Skip to main content

Advertisement

Log in

Effects of FW2 Nanoparticles Toxicity in a New In Vitro Pulmonary Vascular Cells Model Mimicking Endothelial Dysfunction

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Several epidemiological studies have revealed the involvement of nanoparticles (NPs) in respiratory and cardiovascular mortality. In this work, the focus will be on the effect of manufactured carbon black NPs for risk assessment of consumers and workers, as human exposure is likely to increase. Since the pulmonary circulation could be one of the primary targets of inhaled NPs, patients suffering from pulmonary hypertension (PH) could be a population at risk. To compare the toxic effect of carbon black NPs in the pulmonary circulation under physiologic and pathological conditions, we developed a new in vitro model mimicking the endothelial dysfunction and vascular dynamics observed in vascular pathology such as PH. Human pulmonary artery endothelial cells were cultured under physiological conditions (static and normoxia 21% O2) or under pathological conditions (20% cycle stretch and hypoxia 1% O2). Then, cells were treated for 4 or 6 h with carbon black FW2 NPs from 5 to 10 µg/cm2. Different endpoints were studied: (i) NPs internalization by transmission electronic microscopy; (ii) oxidative stress by CM-H2DCFDA probe and electron paramagnetic resonance; (iii) NO (nitrites and nitrates) production by Griess reaction; (iv) inflammation by ELISA assay; and (v) calcium signaling by confocal microscopy. The present study characterizes the in vitro model mimicking endothelial dysfunction in PH and indicates that, under such pathological conditions, oxidative stress and inflammation are increased along with calcium signaling alterations, as compared to the physiological conditions. Human exposure to carbon black NPs could produce greater deleterious effects in vulnerable patients suffering from cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CS:

Cyclic stretch

EC:

Endothelial cells

HPAEC:

Human pulmonary artery endothelial cells

NPs:

Nanoparticles

PH:

Pulmonary human

ROS:

Reactive oxygen species

References

  1. Li, N., Georas, S., Alexis, N., Fritz, P., Xia, T., Williams, M. A., Horner, E., & Nel, A. (2016). A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. The Journal of Allergy and Clinical Immunology, 138(2), 386–396. https://doi.org/10.1016/j.jaci.2016.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu, T., & Tang, M. (2018). Review of the effects of manufactured nanoparticles on mammalian target organs. Journal of Applied Toxicology, 38(1), 25–40. https://doi.org/10.1002/jat.3499

    Article  CAS  PubMed  Google Scholar 

  3. Oberdörster, G. (2001). Pulmonary effects of inhaled ultrafine particles. International Archives of Occupational and Environmental Health., 74(1), 1–8. https://doi.org/10.1007/s004200000185

    Article  PubMed  Google Scholar 

  4. Schulz, H., Harder, V., Ibald-Mulli, A., Khandoga, A., Koenig, W., Krombach, F., Radykewicz, R., Stampfl, A., Thorand, B., & Peters, A. (2005). Cardiovascular effects of fine and ultrafine particles. Journal of Aerosol Medicine, 18(1), 1–22. https://doi.org/10.1089/jam.2005.18.1

    Article  CAS  PubMed  Google Scholar 

  5. McCormack, M. C., & Mathai, S. C. (2019). A crossroads between the heart and lungs: Air pollution and pulmonary hypertension. European Respiratory Journal, 53(5), 1900654. https://doi.org/10.1183/13993003.00654-2019

    Article  PubMed  Google Scholar 

  6. Shannahan, J. H., Kodavanti, U. P., & Brown, J. M. (2012). Manufactured and airborne nanoparticle cardiopulmonary interactions: A review of mechanisms and the possible contribution of mast cells. Inhalation Toxicology, 24(5), 320–339. https://doi.org/10.3109/08958378.2012.668229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Frampton, M. W. (2001). Systemic and cardiovascular effects of airway injury and inflammation: ultrafine particle exposure in humans. Environmental Health Perspectives, 109(Suppl 4), 529–32. https://doi.org/10.1289/ehp.01109s4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller, M. R., Raftis, J. B., Langrish, J. P., McLean, S. G., Samutrtai, P., Connell, S. P., Wilson, S., Vesey, A. T., Fokkens, P. H. B., Boere, A. J. F., Krystek, P., Campbell, C. J., Hadoke, P. W. F., Donaldson, K., Cassee, F. R., Newby, D. E., Duffin, R., & Mills, N. L. (2017). Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano., 11(5), 4542–4552. https://doi.org/10.1021/acsnano.6b08551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ando, J., & Yamamoto, K. (2011). Effects of shear stress and stretch on endothelial function. Antioxidants & Redox Signaling, 15(5), 1389–1403. https://doi.org/10.1089/ars.2010.3361

    Article  CAS  Google Scholar 

  10. Vanhoutte, P. M., Shimokawa, H., Feletou, M., & Tang, E. H. (2017). Endothelial dysfunction and vascular disease - A 30th anniversary update. Acta Psychologica, 219(1), 22–96. https://doi.org/10.1111/apha.12646

    Article  CAS  Google Scholar 

  11. Vesterdal, L. K., Folkmann, J. K., Jacobsen, N. R., Sheykhzade, M., Wallin, H., Loft, S., & Møller, P. (2010). Pulmonary exposure to carbon black nanoparticles and vascular effects. Particle and Fibre Toxicology, 7, 33. https://doi.org/10.1186/1743-8977-7-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ganguly, K., Ettehadieh, D., Upadhyay, S., Takenaka, S., Adler, T., Karg, E., Krombach, F., Kreyling, W. G., Schulz, H., Schmid, O., & Stoeger, T. (2017). Early pulmonary response is critical for extra-pulmonary carbon nanoparticle mediated effects: Comparison of inhalation versus intra-arterial infusion exposures in mice. Particle and Fibre Toxicology, 14(1), 19. https://doi.org/10.1186/s12989-017-0200-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamawaki, H., & Iwai, N. (2006). Mechanisms underlying nano-sized air-pollution-mediated progression of atherosclerosis: Carbon black causes cytotoxic injury/inflammation and inhibits cell growth in vascular endothelial cells. Circulation Journal, 70(1), 129–140. https://doi.org/10.1253/circj.70.129

    Article  CAS  PubMed  Google Scholar 

  14. Vesterdal, L. K., Mikkelsen, L., Folkmann, J. K., Sheykhzade, M., Cao, Y., Roursgaard, M., Loft, S., & Møller, P. (2012). Carbon black nanoparticles and vascular dysfunction in cultured endothelial cells and artery segments. Toxicology Letters, 214(1), 19–26. https://doi.org/10.1016/j.toxlet.2012.07.022

    Article  CAS  PubMed  Google Scholar 

  15. Deweirdt, J., Quignard, J. F., Lacomme, S., Gontier, E., Mornet, S., Savineau, J. P., Marthan, R., Guibert, C., & Baudrimont, I. (2020). In vitro study of carbon black nanoparticles on human pulmonary artery endothelial cells: Effects on calcium signaling and mitochondrial alterations. Archives of Toxicology, 94(7), 2331–2348. https://doi.org/10.1007/s00204-020-02764-9

    Article  CAS  PubMed  Google Scholar 

  16. Peters, K., Unger, R. E., Kirkpatrick, C. J., Gatti, A. M., & Monari, E. (2004). Effects of nano-scaled particles on endothelial cell function in vitro: Studies on viability, proliferation and inflammation. Journal of Materials Science. Materials in Medicine, 15(4), 321–325. https://doi.org/10.1023/b:jmsm.0000021095.36878.1b

    Article  CAS  PubMed  Google Scholar 

  17. Touyz, R. M. (2005). Reactive oxygen species as mediators of calcium signaling by angiotensin II: Implications in vascular physiology and pathophysiology. Antioxidants & Redox Signaling, 7(9–10), 1302–1314. https://doi.org/10.1089/ars.2005.7.1302

    Article  CAS  Google Scholar 

  18. Genet, N., Billaud, M., Rossignol, R., Dubois, M., Gillibert-Duplantier, J., Isakson, B. E., Marthan, R., Savineau, J. P., & Guibert, C. (2017). Signaling pathways linked to serotonin-induced superoxide anion production: A physiological role for mitochondria in pulmonary arteries. Frontiers in Physiology, 8, 76. https://doi.org/10.3389/fphys.2017.00076

    Article  PubMed  PubMed Central  Google Scholar 

  19. Parpaite, T., Cardouat, G., Mauroux, M., Gillibert-Duplantier, J., Robillard, P., Quignard, J. F., Marthan, R., Savineau, J. P., & Ducret, T. (2016). Effect of hypoxia on TRPV1 and TRPV4 channels in rat pulmonary arterial smooth muscle cells. Pflugers Archiv. European Journal of Physiology, 468(1), 111–130. https://doi.org/10.1007/s00424-015-1704-6

    Article  CAS  PubMed  Google Scholar 

  20. Dubes, V., Parpaite, T., Ducret, T., Quignard, J. F., Mornet, S., Reinhardt, N., Baudrimont, I., Dubois, M., Freund-Michel, V., Marthan, R., Muller, B., Savineau, J. P., & Courtois, A. (2017). Calcium signalling induced by in vitro exposure to silicium dioxide nanoparticles in rat pulmonary artery smooth muscle cells. Toxicology, 375, 37–47. https://doi.org/10.1016/j.tox.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  21. Humbert, M., Morrell, N. W., Archer, S. L., Stenmark, K. R., MacLean, M. R., Lang, I. M., Christman, B. W., Weir, E. K., Eickelberg, O., Voelkel, N. F., & Rabinovitch, M. (2004). Cellular and molecular pathobiology of pulmonary arterial hypertension. Journal of the American College of Cardiology, 43(12 Suppl S), 13S-24S. https://doi.org/10.1016/j.jacc.2004.02.029

    Article  CAS  PubMed  Google Scholar 

  22. Hassoun, P. M., Mouthon, L., Barberà, J. A., Eddahibi, S., Flores, S. C., Grimminger, F., Jones, P. L., Maitland, M. L., Michelakis, E. D., Morrell, N. W., Newman, J. H., Rabinovitch, M., Schermuly, R., Stenmark, K. R., Voelkel, N. F., Yuan, J. X., & Humbert, M. (2009). Inflammation, growth factors, and pulmonary vascular remodeling. Journal of the American College of Cardiology, 54(1 Suppl), S10–S19. https://doi.org/10.1016/j.jacc.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  23. Tuder, R. M., Archer, S. L., Dorfmüller, P., Erzurum, S. C., Guignabert, C., Michelakis, E., Rabinovitch, M., Schermuly, R., Stenmark, K. R., & Morrell, N. W. (2013). Relevant issues in the pathology and pathobiology of pulmonary hypertension. Journal of the American College of Cardiology, 62(25 Suppl), D4-12. https://doi.org/10.1016/j.jacc.2013.10.025

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guibert, C., Marthan, R., & Savineau, J. P. (2007). Modulation of ion channels in pulmonary arterial hypertension. Current Pharmaceutical Design, 13(24), 2443–2455. https://doi.org/10.2174/138161207781368585

    Article  CAS  PubMed  Google Scholar 

  25. Freund-Michel, V., Guibert, C., Dubois, M., Courtois, A., Marthan, R., Savineau, J. P., & Muller, B. (2013). Reactive oxygen species as therapeutic targets in pulmonary hypertension. Therapeutic Advances in Respiratory Disease, 7(3), 175–200. https://doi.org/10.1177/1753465812472940

    Article  CAS  PubMed  Google Scholar 

  26. Suresh, K., & Shimoda, L. A. (2017). Endothelial cell reactive oxygen species and Ca2+ signaling in pulmonary hypertension. Advances in Experimental Medicine and Biology, 967, 299–314. https://doi.org/10.1007/978-3-319-63245-2_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. L’azouJorly, B. J., On, D., Sellier, E., Moisan, F., Fleury-Feith, J., Cambar, J., Brochard, P., & Ohayon-Courtès, C. (2008). In vitro effects of nanoparticles on renal cells. Particle and Fibre Toxicology, 5, 22. https://doi.org/10.1186/1743-8977-5-22

    Article  CAS  Google Scholar 

  28. Hussain, S., Boland, S., Baeza-Squiban, A., Hamel, R., Thomassen, L. C., Martens, J. A., Billon-Galland, M. A., Fleury-Feith, J., Moisan, F., Pairon, J. C., & Marano, F. (2009). Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount. Toxicology, 260(1–3), 142–149. https://doi.org/10.1016/j.tox.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  29. Deweirdt, J., Quignard, J. F., Crobeddu, B., Baeza-Squiban, A., Sciare, J., Courtois, A., Lacomme, S., Gontier, E., Muller, B., Savineau, J. P., Marthan, R., Guibert, C., & Baudrimont, I. (2017). Involvement of oxidative stress and calcium signaling in airborne particulate matter - induced damages in human pulmonary artery endothelial cells. Toxicology in Vitro, 45(Pt 3), 340–350. https://doi.org/10.1016/j.tiv.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  30. Anwar, M. A., Shalhoub, J., Lim, C. S., Gohel, M. S., & Davies, A. H. (2012). The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. Journal of Vascular Research, 49(6), 463–478. https://doi.org/10.1159/000339151

    Article  CAS  PubMed  Google Scholar 

  31. Welsh, D. J., & Peacock, A. J. (2013). Cellular responses to hypoxia in the pulmonary circulation. High Altitude Medicine & Biology, 14(2), 111–116. https://doi.org/10.1089/ham.2013.1016

    Article  Google Scholar 

  32. Allahdadi, K. J., Walker, B. R., & Kanagy, N. L. (2005). Augmented endothelin vasoconstriction in intermittent hypoxia-induced hypertension. Hypertension, 45(4), 705–709. https://doi.org/10.1161/01.HYP.0000153794.52852.04

    Article  CAS  PubMed  Google Scholar 

  33. Heitzer, T., Schlinzig, T., Krohn, K., Meinertz, T., & Münzel, T. (2001). Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation, 104(22), 2673–2678. https://doi.org/10.1161/hc4601.099485.Erratum.In:Circulation.2003Jul29;108(4):500 PMID: 11723017.

    Article  CAS  PubMed  Google Scholar 

  34. Donaldson, K., Duffin, R., Langrish, J. P., Miller, M. R., Mills, N. L., Poland, C. A., Raftis, J., Shah, A., Shaw, C. A., & Newby, D. E. (2013). Nanoparticles and the cardiovascular system: A critical review. Nanomedicine (London, England), 8(3), 403–423. https://doi.org/10.2217/nnm.13.16

    Article  CAS  Google Scholar 

  35. Freese, C., Schreiner, D., Anspach, L., Bantz, C., Maskos, M., Unger, R. E., & Kirkpatrick, C. J. (2014). In vitro investigation of silica nanoparticle uptake into human endothelial cells under physiological cyclic stretch. Particle and Fibre Toxicology, 11, 68. https://doi.org/10.1186/s12989-014-0068-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jufri, N. F., Mohamedali, A., Avolio, A., & Baker, M. S. (2015). Mechanical stretch: Physiological and pathological implications for human vascular endothelial cells. Vasc Cell., 7, 8. https://doi.org/10.1186/s13221-015-0033-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zuo, L., Rose, B. A., Roberts, W. J., He, F., & Banes-Berceli, A. K. (2014). Molecular characterization of reactive oxygen species in systemic and pulmonary hypertension. American Journal of Hypertension, 27(5), 643–650. https://doi.org/10.1093/ajh/hpt292

    Article  CAS  PubMed  Google Scholar 

  38. Sommer, N., Strielkov, I., Pak, O., & Weissmann, N. (2016). Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. European Respiratory Journal, 47(1), 288–303. https://doi.org/10.1183/13993003.00945-2015

    Article  CAS  PubMed  Google Scholar 

  39. Liu, J. Q., Zelko, I. N., Erbynn, E. M., Sham, J. S., & Folz, R. J. (2006). Hypoxic pulmonary hypertension: Role of superoxide and NADPH oxidase (gp91phox). American Journal of Physiology. Lung Cellular and Molecular Physiology, 290(1), L2-10. https://doi.org/10.1152/ajplung.00135.2005

    Article  CAS  PubMed  Google Scholar 

  40. Stenmark, K. R., Fagan, K. A., & Frid, M. G. (2006). Hypoxia-induced pulmonary vascular remodeling: Cellular and molecular mechanisms. Circulation Research, 99(7), 675–691. https://doi.org/10.1161/01.RES.0000243584.45145.3f

    Article  CAS  PubMed  Google Scholar 

  41. Paravicini, T. M., & Touyz, R. M. (2006). Redox signaling in hypertension. Cardiovascular Research, 71(2), 247–258. https://doi.org/10.1016/j.cardiores.2006.05.001

    Article  CAS  PubMed  Google Scholar 

  42. Tamura, Y., Phan, C., Tu, L., Le Hiress, M., Thuillet, R., Jutant, E. M., Fadel, E., Savale, L., Huertas, A., Humbert, M., & Guignabert, C. (2018). Ectopic upregulation of membrane-bound IL6R drives vascular remodeling in pulmonary arterial hypertension. The Journal of Clinical Investigation, 128(5), 1956–1970. https://doi.org/10.1172/JCI96462

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kobayashi, S., Nagino, M., Komatsu, S., Naruse, K., Nimura, Y., Nakanishi, M., & Sokabe, M. (2003). Stretch-induced IL-6 secretion from endothelial cells requires NF-kappaB activation. Biochemical and Biophysical Research Communications, 308(2), 306–312. https://doi.org/10.1016/s0006-291x(03)01362-7

    Article  CAS  PubMed  Google Scholar 

  44. Korff, T., Aufgebauer, K., & Hecker, M. (2007). Cyclic stretch controls the expression of CD40 in endothelial cells by changing their transforming growth factor-beta1 response. Circulation, 116(20), 2288–2297. https://doi.org/10.1161/CIRCULATIONAHA.107.730309

    Article  CAS  PubMed  Google Scholar 

  45. Izikki, M., Guignabert, C., Fadel, E., Humbert, M., Tu, L., Zadigue, P., Dartevelle, P., Simonneau, G., Adnot, S., Maitre, B., Raffestin, B., & Eddahibi, S. (2009). Endothelial-derived FGF2 contributes to the progression of pulmonary hypertension in humans and rodents. The Journal of Clinical Investigation, 119(3), 512–523. https://doi.org/10.1172/JCI35070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gilbert, G., Courtois, A., Dubois, M., Cussac, L. A., Ducret, T., Lory, P., Marthan, R., Savineau, J. P., & Quignard, J. F. (2017). T-type voltage gated calcium channels are involved in endothelium-dependent relaxation of mice pulmonary artery. Biochemical Pharmacology, 138, 61–72. https://doi.org/10.1016/j.bcp.2017.04.021

    Article  CAS  PubMed  Google Scholar 

  47. Black, S. M., DeVol, J. M., & Wedgwood, S. (2008). Regulation of fibroblast growth factor-2 expression in pulmonary arterial smooth muscle cells involves increased reactive oxygen species generation. American Journal of Physiology. Cell Physiology, 294(1), C345–C354. https://doi.org/10.1152/ajpcell.00216.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng, G. C., Briggs, W. H., Gerson, D. S., Libby, P., Grodzinsky, A. J., Gray, M. L., & Lee, R. T. (1997). Mechanical strain tightly controls fibroblast growth factor-2 release from cultured human vascular smooth muscle cells. Circulation Research, 80(1), 28–36. https://doi.org/10.1161/01.res.80.1.28

    Article  CAS  PubMed  Google Scholar 

  49. Freund-Michel, V., Cardoso Dos Santos, M., Guignabert, C., Montani, D., Phan, C., Coste, F., Tu, L., Dubois, M., Girerd, B., Courtois, A., Humbert, M., Savineau, J. P., Marthan, R., & Muller, B. (2015). Role of nerve growth factor in development and persistence of experimental pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 192(3), 342–355. https://doi.org/10.1164/rccm.201410-1851OC

    Article  CAS  PubMed  Google Scholar 

  50. Rodat, L., Savineau, J. P., Marthan, R., & Guibert, C. (2007). Effect of chronic hypoxia on voltage-independent calcium influx activated by 5-HT in rat intrapulmonary arteries. Pflugers Archiv: European Journal of Physiology, 454(1), 41–51. https://doi.org/10.1007/s00424-006-0178-y

    Article  CAS  PubMed  Google Scholar 

  51. Ducret, T., Guibert, C., Marthan, R., & Savineau, J. P. (2008). Serotonin-induced activation of TRPV4-like current in rat intrapulmonary arterial smooth muscle cells. Cell Calcium, 43(4), 315–323. https://doi.org/10.1016/j.ceca.2007.05.018

    Article  CAS  PubMed  Google Scholar 

  52. Fantozzi, I., Zhang, S., Platoshyn, O., Remillard, C. V., Cowling, R. T., & Yuan, J. X. (2003). Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285(6), L1233–L1245. https://doi.org/10.1152/ajplung.00445.2002

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, D. X., & Gutterman, D. D. (2011). Transient receptor potential channel activation and endothelium-dependent dilation in the systemic circulation. Journal of Cardiovascular Pharmacology, 57(2), 133–139. https://doi.org/10.1097/FJC.0b013e3181fd35d1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Papademetriou, I., Vedula, E., Charest, J., & Porter, T. (2018). Effect of flow on targeting and penetration of angiopep-decorated nanoparticles in a microfluidic model blood-brain barrier. PLoS One, 13(10), e0205158. https://doi.org/10.1371/journal.pone.0205158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Delfino, R. J., Sioutas, C., & Malik, S. (2005). Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environmental Health Perspectives, 113(8), 934–946. https://doi.org/10.1289/ehp.7938

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang, R., Dai, Y., Zhang, X., Niu, Y., Meng, T., Li, Y., Duan, H., Bin, P., Ye, M., Jia, X., Shen, M., Yu, S., Yang, X., Gao, W., & Zheng, Y. (2014). Reduced pulmonary function and increased pro-inflammatory cytokines in nanoscale carbon black-exposed workers. Particle and Fibre Toxicology, 11, 73. https://doi.org/10.1186/s12989-014-0073-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Courtois, A., Andujar, P., Ladeiro, Y., Ducret, T., Rogerieux, F., Lacroix, G., Baudrimont, I., Guibert, C., Roux, E., Canal-Raffin, M., Brochard, P., Marano, F., Marthan, R., & Muller, B. (2010). Effect of engineered nanoparticles on vasomotor responses in rat intrapulmonary artery. Toxicology and Applied Pharmacology, 245(2), 203–210. https://doi.org/10.1016/j.taap.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  58. Birukov, K. G. (2009). Cyclic stretch, reactive oxygen species, and vascular remodeling. Antioxidants & Redox Signaling, 11(7), 1651–1667. https://doi.org/10.1089/ars.2008.2390

    Article  CAS  Google Scholar 

  59. Spescha, R. D., Glanzmann, M., Simic, B., Witassek, F., Keller, S., Akhmedov, A., Tanner, F. C., Lüscher, T. F., & Camici, G. G. (2014). Adaptor protein p66(Shc) mediates hypertension-associated, cyclic stretch-dependent, endothelial damage. Hypertension, 64(2), 347–353. https://doi.org/10.1161/HYPERTENSIONAHA.113.02129

    Article  CAS  PubMed  Google Scholar 

  60. Li, D., Qu, Y., Tao, L., Liu, H., Hu, A., Gao, F., Sharifi-Azad, S., Grunwald, Z., Ma, X. L., & Sun, J. Z. (2006). Inhibition of iNOS protects the aging heart against beta-adrenergic receptor stimulation-induced cardiac dysfunction and myocardial ischemic injury. Journal of Surgical Research, 131(1), 64–72. https://doi.org/10.1016/j.jss.2005.06.038

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The PhD scholarship of Juliette DEWEIRDT was provided by the “Fondation pour la Recherche Médicale”—FRM PMJ20151034585.

Funding

This work was supported by the "Fonds de Dotation pour la Recherche en Santé Respiratoire" (Grant 2012/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Baudrimont.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Rajiv Janardhanan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deweirdt, J., Ducret, T., Quignard, JF. et al. Effects of FW2 Nanoparticles Toxicity in a New In Vitro Pulmonary Vascular Cells Model Mimicking Endothelial Dysfunction. Cardiovasc Toxicol 22, 14–28 (2022). https://doi.org/10.1007/s12012-021-09679-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09679-6

Keywords

Navigation