fath MA (2016) Enhancement of radiation response in breast cancer stem cells by inhibition of thioredoxin- and glutathione-dependent metabolism. Radiat Res 186(4):385–395. https://doi.org/10.1667/RR14463.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Du Y, Zhang H, Lu J, Holmgren A (2012) Glutathione and glutaredoxin act as a backup of human thioredoxin reductase 1 to reduce thioredoxin 1 preventing cell death by aurothioglucose. J Biol Chem 287(45):38210–38219. https://doi.org/10.1074/jbc.M112.392225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Fath MA, Ahmad IM, Smith CJ, Spence J, Spitz DR (2011) Enhancement of carboplatin-mediated lung cancer cell killing by simultaneous disruption of glutathione and thioredoxin metabolism. Clin Cancer Res 17(19):6206–6217. https://doi.org/10.1158/1078-0432.CCR-11-0736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sobhakumari A, Love-Homan L, Fletcher EV, Martin SM, Parsons AD, Spitz DR, Knudson CM, Simons AL (2012) Susceptibility of human head and neck cancer cells to combined inhibition of glutathione and thioredoxin metabolism. PLoS One 7(10):e48175. https://doi.org/10.1371/journal.pone.0048175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Scarbrough PM, Mapuskar KA, Mattson DM, Gius D, Watson WH, Spitz DR (2012) Simultaneous inhibition of glutathione- and thioredoxin-dependent metabolism is necessary to potentiate 17AAG-induced cancer cell killing via oxidative stress. Free Radic Biol Med 52(2):436–443. https://doi.org/10.1016/j.freeradbiomed.2011.10.493

    Article  CAS  PubMed  Google Scholar 

  149. Roh JL, Jang H, Kim EH, Shin D (2017) Targeting of the glutathione, thioredoxin, and Nrf2 antioxidant systems in head and neck cancer. Antioxid Redox Signal 27(2):106–114. https://doi.org/10.1089/ars.2016.6841

    Article  CAS  PubMed  Google Scholar 

  150. Mahmood DF, Abderrazak A, El Hadri K, Simmet T, Rouis M (2013) The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal 19(11):1266–1303. https://doi.org/10.1089/ars.2012.4757

    Article  CAS  PubMed  Google Scholar 

  151. Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, Yodoi J (1999) Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 274(31):21645–21650

    Article  CAS  PubMed  Google Scholar 

  152. Chen KS, DeLuca HF (1995) Cloning of the human 1 alpha,25-dihydroxyvitamin D-3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochim Biophys Acta 1263(1):1–9

    Article  PubMed  Google Scholar 

  153. Yamawaki H, Pan S, Lee RT, Berk BC (2005) Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. J Clin Invest 115(3):733–738. https://doi.org/10.1172/JCI23001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yu FX, Goh SR, Dai RP, Luo Y (2009) Adenosine-containing molecules amplify glucose signaling and enhance txnip expression. Mol Endocrinol 23(6):932–942. https://doi.org/10.1210/me.2008-0383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Spindel ON, World C, Berk BC (2012) Thioredoxin interacting protein: redox dependent and independent regulatory mechanisms. Antioxid Redox Signal 16(6):587–596. https://doi.org/10.1089/ars.2011.4137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhou J, Yu Q, Chng WJ (2011) TXNIP (VDUP-1, TBP-2): a major redox regulator commonly suppressed in cancer by epigenetic mechanisms. Int J Biochem Cell Biol 43(12):1668–1673. https://doi.org/10.1016/j.biocel.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  157. Cadenas C, Franckenstein D, Schmidt M, Gehrmann M, Hermes M, Geppert B, Schormann W, Maccoux LJ, Schug M, Schumann A, Wilhelm C, Freis E, Ickstadt K, Rahnenfuhrer J, Baumbach JI, Sickmann A, Hengstler JG (2010) Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer. Breast Cancer Res 12(3):R44. https://doi.org/10.1186/bcr2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kwon HJ, Won YS, Suh HW, Jeon JH, Shao Y, Yoon SR, Chung JW, Kim TD, Kim HM, Nam KH, Yoon WK, Kim DG, Kim JH, Kim YS, Kim DY, Kim HC, Choi I (2010) Vitamin D3 upregulated protein 1 suppresses TNF-alpha-induced NF-kappaB activation in hepatocarcinogenesis. J Immunol 185(7):3980–3989. https://doi.org/10.4049/jimmunol.1000990

    Article  CAS  PubMed  Google Scholar 

  159. Feingold PL, Surman DR, Brown K, Xu Y, McDuffie LA, Shukla V, Reardon ES, Crooks DR, Trepel JB, Lee S, Lee MJ, Gao S, Xi S, McLoughlin KC, Diggs LP, Beer DG, Nancarrow DJ, Neckers LM, Davis JL, Hoang CD, Hernandez JM, Schrump DS, Ripley RT (2018) Induction of thioredoxin-interacting protein by a histone deacetylase inhibitor, entinostat, is associated with DNA damage and apoptosis in esophageal adenocarcinoma. Mol Cancer Ther 17(9):2013–2023. https://doi.org/10.1158/1535-7163.MCT-17-1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhu G, Zhou L, Liu H, Shan Y, Zhang X (2018) MicroRNA-224 promotes pancreatic cancer cell proliferation and migration by targeting the TXNIP-mediated HIF1alpha pathway. Cell Physiol Biochem 48(4):1735–1746. https://doi.org/10.1159/000492309

    Article  CAS  PubMed  Google Scholar 

  161. Jung H, Kim MJ, Kim DO, Kim WS, Yoon SJ, Park YJ, Yoon SR, Kim TD, Suh HW, Yun S, Min JK, Lee HG, Lee YH, Na HJ, Lee DC, Kim HC, Choi I (2013) TXNIP maintains the hematopoietic cell pool by switching the function of p53 under oxidative stress. Cell Metab 18(1):75–85. https://doi.org/10.1016/j.cmet.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  162. Sheth SS, Bodnar JS, Ghazalpour A, Thipphavong CK, Tsutsumi S, Tward AD, Demant P, Kodama T, Aburatani H, Lusis AJ (2006) Hepatocellular carcinoma in Txnip-deficient mice. Oncogene 25(25):3528–3536. https://doi.org/10.1038/sj.onc.1209394

    Article  CAS  PubMed  Google Scholar 

  163. Li J, Yue Z, Xiong W, Sun P, You K, Wang J (2017) TXNIP overexpression suppresses proliferation and induces apoptosis in SMMC7221 cells through ROS generation and MAPK pathway activation. Oncol Rep 37(6):3369–3376. https://doi.org/10.3892/or.2017.5577

    Article  CAS  PubMed  Google Scholar 

  164. Woolston CM, Madhusudan S, Soomro IN, Lobo DN, Reece-Smith AM, Parsons SL, Martin SG (2013) Thioredoxin interacting protein and its association with clinical outcome in gastro-oesophageal adenocarcinoma. Redox Biol 1:285–291. https://doi.org/10.1016/j.redox.2013.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Nishizawa K, Nishiyama H, Matsui Y, Kobayashi T, Saito R, Kotani H, Masutani H, Oishi S, Toda Y, Fujii N, Yodoi J, Ogawa O (2011) Thioredoxin-interacting protein suppresses bladder carcinogenesis. Carcinogenesis 32(10):1459–1466. https://doi.org/10.1093/carcin/bgr137

    Article  CAS  PubMed  Google Scholar 

  166. Zhou Y, Zhou J, Lu X, Tan TZ, Chng WJ (2018) BET Bromodomain inhibition promotes De-repression of TXNIP and activation of ASK1-MAPK pathway in acute myeloid leukemia. BMC Cancer 18(1):731. https://doi.org/10.1186/s12885-018-4661-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Morrison JA, Pike LA, Sams SB, Sharma V, Zhou Q, Severson JJ, Tan AC, Wood WM, Haugen BR (2014) Thioredoxin interacting protein (TXNIP) is a novel tumor suppressor in thyroid cancer. Mol Cancer 13:62. https://doi.org/10.1186/1476-4598-13-62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Park JW, Lee SH, Woo GH, Kwon HJ, Kim DY (2018) Downregulation of TXNIP leads to high proliferative activity and estrogen-dependent cell growth in breast cancer. Biochem Biophys Res Commun 498(3):566–572. https://doi.org/10.1016/j.bbrc.2018.03.020

    Article  CAS  PubMed  Google Scholar 

  169. Kwon HJ, Won YS, Nam KT, Yoon YD, Jee H, Yoon WK, Nam KH, Kang JS, Han SU, Choi IP, Kim DY, Kim HC (2012) Vitamin D(3) upregulated protein 1 deficiency promotes N-methyl-N-nitrosourea and Helicobacter pylori-induced gastric carcinogenesis in mice. Gut 61(1):53–63. https://doi.org/10.1136/gutjnl-2011-300361

    Article  CAS  PubMed  Google Scholar 

  170. Masaki S, Masutani H, Yoshihara E, Yodoi J (2012) Deficiency of thioredoxin binding protein-2 (TBP-2) enhances TGF-beta signaling and promotes epithelial to mesenchymal transition. PLoS One 7(6):e39900. https://doi.org/10.1371/journal.pone.0039900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hirata Y, Saito M, Tsukamoto I, Yamaguchi F, Sui L, Kamitori K, Dong Y, Uehara E, Konishi R, Janjua N, Tokuda M (2009) Analysis of the inhibitory mechanism of d-allose on MOLT-4F leukemia cell proliferation. J Biosci Bioeng 107(5):562–568. https://doi.org/10.1016/j.jbiosc.2008.12.021

    Article  CAS  PubMed  Google Scholar 

  172. Hoshikawa H, Mori T, Mori N (2010) In vitro and in vivo effects of d-allose: up-regulation of thioredoxin-interacting protein in head and neck cancer cells. Ann Otol Rhinol Laryngol 119(8):567–571. https://doi.org/10.1177/000348941011900810

    Article  PubMed  Google Scholar 

  173. Noguchi C, Kamitori K, Hossain A, Hoshikawa H, Katagi A, Dong Y, Sui L, Tokuda M, Yamaguchi F (2016) d-Allose inhibits cancer cell growth by reducing GLUT1 expression. Tohoku J Exp Med 238(2):131–141. https://doi.org/10.1620/tjem.238.131

    Article  CAS  PubMed  Google Scholar 

  174. Yamaguchi F, Takata M, Kamitori K, Nonaka M, Dong Y, Sui L, Tokuda M (2008) Rare sugar d-allose induces specific up-regulation of TXNIP and subsequent G1 cell cycle arrest in hepatocellular carcinoma cells by stabilization of p27kip1. Int J Oncol 32(2):377–385

    CAS  PubMed  Google Scholar 

  175. Kanaji N, Kamitori K, Hossain A, Noguchi C, Katagi A, Kadowaki N, Tokuda M (2018) Additive antitumour effect of dallose in combination with cisplatin in non-small cell lung cancer cells. Oncol Rep 39(3):1292–1298. https://doi.org/10.3892/or.2018.6192

    Article  CAS  PubMed  Google Scholar 

  176. Hoshikawa H, Indo K, Mori T, Mori N (2011) Enhancement of the radiation effects by d-allose in head and neck cancer cells. Cancer Lett 306(1):60–66. https://doi.org/10.1016/j.canlet.2011.02.032

    Article  CAS  PubMed  Google Scholar 

  177. Yamaguchi F, Kamitori K, Sanada K, Horii M, Dong Y, Sui L, Tokuda M (2008) Rare sugar d-allose enhances anti-tumor effect of 5-fluorouracil on the human hepatocellular carcinoma cell line HuH-7. J Biosci Bioeng 106(3):248–252. https://doi.org/10.1263/jbb.106.248

    Article  CAS  PubMed  Google Scholar 

  178. Hoshikawa H, Kamitori K, Indo K, Mori T, Kamata M, Takahashi T, Tokuda M (2018) Combined treatment with d-allose, docetaxel and radiation inhibits the tumor growth in an in vivo model of head and neck cancer. Oncol Lett 15(3):3422–3428. https://doi.org/10.3892/ol.2018.7787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31600837), Henan Province Science and Technology Project (172102310622), Key Scientific Research Projects of University in Henan Province (16A180017, 16A180018), and the Nanhu Scholars Program for Young Scholars of XYNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Si Zeng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, JJ., Geng, WS., Wang, ZQ. et al. The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol 84, 453–470 (2019). https://doi.org/10.1007/s00280-019-03869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-03869-4

Keywords

Navigation