Skip to main content
Log in

Assessing Metal Toxicity on Crustaceans in Aquatic Ecosystems: A Comprehensive Review

  • Review
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Residual concentrations of some trace elements and lightweight metals, including cadmium, copper, lead, mercury, silver, zinc, nickel, chromium, arsenic, gallium, indium, gold, cobalt, polonium, and thallium, are widely detected in aquatic ecosystems globally. Although their origin may be natural, human activities significantly elevate their environmental concentrations. Metals, renowned pollutants, threaten various organisms, particularly crustaceans. Due to their feeding habits and habitat, crustaceans are highly exposed to contaminants and are considered a crucial link in xenobiotic transfer through the food chain. Moreover, crustaceans absorb metals via their gills, crucial pathways for metal uptake in water. This review summarises the adverse effects of well-studied metals (Cd, Cu, Pb, Hg, Zn, Ni, Cr, As, Co) and synthesizes knowledge on the toxicity of less-studied metals (Ag, Ga, In, Au, Pl, Tl), their presence in waters, and impact on crustaceans. Bibliometric analysis underscores the significance of this topic. In general, the toxic effects of the examined metals can decrease survival rates by inducing oxidative stress, disrupting biochemical balance, causing histological damage, interfering with endocrine gland function, and inducing cytotoxicity. Metal exposure can also result in genotoxicity, reduced reproduction, and mortality. Despite current toxicity knowledge, there remains a research gap in this field, particularly concerning the toxicity of rare earth metals, presenting a potential future challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data will be made available on request.

Abbreviations

AChE:

Acetylcholinesterase

AER:

Ammonia-N excretion rate

ALP:

Alkaline phosphatase

Dw:

Dry weight

CAT:

Catalase

CE:

Carboxylesterase

CEA:

Cellular energy allocation

ETC:

Mitochondrial electron transport chain

GLU:

Glucose

GPx:

Glutathione peroxidase

GLY:

Glycogen

GR:

Glutathione reductase

GST:

Glutathione S transferase

H2O2 :

Hydrogen peroxidase

LC50:

Lethal concentration

LDH:

Lactate dehydrogenase

LPO:

Lipid peroxidation

LZM:

Lysosome activity

MDA:

Malondialdehyde

NO:

Nitric oxide

O2 :

Superoxide anion

OCR:

Oxygen consumption rate

PC:

Protein carbonyl

PO:

Phenoloxidase

PROT:

Protein content

ROS:

Reactive oxygen species

RR:

Respiratory rate

SDH:

Succinate dehydrogenase

SOD:

Superoxide dismutase

THC:

Total hemocyte count

WOS:

Web of science

Ww:

Wet weight

References

  1. Biswas A, Chandra BP, Prathibha C (2023) Highly efficient and simultaneous remediation of heavy metal ions (Pb(II), Hg(II), As(V), As(III) and Cr(VI)) from water using Ce intercalated and ceria decorated titanate nanotubes. Appl Surf Sci 612:155841. https://doi.org/10.1016/j.apsusc.2022.155841

    Article  CAS  Google Scholar 

  2. de Vries W, Kros J, Voogd JC, Ros GH (2023) Integrated assessment of agricultural practices on large scale losses of ammonia, greenhouse gases, nutrients and heavy metals to air and water. Sci Total Environ 857:159220. https://doi.org/10.1016/j.scitotenv.2022.159220

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Nyarko E, Boateng CM, Asamoah O, Edusei MO, Mahu E (2023) Potential human health risks associated with ingestion of heavy metals through fish consumption in the Gulf of Guinea. Toxicol Rep 10:117–123. https://doi.org/10.1016/j.toxrep.2023.01.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Zhang YM, Lin CY, Li BZ, Dong WR, Shu MA (2023) Bioaccumulation of Cd and comparative transcriptome analysis after the antagonism of Se in the hepatopancreas of estuary mud crab (Scylla paramamosain). Comparative Biochem Physiol Part - C: Toxicol Pharmacol 263:109474. https://doi.org/10.1016/j.cbpc.2022.109474

    Article  CAS  Google Scholar 

  5. Yu B, Wang X, Dong KF, Xiao G, Ma D (2020) Heavy metal concentrations in aquatic organisms (fishes, shrimp and crabs) and health risk assessment in China. Mar Pollut Bull 159:111505

    Article  CAS  PubMed  Google Scholar 

  6. Pourret O, Hursthouse A (2019) It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. Int J Environ Res Public Health 16(22):4446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Truchet DM, Negro CL, Buzzi NS, Mora MC, Marcovecchio JE (2023) Assessment of metal contamination in an urbanized estuary (Atlantic Ocean) using crabs as biomonitors: A multiple biomarker approach. Chemosphere 312:137317. https://doi.org/10.1016/j.chemosphere.2022.137317

    Article  CAS  PubMed  Google Scholar 

  8. Saher NU, Siddiqui AS (2019) Occurrence of heavy metals in sediment and their bioaccumulation in sentinel crab (Macrophthalmus depressus) from highly impacted coastal zone. Chemosphere 221:89–98

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Jyoti D, Sinha R, Faggio C (2022) Advances in biological methods for the sequestration of heavy metals from water bodies: a review. Environ Toxicol Pharmacol 94:103927

    Article  CAS  PubMed  Google Scholar 

  10. Shahjahan M, Taslima K, Rahman MS, Al-Emran M, Alam SI, Faggio C (2022) Effects of heavy metals on fish physiology – A review. Chemosphere 300:134519. https://doi.org/10.1016/j.chemosphere.2022.134519

    Article  CAS  PubMed  Google Scholar 

  11. Kobielska PA, Howarth AJ, Farha OK, Nayak S (2018) Metal–organic frameworks for heavy metal removal from water. Coord Chem Rev 358:92–107. https://doi.org/10.1016/j.ccr.2017.12.010

    Article  CAS  Google Scholar 

  12. Wu C, Hu X, Wang H, Lin Q, Shen C, Lou L (2023) Exploring key physicochemical sediment properties influencing bioleaching of heavy metals. J Hazard Mater 445:130506. https://doi.org/10.1016/j.jhazmat.2022.130506

    Article  CAS  PubMed  Google Scholar 

  13. Manullang CY, Hutabarat J, Widowati I (2015) Bioaccumulation of Cadmium (CD) by White Shrimp Penaeus Merguiensis at Different Salinity in Kedungmalang Estuary, Jepara (Central Java). Marine Res Indonesia 39(1):31–37. https://doi.org/10.14203/mri.v39i1.84

    Article  Google Scholar 

  14. Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92(11):1450–1457. https://doi.org/10.1016/j.chemosphere.2013.03.055

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Beltrame MO, De Marco SG, Marcovecchio JE (2010) Effects of zinc on molting and body weight of the estuarine crab Neohelice granulata (Brachyura: Varunidae). Sci Total Environ 408(3):531–536

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Moral-Muñoz JA, Herrera-Viedma E, Santisteban-Espejo A, Cobo MJ (2020) Software tools for conducting bibliometric analysis in science: An up-to-date review. Profesional de la Informacion 29:1. https://doi.org/10.3145/epi.2020.ene.03

    Article  Google Scholar 

  17. Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM (2021) How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res 133:285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

    Article  Google Scholar 

  18. Rodríguez-Estival J, Morales-Machuca C, Pareja-Carrera J, Ortiz-Santaliestra ME, Mateo R (2019) Food safety risk assessment of metal pollution in crayfish from two historical mining areas: Accounting for bioavailability and cooking extractability. Ecotoxicol Environ Saf 185:109682. https://doi.org/10.1016/j.ecoenv.2019.109682

    Article  CAS  PubMed  Google Scholar 

  19. Dutton J, Fisher NS (2011) Salinity effects on the bioavailability of aqueous metals for the estuarine killifish Fundulus heteroclitus. Environ Toxicol Chem 30(9):2107–2114

    Article  CAS  PubMed  Google Scholar 

  20. Brezonik, PL, King, SO, Mach, CE (2020) The influence of water chemistry on trace metal bioavailability and toxicity to aquatic organisms. In Metal ecotoxicology concepts and applications (pp. 1–31). CRC Press. https://doi.org/10.1201/9781003069973-1

  21. de Paiva Magalhães D, da Costa Marques MR, Baptista DF, Buss DF (2015) Metal bioavailability and toxicity in freshwaters. Environ Chem Lett 13(1):69–87

    Article  Google Scholar 

  22. Pontoni L, La Vecchia C, Boguta P, Sirakov M, D’Aniello E, Fabbricino M, Locascio A (2022) Natural organic matter controls metal speciation and toxicity for marine organisms: A review. Environ Chem Lett 20(1):797–812

    Article  CAS  Google Scholar 

  23. Alonso, Á (2023) Previous stress causes a contrasting response to cadmium toxicity in the aquatic snail Potamopyrgus antipodarum: lethal and behavioral endpoints. Environmental Science and Pollution Research. 1–11. https://doi.org/10.1007/s11356-022-24932-3

  24. Bigalke M, Ulrich A, Rehmus A, Keller A (2017) Accumulation of cadmium and uranium in arable soils in Switzerland. Environ Pollut 221:85–93. https://doi.org/10.1016/j.envpol.2016.11.035

    Article  CAS  PubMed  Google Scholar 

  25. Khan MA, Khan S, Khan A, Alam M (2017) Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ 601–602:1591–1605. https://doi.org/10.1016/j.scitotenv.2017.06.030

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Kubier A, Wilkin RT, Pichler T (2019) Cadmium in soils and groundwater: A review. Appl Geochem 108:1–16. https://doi.org/10.1016/j.apgeochem.2019.104388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Azizullah A, Khattak MNK, Richter P, Häder DP (2011) Water pollution in Pakistan and its impact on public health - A review. Environ Int 37(2):479–497. https://doi.org/10.1016/j.envint.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  28. Mohod CV, Dhote J (2013) Review of heavy metals in drinking water and their effect on human health. International Journal of Innovative Research in Science, Engineering and Technology 2(7):2992–2996

  29. Ogamba EN, Charles EE, Izah SC (2021) Distributions, pollution evaluation and health risk of selected heavy metal in surface water of Taylor creek, Bayelsa State. Nigeria Toxicol Environ Health Sci 13:109–121. https://doi.org/10.1007/s13530-020-00076-0

    Article  Google Scholar 

  30. Naseem S, Hamza S, Nawaz-ul-Huda S, Bashir E, ul-Haq Q (2014) Geochemistry of Cd in groundwater of Winder, Balochistan and suspected health problems. Environ Earth Sci 71:1683–1690. https://doi.org/10.1007/s12665-013-2572-z

    Article  ADS  CAS  Google Scholar 

  31. Sun F, Yu G, Han X, Chi Z, Lang Y, Liu C (2023) Risk assessment and binding mechanisms of potentially toxic metals in sediments from different water levels in a coastal wetland. J Environ Sci 129:202–212. https://doi.org/10.1016/j.jes.2022.09.009

    Article  CAS  Google Scholar 

  32. Zhang Y, Han Y, Yang J, Zhu L, Zhong W (2017) Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines. J Environ Sci 62:31–38. https://doi.org/10.1016/j.jes.2017.08.002

    Article  CAS  Google Scholar 

  33. Haghnazar H, Hudson-Edwards KA, Kumar V, Pourakbar M, Mahdavianpour M, Aghayani E (2021) Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere 285:131446. https://doi.org/10.1016/j.chemosphere.2021.131446

    Article  CAS  PubMed  Google Scholar 

  34. Duodu GO, Goonetilleke A, Ayoko GA (2016) Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environ Pollut 219:1077–1091. https://doi.org/10.1016/j.envpol.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  35. Chu, Q, Li, Y, Wang, X (2023) Bayesian inference of heavy metals exposure in crayfish for assessing human non–carcinogenic health risk. Food Chem Toxicol 113595. https://doi.org/10.1016/j.fct.2022.113595

  36. Srivastav AK, Srivastava S, Srivastav SK, Faggio C, Sekiguchi T, Suzuki N (2021) Response of ultimobranchial and parathyroid glands of the Indian skipper frog, Euphlyctis cyanophlyctis to cadmium toxicity. Iran J Toxicol 13(3):39–44. https://doi.org/10.32598/IJT.13.3.74.8

    Article  Google Scholar 

  37. Baki MA, Hossain MM, Akter J, Quraishi SB, Haque Shojib MF, Atique Ullah AKM, Khan MF (2018) Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island. Bangladesh Ecotoxicol Environ Safety 159:153–163. https://doi.org/10.1016/j.ecoenv.2018.04.035

    Article  CAS  PubMed  Google Scholar 

  38. Ngo-Massou VM, Kottè-Mapoko EF, Din N (2022) Heavy metal accumulation in the edible crab Cardisoma armatum (Brachyura: Gecarcinidae) and implications for human health risks. Sci Afr 16:e01248. https://doi.org/10.1016/j.sciaf.2022.e01248

    Article  Google Scholar 

  39. Metian M, Hédouin L, Eltayeb MM, Lacoue-Labarthe T, Teyssié JL, Mugnier C, Bustamante P, Warnau M (2010) Metal and metalloid bioaccumulation in the Pacific blue shrimp Litopenaeus stylirostris (Stimpson) from New Caledonia: Laboratory and field studies. Mar Pollut Bull 61(7–12):576–584. https://doi.org/10.1016/j.marpolbul.2010.06.035

    Article  CAS  PubMed  Google Scholar 

  40. Cheung KC, Wong MH (2006) Risk assessment of heavy metal contamination in shrimp farming in Mai Po Nature Reserve. Hong Kong Environ Geochem Health 28:27–36. https://doi.org/10.1007/s10653-005-9008-y

    Article  CAS  PubMed  Google Scholar 

  41. Wang L, Feng J, Wang G, Guan T, Zhu C, Li J, Wang H (2021) Effects of cadmium on antioxidant and non-specific immunity of Macrobrachium nipponense. Ecotoxicol Environ Saf 224:112651. https://doi.org/10.1016/j.ecoenv.2021.112651

    Article  CAS  PubMed  Google Scholar 

  42. Bautista-Covarrubias JC, Valdez-Soto IE, Aguilar-Juárez M, Arreola-Hernández JO, Soto-Jiménez MF, Soto-Rodríguez SA, López-Sánchez JA, Osuna-Martínez CC, Frías-Espericueta MG (2022) Cadmium and copper mixture effects on immunological response and susceptibility to Vibrio harveyi in white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 129:145–151. https://doi.org/10.1016/j.fsi.2022.08.054

    Article  CAS  PubMed  Google Scholar 

  43. Cheng CH, Ma HL, Liu GX, Fan SG, Deng YQ, Jiang JJ, Feng J, Guo ZX (2023) Toxic effects of cadmium exposure on intestinal histology, oxidative stress, microbial community, and transcriptome change in the mud crab (Scylla paramamosain). Chemosphere 326:138464

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Li Z, Kholodkevich S, Sharov A, Feng Y, Ren N, Sun K (2019) Cadmium-induced oxidative stress, histopathology, and transcriptome changes in the hepatopancreas of freshwater crayfish (Procambarus clarkii). Sci Total Environ 666:944–955. https://doi.org/10.1016/j.scitotenv.2019.02.159

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Bagheri D, Moradi R, Zare M, Sotoudeh E, Hoseinifar SH, Oujifard A, Esmaeili N (2023) Does Dietary Sodium Alginate with Low Molecular Weight Affect Growth, Antioxidant System, and Haemolymph Parameters and Alleviate Cadmium Stress in Whiteleg Shrimp (Litopenaeus vannamei)? Animals 13(11):1805

    Article  PubMed Central  PubMed  Google Scholar 

  46. Duan Y, Wang Y, Huang J, Li H, Dong H, Zhang J (2021) Toxic effects of cadmium and lead exposure on intestinal histology, oxidative stress response, and microbial community of Pacific white shrimp Litopenaeus vannamei. Mar Pollut Bull 167:112220

    Article  CAS  PubMed  Google Scholar 

  47. Qin Q, Qin S, Wang L, Lei W (2012) Immune responses and ultrastructural changes of hemocytes in freshwater crab Sinopotamon henanense exposed to elevated cadmium. Aquat Toxicol 106:140–146. https://doi.org/10.1016/j.aquatox.2011.08.013

    Article  CAS  PubMed  Google Scholar 

  48. Zhou Y, Jing W, Dahms HU, Hwang JS, Wang L (2017) Oxidative damage, ultrastructural alterations and gene expressions of hemocytes in the freshwater crab Sinopotamon henanense exposed to cadmium. Ecotoxicol Environ Saf 138:130–138. https://doi.org/10.1016/j.ecoenv.2016.12.030

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Li Z, Kholodkevich S, Sharov A, Chen C, Feng Y, Ren N, Sun K (2020) Effects of cadmium on intestinal histology and microbiota in freshwater crayfish (Procambarus clarkii). Chemosphere 242:125105. https://doi.org/10.1016/j.chemosphere.2019.125105

    Article  CAS  PubMed  Google Scholar 

  50. Das S, Tseng LC, Chou C, Wang L, Souissi S, Hwang JS (2019) Effects of cadmium exposure on antioxidant enzymes and histological changes in the mud shrimp Austinogebia edulis (Crustacea: Decapoda). Environ Sci Pollut Res 26(8):7752–7762. https://doi.org/10.1007/s11356-018-04113-x

    Article  CAS  Google Scholar 

  51. Cheng CH, Ma HL, Deng YQ, Feng J, Jie YK, Guo ZX (2021) Oxidative stress, cell cycle arrest, DNA damage and apoptosis in the mud crab (Scylla paramamosain) induced by cadmium exposure. Chemosphere 263:128277. https://doi.org/10.1016/j.chemosphere.2020.128277

    Article  CAS  PubMed  Google Scholar 

  52. Lei W, Wang L, Liu D, Xu T, Luo J (2011) Histopathological and biochemical alternations of the heart induced by acute cadmium exposure in the freshwater crab Sinopotamon yangtsekiense. Chemosphere 84(5):689–694. https://doi.org/10.1016/j.chemosphere.2011.03.023

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Bjerregaard P, Bjørn L, Nørum U, Pedersen KL (2005) Cadmium in the shore crab Carcinus maenas: seasonal variation in cadmium content and uptake and elimination of cadmium after administration via food. Aquat Toxicol 72(1–2):5–15

    Article  CAS  PubMed  Google Scholar 

  54. Wu JP, Chen HC (2004) Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei). Chemosphere 57(11):1591–1598

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Ardiansyah S, Irawan B, Soegianto A (2012) Effect of cadmium and zinc in different salinity levels on survival and osmoregulation of white shrimp (Litopenaeus vannamei Boone). Mar Freshw Behav Physiol 45(4):291–302

    Article  CAS  Google Scholar 

  56. Brix KV, Gerdes RM, Adams WJ, Grosell M (2006) Effects of copper, cadmium, and zinc on the hatching success of brine shrimp (Artemia franciscana). Arch Environ Contam Toxicol 51:580–583

    Article  CAS  PubMed  Google Scholar 

  57. Nadukooru N, Yallapragada PR (2015) Carotenoid as a sensitive indicator of sub lethal cadmium toxicity in Penaeus monodon post larvae. Ecotoxicology 24:339–345

    Article  CAS  PubMed  Google Scholar 

  58. Cheng L, Zhou JL, Cheng J (2018) Bioaccumulation, tissue distribution and joint toxicity of erythromycin and cadmium in Chinese mitten crab (Eriocheir sinensis). Chemosphere 210:267–278

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Cheng C, Ma H, Liu G, Fan S, Guo Z (2022) Mechanism of cadmium exposure induced hepatotoxicity in the mud crab (Scylla paramamosain): activation of oxidative stress and Nrf2 signaling pathway. Antioxidants 11(5):978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Brouwer M, Hoexum Brouwer T, Grater W, Brown-Peterson N (2003) Replacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport. Biochem J 374(1):219–228. https://doi.org/10.1042/BJ20030272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Truchet DM, Buzzi NS, Negro CL, Palavecino CC, Mora MC, Marcovecchio JE (2023) Unraveling the depuration mechanisms of metals in the burrowing crab (Neohelice granulata Dana, 1852): Biochemical biomarkers, metal-rich granules and bioaccumulation patterns. Mar Pollut Bull 196:115638

    Article  CAS  PubMed  Google Scholar 

  62. Cinti S, Mazzaracchio V, Öztürk G, Moscone D, Arduini F (2018) A lab-on-a-tip approach to make electroanalysis user-friendly and de-centralized: Detection of copper ions in river water. Anal Chim Acta 1029:1–7. https://doi.org/10.1016/j.aca.2018.04.065

    Article  CAS  PubMed  Google Scholar 

  63. Nędzarek A, Czerniejewski P (2022) Impact of polyaluminum chloride on the bioaccumulation of selected elements in the tissues of invasive spiny-cheek crayfish (Faxonius limosus)–Potential risks to consumers. Sci Total Environ 828:154435. https://doi.org/10.1016/j.scitotenv.2022.154435

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Aliko V, Hajdaraj G, Caci A, Faggio C (2015) Copper induced lysosomal membrane destabilisation in haemolymph cells of Mediterranean Green Crab (Carcinus aestuarii, Nardo, 1847) from the Narta Lagoon (Albania). Braz Arch Biol Technol 58(5):750–756

    Article  CAS  Google Scholar 

  65. Uddin MM, Peng G, Huang L (2023) Trophic transfer, bioaccumulation, and potential health risk of trace elements in water and aquatic organisms of Yundang Lagoon at Xiamen in China. Toxin Rev 69(1–2):172–177. https://doi.org/10.1080/15569543.2022.2084420

    Article  CAS  Google Scholar 

  66. Elumalai M, Antunes C, Guilhermino L (2002) Effects of single metals and their mixtures on selected enzymes of carcinus maenas. Water Air Soil Pollut 141:273–280. https://doi.org/10.1023/A:1021352212089

    Article  ADS  CAS  Google Scholar 

  67. Lauer MMH, De Oliveira CB, Yano NLI, Bianchini A (2012) Copper effects on key metabolic enzymes and mitochondrial membrane potential in gills of the estuarine crab Neohelice granulata at different salinities. Comparative Biochem Physiol C Toxicol Pharmacol 156(3–4):140–147. https://doi.org/10.1016/j.cbpc.2012.08.001

    Article  CAS  Google Scholar 

  68. Pan L, Liu N, Zhang H, Wang J, Miao J (2011) Effects of heavy metal ions (Cu 2+, Pb 2+ and Cd 2+) on DNA damage of the gills, hemocytes and hepatopancreas of marine crab, Charybdis japonica. J Ocean Univ China 10:177–184

    Article  CAS  Google Scholar 

  69. Capparelli MV, McNamara JC, Grosell MG (2020) Tissue Accumulation and the Effects of Long-Term Dietary Copper Contamination on Osmoregulation in the Mudflat Fiddler Crab Minuca rapax (Crustacea, Ocypodidae). Bull Environ Contam Toxicol 104(6):755–762. https://doi.org/10.1007/s00128-020-02872-3

    Article  CAS  PubMed  Google Scholar 

  70. Feng W, Su S, Song C, Yu F, Zhou J, Li J, Jia R, Xu P, Tang Y (2022) Effects of Copper Exposure on Oxidative Stress, Apoptosis, Endoplasmic Reticulum Stress, Autophagy and Immune Response in Different Tissues of Chinese Mitten Crab (Eriocheir sinensis). Antioxidants 11(10):2029. https://doi.org/10.3390/antiox11102029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Gunderson MP, Boyd HM, Kelly CI, Lete IR, McLaughlin QR (2021) Modulation of endogenous antioxidants by zinc and copper in signal crayfish (Pacifastacus leniusculus). Chemosphere 275:129982. https://doi.org/10.1016/j.chemosphere.2021.129982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Guo H, Li K, Wang W, Wang C, Shen Y (2017) Effects of Copper on Hemocyte Apoptosis, ROS Production, and Gene Expression in White Shrimp Litopenaeus vannamei. Biol Trace Elem Res 179(2):318–326. https://doi.org/10.1007/s12011-017-0974-6

    Article  CAS  PubMed  Google Scholar 

  73. Guo H, Miao YT, Xian JA, Qian K, Wang AL (2015) Expression profile of antioxidant enzymes in hemocytes from freshwater prawn Macrobrachium rosenbergii exposed to an elevated level of copper. Bull Environ Contam Toxicol 95:447–451. https://doi.org/10.1007/s00128-015-1618-1

    Article  CAS  PubMed  Google Scholar 

  74. Yang L, He Z, Li X, Jiang Z, Xuan F, Tang B, Bian X (2022) Behavior and toxicity assessment of copper nanoparticles in aquatic environment: A case study on red swamp crayfish. J Environ Manage 313:114986. https://doi.org/10.1016/j.jenvman.2022.114986

    Article  CAS  PubMed  Google Scholar 

  75. Zhao D, Zhang X, Li X, Ru S, Wang Y, Yin J, Liu D (2019) Oxidative damage induced by copper in testis of the red swamp crayfish Procambarus clarkii and its underlying mechanisms. Aquat Toxicol 207:120–131. https://doi.org/10.1016/j.aquatox.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  76. Zeidi A, Sayadi MH, Rezaei MR, Banaee M, Gholamhosseini A, Pastorino P, Multisanti CR, Faggio C (2023) Single and combined effects of CuSO4 and polyethylene microplastics on biochemical endpoints and physiological impacts on the narrow-clawed crayfish Pontastacus leptodactylus. Chemosphere 345:140478. https://doi.org/10.1016/j.chemosphere.2023.140478

    Article  CAS  PubMed  Google Scholar 

  77. Lee R, Kim GB, Maruya KA, Steinert SA, Oshima Y (2000) DNA strand breaks (comet assay) and embryo development effects in grass shrimp (Palaemonetes pugio) embryos after exposure to genotoxicants. Mar Environ Res 66(1):1–14. https://doi.org/10.1016/S0141-1136(00)00110-0

    Article  Google Scholar 

  78. Vardhanan YS, Radhakrishnan T (2002) Acute toxicity evaluation of copper, arsenic and HCH to paddy field crab, Paratelphusa hydrodromus (Herb.). J Environ Biol 23(4):387–392

    CAS  PubMed  Google Scholar 

  79. Bao Yuenan J, Xing C, Shiyu F, Hongbo K, Li JX, (2020) Acute and sub-chronic effects of copper on survival respiratory metabolism and metal accumulation in Cambaroides dauricus Abstract Scientific Reports 10(1). https://doi.org/10.1038/s41598-020-73940-1

  80. Leung J, Witt JDS, Norwood W, Dixon DG (2016) Implications of Cu and Ni toxicity in two members of the Hyalella azteca cryptic species complex: Mortality, growth, and bioaccumulation parameters. Environ Toxicol Chem 35(11):2817–2826. https://doi.org/10.1002/etc.3457

    Article  CAS  PubMed  Google Scholar 

  81. Botté, A, Seguin, C, Nahrgang, J, Zaidi, M, Guery, J, Leignel, V (2022) Lead in the marine environment: concentrations and effects on invertebrates. Ecotoxicol 1–14. https://doi.org/10.1007/s10646-021-02504-4

  82. Lytle DA, Formal C, Doré E, Muhlen C, Harmon S, Williams D, Triantafyllidou S, Pham M (2020) Synthesis and characterization of stable lead (II) orthophosphate nanoparticle suspensions. J Environ Sci Health - Part A Toxic/Hazardous Substances Environ Eng 55(13):1504–1512. https://doi.org/10.1080/10934529.2020.1810498

    Article  CAS  Google Scholar 

  83. Izah SC, Chakrabarty N, Srivastav AL (2016) A review on heavy metal concentration in potable water sources in Nigeria: Human health effects and mitigating measures. Exposure Health 8:285–304. https://doi.org/10.1007/s12403-016-0195-9

    Article  CAS  Google Scholar 

  84. Orihuela-García MA, Bolado-Penagos M, Sala I, Tovar-Sánchez A, García CM, Bruno M, Echevarría F, Laiz I (2023) Trace metals distribution between the surface waters of the Gulf of Cadiz and the Alboran Sea. Sci Total Environ 858:159662. https://doi.org/10.1016/j.scitotenv.2022.159662

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Lambiase S, Ariano A, Serpe FP, Scivicco M, Velotto S, Esposito M, Severino L (2021) Polycyclic aromatic hydrocarbons (PAHs), arsenic, chromium and lead in warty crab (Eriphia verrucosa): occurrence and risk assessment. Environ Sci Pollut Res 28:35305–35315. https://doi.org/10.1007/s11356-021-14824-3

    Article  CAS  Google Scholar 

  86. Nascimento JR, Bidone ED, Rolão-Araripe D, Keunecke KA, Sabadini-Santos E (2016) Trace metal distribution in white shrimp (Litopenaeus schmitti) tissues from a Brazilian coastal area. Environ Earth Sci 75:990. https://doi.org/10.1007/s12665-016-5798-8

    Article  ADS  CAS  Google Scholar 

  87. Wu YS, Huang SL, Chung HC, Nan FH (2017) Bioaccumulation of lead and non-specific immune responses in white shrimp (Litopenaeus vannamei) to Pb exposure. Fish Shellfish Immunol 62:116–123. https://doi.org/10.1016/j.fsi.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  88. Frías-Espericueta MG, Bautista-Covarrubias JC, Osuna-Martínez CC, Delgado-Alvarez C, Bojórquez C, Aguilar-Juárez M, Roos-Muñoz S, Osuna-López I, Páez-Osuna F (2022) Metals and oxidative stress in aquatic decapod crustaceans: A review with special reference to shrimp and crabs. Aquat Toxicol 242:106024. https://doi.org/10.1016/j.aquatox.2021.106024

    Article  CAS  PubMed  Google Scholar 

  89. Salama WM, Lotfy MM, Mona MM (2022) Depuration effect on the total hemocytes count and heavy metals concentration in freshwater crayfish, Procambarus clarkii. Egypt J Aquat Res 48(3):257–263. https://doi.org/10.1016/j.ejar.2022.04.003

    Article  Google Scholar 

  90. Allert AL, Fairchild JF, DiStefano RJ, Schmitt CJ, Brumbaugh WG, Besser JM (2009) Ecological effects of lead mining on Ozark streams: in-situ toxicity to woodland crayfish (Orconectes hylas). Ecotoxicol Environ Saf 72(4):1207–1219

    Article  CAS  PubMed  Google Scholar 

  91. Li Y, Zhou X, Guo W, Fu Y, Ruan G, Fang L, Wang Q (2023) Effects of lead contamination on histology, antioxidant and intestinal microbiota responses in freshwater crayfish. Procambarus Clarkii Aquatic Toxicol 265:106768

    Article  CAS  Google Scholar 

  92. Gholamhosseini A, Banaee M, Zeidi A, Roberta Multisanti C, Faggio C (2024) Individual and combined impact of microplastics and lead acetate on the freshwater shrimp (Caridina fossarum): biochemical effects and physiological responses. Journal of Contaminant Hydrology 104325. https://doi.org/10.1016/j.jconhyd.2024.104325

  93. Amel Jebara A, Lo Turco V, Faggio C, Licata P, Nava V, Potorti AG, Crupi R, Mansour HB, Di Bella G (2021) Monitoring of environmental mercury occurrence in Tunisian coastal areas. Int J Environ Res Public Health 18(10):5202. https://doi.org/10.3390/ijerph18105202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Dhara K, Saha S, Panigrahi AK, Saha NC, Faggio C (2022) Biochemical, physiological (haematological, oxygen-consumption rate) and behavioural effects of mercury exposures on the Freshwater Snail. Bellamya Bengalensis Comparative Biochem Physiol, Part C 251:109195. https://doi.org/10.1016/j.cbpc.2021.109195

    Article  CAS  Google Scholar 

  95. Ibrahim ATA, Banaee M, Sureda A (2019) Selenium protection against mercury toxicity on the male reproductive system of Clarias gariepinus. Comparative Biochem Physiol Part - C: Toxicol Pharmacol 225:108583. https://doi.org/10.1016/j.cbpc.2019.108583

    Article  CAS  Google Scholar 

  96. Ma M, Du H, Wang D (2019) Mercury methylation by anaerobic microorganisms: A review. Crit Rev Environ Sci Technol 49:1893–1936. https://doi.org/10.1080/10643389.2019.1594517

    Article  CAS  Google Scholar 

  97. Baptista-Salazar C, Richard JH, Horf M, Rejc M, Gosar M, Biester H (2017) Grain-size dependence of mercury speciation in river suspended matter, sediments and soils in a mercury mining area at varying hydrological conditions. Appl Geochem 81:132–142. https://doi.org/10.1016/j.apgeochem.2017.04.006

    Article  ADS  CAS  Google Scholar 

  98. Roos-Muñoz S, Abad-Rosales SM, Aguilar-Juárez M, Frías-Espericueta MG, Voltolina D (2019) Acute Toxicity of Mercury and Nervous Tissue Damage in Postlarvae and Juveniles of Litopenaeus vannamei. Thalassas 35:57–63. https://doi.org/10.1007/s41208-018-0085-y

    Article  Google Scholar 

  99. Zhang H, Pan L, Miao J, Xu C (2009) Effects of mercuric chloride on antioxidant system and DNA integrity of the crab Charybdis japonica. J Ocean Univ China 8:416–424. https://doi.org/10.1007/s11802-009-0416-y

    Article  CAS  Google Scholar 

  100. Zhang L, Zhou Y, Song Z, Liang H, Zhong S, Yu Y, Liu T, Sha H, He L, Gan J (2022) Mercury Induced Tissue Damage, Redox Metabolism, Ion Transport, Apoptosis, and Intestinal Microbiota Change in Red Swamp Crayfish (Procambarus clarkii): Application of Multi-Omics Analysis in Risk Assessment of Hg. Antioxidants 11(10):1944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Tollefsen KE, Song Y, Høgåsen T, Øverjordet IB, Altin D, Hansen BH (2017) Mortality and transcriptional effects of inorganic mercury in the marine copepod Calanus finmarchicus. J Toxicol Environ Health A 80(16–18):845–861

    Article  CAS  PubMed  Google Scholar 

  102. Zhao Y, Wang X, Qin Y, Zheng B (2010) Mercury (Hg2+) effect on enzyme activities and hepatopancreas histostructures of juvenile Chinese mitten crab Eriocheir sinensis. Chin J Oceanol Limnol 28(3):427–434. https://doi.org/10.1007/s00343-010-9030-2

    Article  CAS  Google Scholar 

  103. Vijayakumar S, Vaseeharan B, Sudhakaran R, Jeyakandan J, Ramasamy P, Sonawane A, Padhi A, Velusamy P, Anbu P, Faggio C (2019) Bioinspired zinc oxide nanoparticles using Lycopersicon esculentum for antimicrobial and anticancer applications. J Cluster Sci 30:1465–1479. https://doi.org/10.1007/s10876-019-01590-z

    Article  CAS  Google Scholar 

  104. Kong DH, Ji YX, Zhang BY, Li KC, Liao ZY, Wang H, Zhou JX, Wang QJ (2024) Effects of hydroxy methionine zinc on growth performance, immune response, antioxidant capacity, and intestinal microbiota of red claw crayfish (Procambarus clarkii). Fish Shellfish Immunol 144:109231

    Article  CAS  PubMed  Google Scholar 

  105. Zhang Y, Han Y, Yang J, Zhu L, Zhong W (2017) Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines. J Environ Sci (China) 62:31–38. https://doi.org/10.1016/j.jes.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  106. Pagano M, Porcino C, Briglia M, Fiorino E, Vazzana M, Silvestro S, Faggio C (2017) The influence of exposure of cadmium chloride and zinc chloride on haemolymph and digestive gland cells from Mytilus galloprovincialis. Int J Environ Res 11(2):207–216. https://doi.org/10.1007/s41742-017-0020-8

    Article  CAS  Google Scholar 

  107. Dadar M, Peyghan R, Memari HR (2014) Evaluation of the Bioaccumulation of Heavy Metals in White Shrimp (Litopenaeus vannamei) Along the Persian Gulf Coast. Bull Environ Contam Toxicol 93:339–343. https://doi.org/10.1007/s00128-014-1334-2

    Article  CAS  PubMed  Google Scholar 

  108. Fakhri Y, Mohseni-Bandpei A, Oliveri Conti G, Ferrante M, Cristaldi A, Jeihooni AK, Karimi Dehkordi M, Alinejad A, Rasoulzadeh H, Mohseni SM, Sarkhosh M, Keramati H, Moradi B, Amanidaz N, Baninameh Z (2018) Systematic review and health risk assessment of arsenic and lead in the fished shrimps from the Persian gulf. Food Chem Toxicol 113:278–286. https://doi.org/10.1016/j.fct.2018.01.046

    Article  CAS  PubMed  Google Scholar 

  109. Barbieri E, Doi SA (2011) The effects of different temperature and salinity levels on the acute toxicity of zinc in the Pink Shrimp (Farfantepenaeuspaulensis). Marine Freshwater Behav Physiol 44(4):251–263. https://doi.org/10.1080/10236244.2011.617606

    Article  CAS  Google Scholar 

  110. Wu JP, Chen HC (2005) Effects of cadmium and zinc on the growth, food consumption, and nutritional conditions of the white shrimp, Litopenaeus vannamei (boone). Bull Environ Contam Toxicol 74:234–241. https://doi.org/10.1007/s00128-004-0575-x

    Article  CAS  PubMed  Google Scholar 

  111. Keteles KA, Fleeger JW (2001) The contribution of ecdysis to the fate of copper, zinc and cadmium in grass shrimp Palaemonetes pugio holthius. Marine Pollut Bull 42(12):1397–1402. https://doi.org/10.1016/S0025-326X(01)00172-2

    Article  CAS  Google Scholar 

  112. Wu JP, Chen HC, Huang DJ (2008) Histopathological and biochemical evidence of hepatopancreatic toxicity caused by cadmium and zinc in the white shrimp Litopenaeus vannamei. Chemosphere 73(7):1019–1026. https://doi.org/10.1016/j.chemosphere.2008.08.019

    Article  ADS  CAS  PubMed  Google Scholar 

  113. Ribeiro F, Van Gestel CAM, Pavlaki MD, Azevedo S, Soares AMVM, Loureiro S (2017) Bioaccumulation of silver in Daphnia magna: Waterborne and dietary exposure to nanoparticles and dissolved silver. Sci Total Environ 64(1):26–35. https://doi.org/10.1016/j.scitotenv.2016.08.204

    Article  CAS  Google Scholar 

  114. Flegal AR, Brown CL, Squire S, Ross JRM, Scelfo GM, Hibdon S (2007) Spatial and temporal variations in silver contamination and toxicity in San Francisco Bay. Environ Res 105(1):34–52. https://doi.org/10.1016/j.envres.2007.05.006

    Article  CAS  PubMed  Google Scholar 

  115. Maldonado-Muñiz M, Luna C, Mendoza-Reséndez R, Barriga-Castro ED, Soto-Rodriguez S, Ricque-Marie D, Cruz-Suarez LE (2020) Silver nanoparticles against acute hepatopancreatic necrosis disease (AHPND) in shrimp and their depuration kinetics. J Appl Phycol 32:2431–2445. https://doi.org/10.1007/s10811-019-01948-w

    Article  CAS  Google Scholar 

  116. Juarez-Moreno K, Mejía-Ruiz CH, Díaz F, Reyna-Verdugo H, Re AD, Vazquez-Felix EF, Sánchez-Castrejón E, Mota-Morales JD, Pestryakov A, Bogdanchikova N (2017) Effect of silver nanoparticles on the metabolic rate, hematological response, and survival of juvenile white shrimp Litopenaeus vannamei. Chemosphere 169:716–724

    Article  ADS  CAS  PubMed  Google Scholar 

  117. Grosell M, Brauner CJ, Kelly SP, McGeer JC, Bianchini A, Wood CM (2002) Physiological responses to acute silver exposure in the freshwater crayfish (Cambarus diogenes diogenes) - A model invertebrate? Environ Toxicol Chem 21(2):369–374. https://doi.org/10.1002/etc.5620210220

    Article  CAS  PubMed  Google Scholar 

  118. Walters CR, Cheng P, Pool E, Somerset V (2016) Effect of temperature on oxidative stress parameters and enzyme activity in tissues of Cape River crab (Potamanautes perlatus) following exposure to silver nanoparticles (AgNP). J Toxicol Environ Health - Part A: Curr Issues 79(2):61–70. https://doi.org/10.1080/15287394.2015.1106357

    Article  CAS  Google Scholar 

  119. Pyle GG, Swanson SM, Lehmkuhl DM (2002) The influence of water hardness, pH, and suspended solids on nickel toxicity to larval fathead minnows (Pimephales promelas). Water Air Soil Pollut 133:215–226. https://doi.org/10.1023/A:1012973728628

    Article  ADS  CAS  Google Scholar 

  120. Peters A, Nys C, Leverett D, Wilson I, Van Sprang P, Merrington G, Middleton E, Garman E, Schlekat C (2023) Updating the Chronic Freshwater Ecotoxicity Database and Biotic Ligand Model for Nickel for Regulatory Applications in Europe. Environ Toxicol Chem 42(3):566–580

    Article  CAS  PubMed  Google Scholar 

  121. Hunt JW, Anderson BS, Phillips BM, Tjeerdema RS, Puckett HM, Stephenson M, Tucker DW, Watson D (2002) Acute and chronic toxicity of nickel to marine organisms: Implications for water quality criteria. Environ Toxicol Chem 21(11):2423–2430. https://doi.org/10.1002/etc.5620211122

    Article  CAS  PubMed  Google Scholar 

  122. Asadpour YA, Nejatkhah Manavi P, Baniamam M (2013) Evaluating the Bioaccumulation of Nickel and Vanadium and their effects on the Growth of Artemia urmiana and A. franciscana. Iran J Fish Sci 12(1):183–192

    Google Scholar 

  123. Dehghani M, Sharifian S, Taherizadeh MR, Nabavi M (2021) Tracing the heavy metals zinc, lead and nickel in banana shrimp (Penaeus merguiensis) from the Persian Gulf and human health risk assessment. Environ Sci Pollut Res 28:38817–38828. https://doi.org/10.1007/s11356-021-13063-w

    Article  CAS  Google Scholar 

  124. Blewett TA, Glover CN, Fehsenfeld S, Lawrence MJ, Niyogi S, Goss GG, Wood CM (2015) Making sense of nickel accumulation and sub-lethal toxic effects in saline waters: Fate and effects of nickel in the green crab Carcinus maenas. Aquatic Toxicol 164:23–33. https://doi.org/10.1016/j.aquatox.2015.04.010

    Article  CAS  Google Scholar 

  125. Naboka A, Marenkov OM, Kovalchuk J, Shapovalenko Z, Nesterenko OS, Dzhobolda B (2018) Parameters of the Histological Adaptation of Marmorkrebs Procambarus virginalis (Lyko, 2017) (Decapoda, Cambaridae) to Manganese, Nickel and Lead Ions Pollution. Int Lett Nat Sci 70:24–33. https://doi.org/10.56431/p-tzw2qo

    Article  Google Scholar 

  126. Mohammed EH, Wang G, Jiang J (2010) The effects of nickel on the reproductive ability of three different marine copepods. Ecotoxicology 19:911–916. https://doi.org/10.1007/s10646-010-0471-6

    Article  CAS  PubMed  Google Scholar 

  127. Zhou C, Carotenuto Y, Vitiello V, Wu C, Zhang J, Buttino I (2018) De novo transcriptome assembly and differential gene expression analysis of the calanoid copepod Acartia tonsa exposed to nickel nanoparticles. Chemosphere 209:163–172. https://doi.org/10.1016/j.chemosphere.2018.06.096

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Vandenbrouck T, Soetaert A, van der Ven K, Blust R, De Coen W (2009) Nickel and binary metal mixture responses in Daphnia magna: Molecular fingerprints and (sub)organismal effects. Aquat Toxicol 92(1):18–29. https://doi.org/10.1016/j.aquatox.2008.12.012

    Article  CAS  PubMed  Google Scholar 

  129. Bagheri S, Gholamhosseini A, Banaee M (2023) Investigation of Different Nutritional Effects of Dietary Chromium in Fish: A Literature Review. Biol Trace Elem Res 201(5):2546–2554. https://doi.org/10.1007/s12011-022-03326-z

    Article  CAS  PubMed  Google Scholar 

  130. Kungolos, A, Hadjispirou, S, Petala, M, Tsiridis, V, Samaras, P, Sakellaropoulos, GP (2003) Toxic properties of cyanide, chromium and organotin compounds and their interactions on Daphnia magna. Proceedings of the International Conference on Environmental Science and Technology, 515–522

  131. Thiagarajan V, Seenivasan R, Jenkins D, Chandrasekaran N, Mukherjee A (2020) Combined effects of nano-TiO2 and hexavalent chromium towards marine crustacean Artemia salina. Aquat Toxicol 225:105541. https://doi.org/10.1016/j.aquatox.2020.105541

    Article  CAS  PubMed  Google Scholar 

  132. Shi B, Tao X, Betancor MB, Lu J, Tocher DR, Meng F, Figueiredo-Silva C, Zhou Q, Jiao L, Jin M (2021) Dietary chromium modulates glucose homeostasis and induces oxidative stress in Pacific white shrimp (Litopenaeus vannamei). Aquat Toxicol 240:105967. https://doi.org/10.1016/j.aquatox.2021.105967

    Article  CAS  PubMed  Google Scholar 

  133. Gagneten AM, Imhof A (2009) Chromium (Cr) accumulation in the freshwater crab, Zilchiopsis collastinensis. J Environ Biol 30(3):345–348

    CAS  PubMed  Google Scholar 

  134. Sayyad NR, Khan AK, Ansari NT, Hashmi S, Shaikh MAJ (2007) Heavy metal concentrations in different body part of crab, Barytelphusa guerini from Godavari River. J Ind Pollut Control 23(2):363–368

    CAS  Google Scholar 

  135. Sridevi B, Reddy SLN (2000) Effect of trivalent and hexavalent chromium on carbohydrate metabolism of a freshwater field crab Barytelphusa guerini. Environ Monitoring Assess 61:293–302. https://doi.org/10.1023/A:1006198127933

    Article  Google Scholar 

  136. Harper-Arabie RM, Wirth EF, Fulton MH, Scott GI, Ross PE (2004) Protective effects of allozyme genotype during chemical exposure in the grass shrimp Palaemonetes pugio. Aquatic Toxicol 70(1):41–54. https://doi.org/10.1016/j.aquatox.2004.07.004

    Article  CAS  Google Scholar 

  137. Russell A, MacFarlane GR, Nowak B, Moltschaniwskyj NA, Taylor MD (2019) Lethal and sub-lethal effects of aluminium on a juvenile penaeid shrimp. Thalassas: An Int J Marine Sci 35:359–368

    Article  Google Scholar 

  138. Momodu MA, Anyakora CA (2010) Heavy metal contamination of ground water: the Surulere case study. Res J Environ Earth Sci 2(1):39–43

    CAS  Google Scholar 

  139. Rivera-Ingraham GA, Andrade M, Vigouroux R, Solé M, Brokordt K, Lignot JH, Freitas R (2021) Are we neglecting earth while conquering space? Effects of aluminized solid rocket fuel combustion on the physiology of a tropical freshwater invertebrate. Chemosphere 268:128820. https://doi.org/10.1016/j.chemosphere.2020.128820

    Article  CAS  PubMed  Google Scholar 

  140. Suwa K, Takahashi C, Horie Y (2022) Acute toxicity assays using Danio rerio and Daphnia magna to assess hot-spring drainage in the Shibukuro and Tama Rivers (Akita, Japan). Ecotoxicology 31(2):187–193. https://doi.org/10.1007/s10646-021-02514-2

    Article  CAS  PubMed  Google Scholar 

  141. Zhang X, Shen M, Wang C, Gao M, Wang L, Jin Z, Xia X (2023) Impact of aluminum exposure on oxidative stress, intestinal changes and immune responses in red swamp crayfish (Procambarus clarkii). Sci Total Environ 855:158902. https://doi.org/10.1016/j.scitotenv.2022.158902

    Article  ADS  CAS  PubMed  Google Scholar 

  142. Saha S, Ray S (2014) Sublethal effect of arsenic on oxidative stress and antioxidant status in Scylla serrata. Clean - Soil, Air, Water 42(9):1216–1222. https://doi.org/10.1002/clen.201300294

    Article  CAS  Google Scholar 

  143. Liao ZH, Chuang HC, Huang HT, Wang PH, Chen BY, Lee PT, Wu YS, Nan FH (2022) Bioaccumulation of arsenic and immunotoxic effect in white shrimp (Penaeus vannamei) exposed to trivalent arsenic. Fish Shellfish Immunol 122:376–385. https://doi.org/10.1016/j.fsi.2022.02.029

    Article  CAS  PubMed  Google Scholar 

  144. Lobato RO, Nunes SM, Wasielesky W, Fattorini D, Regoli F, Monserrat JM, Ventura-Lima J (2013) The role of lipoic acid in the protection against of metallic pollutant effects in the shrimp Litopenaeus vannamei (Crustacea, Decapoda). Comparative Biochem Physiol A Molecular Integrative Physiol 165(4):491–497. https://doi.org/10.1016/j.cbpa.2013.03.015

    Article  CAS  Google Scholar 

  145. Davolos D, Chimenti C, Ronci L, Setini A, Iannilli V, Pietrangeli B, De Matthaeis E (2015) An integrated study on Gammarus elvirae (Crustacea, Amphipoda): perspectives for toxicology of arsenic-contaminated freshwater. Environ Sci Pollut Res 22(20):15563–15570. https://doi.org/10.1007/s11356-015-4727-9

    Article  CAS  Google Scholar 

  146. Ronci L, De Matthaeis E, Chimenti C, Davolos D (2017) Arsenic-contaminated freshwater: assessing arsenate and arsenite toxicity and low-dose genotoxicity in Gammarus elvirae (Crustacea; Amphipoda). Ecotoxicology 26:581–588. https://doi.org/10.1007/s10646-017-1791-6

    Article  CAS  PubMed  Google Scholar 

  147. Brix KV, Cardwell RD, Adams WJ (2003) Chronic toxicity of arsenic to the Great Salt Lake brine shrimp Artemia franciscana. Ecotoxicol Environ Safety 54(2):169–175. https://doi.org/10.1016/S0147-6513(02)00054-4

    Article  CAS  PubMed  Google Scholar 

  148. Azizur Rahman M, Hasegawa H, Peter Lim R (2012) Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ Res 116:118–135. https://doi.org/10.1016/j.envres.2012.03.014

    Article  CAS  PubMed  Google Scholar 

  149. Glabonjat RA, Raber G, Holm HC, Van Mooy BAS, Francesconi KA (2021) Arsenolipids in Plankton from High- And Low-Nutrient Oceanic Waters along a Transect in the North Atlantic. Environ Sci Technol 55(8):5515–5524. https://doi.org/10.1021/acs.est.0c06901

    Article  ADS  CAS  PubMed  Google Scholar 

  150. Jeong H, Yoon C, Lee JS, Byeon E (2023) Differential susceptibility to arsenic in glutathione S-transferase omega 2 (GST-O2)-targeted freshwater water flea Daphnia magna mutants. Aquat Toxicol 254:106364. https://doi.org/10.1016/j.aquatox.2022.106364

    Article  CAS  PubMed  Google Scholar 

  151. Luvonga C, Rimmer CA, Yu LL, Lee SB (2021) Determination of total arsenic and hydrophilic arsenic species in seafood. J Food Compos Anal 96:103729. https://doi.org/10.1016/j.jfca.2020.103729

    Article  CAS  Google Scholar 

  152. Sun J, Quicksall AN, Chillrud SN, Mailloux BJ, Bostick BC (2016) Arsenic mobilization from sediments in microcosms under sulfate reduction. Chemosphere 129:202–212. https://doi.org/10.1016/j.chemosphere.2016.02.117

    Article  CAS  Google Scholar 

  153. Zhang, W, Miao, AJ, Wang, NX, Li, C, Sha, J, Jia, J, Alessi, DS, Yan, B, Ok, YS (2022) Arsenic bioaccumulation and biotransformation in aquatic organisms. In Environment International. 107221. https://doi.org/10.1016/j.envint.2022.107221

  154. Nguyen DA, Nguyen DV, Jeong G, Asghar N, Jang A (2023) Critical evaluation of hybrid metal–organic framework composites for efficient treatment of arsenic–contaminated solutions by adsorption and membrane–separation process. Chem Eng J 461:141789. https://doi.org/10.1016/j.cej.2023.141789

    Article  CAS  Google Scholar 

  155. Shahid SU, Abbasi NA, Tahir A, Ahmad S, Ahmad SR (2023) Health risk assessment and geospatial analysis of arsenic contamination in shallow aquifer along Ravi River, Lahore Pakistan. Environ Sci Pollut Res 30(2):4866–4880. https://doi.org/10.1007/s11356-022-22458-2

    Article  CAS  Google Scholar 

  156. Visviki I, Judge ML (2020) Chronic arsenate exposure affects amphipod size distribution and reproduction. PeerJ 8:e8645. https://doi.org/10.7717/peerj.8645

    Article  PubMed Central  PubMed  Google Scholar 

  157. Cordeiro L, Müller L, Gelesky MA, Wasielesky W, Fattorini D, Regoli F, Monserrat JM, Ventura-Lima J (2016) Evaluation of coexposure to inorganic arsenic and titanium dioxide nanoparticles in the marine shrimp Litopenaeus vannamei. Environ Sci Pollut Res 23:1214–1223. https://doi.org/10.1007/s11356-015-5200-5

    Article  CAS  Google Scholar 

  158. Zhang Z, Wang X, Cheng S, Sun L, Son YO, Yao H, Li W, Budhraja A, Li L, Shelton BJ, Tucker T (2011) Reactive oxygen species mediate arsenic induced cell transformation and tumorigenesis through Wnt/β-catenin pathway in human colorectal adenocarcinoma DLD1 cells. Toxicol Appl Pharmacol 256(2):114–121

    Article  CAS  PubMed  Google Scholar 

  159. Yamanaka K, Kato K, Mizoi M, An Y, Takabayashi F, Nakano M, Hoshino M, Okada S (2004) The role of active arsenic species produced by metabolic reduction of dimethylarsinic acid in genotoxicity and tumorigenesis. Toxicol Appl Pharmacol 198(3):385–393

    Article  CAS  PubMed  Google Scholar 

  160. Bao C, Cai Q, Ying X, Zhu Y, Ding Y, Murk TA (2021) Health risk assessment of arsenic and some heavy metals in the edible crab (Portunus trituberculatus) collected from Hangzhou Bay. China Marine Pollution Bulletin 173:113007

    Article  CAS  PubMed  Google Scholar 

  161. Andersen JL, Depledge MH (1994) Arsenic accumulation in the shore crab Carcinus maenas: the influence of nutritional state, sex and exposure concentration. Mar Biol 118:285–292

    Article  CAS  Google Scholar 

  162. Yang JL, Chen HC (2003) Effects of gallium on common carp (Cyprinus carpio): Acute test, serum biochemistry, and erythrocyte morphology. Chemosphere 53(8):877–882. https://doi.org/10.1016/S0045-6535(03)00657-X

    Article  ADS  CAS  PubMed  Google Scholar 

  163. Flora, SJS, Dwivedi, N (2012) A toxicochemical review of gallium arsenide. Defence Sci J 62(2). https://doi.org/10.14429/dsj.62.1014

  164. Clausén M, Öhman LO, Axe K, Persson P (2003) Spectroscopic studies of aluminum and gallium complexes with oxalate and malonate in aqueous solution. J Mol Struct 648(3):225–235. https://doi.org/10.1016/S0022-2860(03)00026-7

    Article  ADS  Google Scholar 

  165. Clausén M, Öhman LO, Persson P (2005) Spectroscopic studies of aqueous gallium(III) and aluminum(III) citrate complexes. J Inorg Biochem 99(3):716–726. https://doi.org/10.1016/j.jinorgbio.2004.12.007

    Article  CAS  PubMed  Google Scholar 

  166. Salminen, R (Chief-editor), Batista, M, Bidovec, M, Demetriades, A, De Vivo, B, De Vos, W, Duris, M, Gilucis, A, Gre- gorauskiene, V, Halamic, J, Heitzmann, P, Lima, A, Jordan, G, Klaver, G, Klein, P, Lis, J, Locutura, J, Marsina, K, Mazreku, A, … Tarvainen, T (2005) FOREGS Geochemical atlas of Europe. In Geological Survey of Finland. 1–21

  167. Yu, HS, Liao, WT (2011) Gallium: Environmental Pollution and Health Effects. In Encyclopedia of Environmental Health. 153–157. https://doi.org/10.1016/B978-0-444-52272-6.00474-8

  168. Collery P, Keppler B, Madoulet C, Desoize B (2002) Gallium in cancer treatment. Critical Rev Oncol/Hematol 42(3):283–296. https://doi.org/10.1016/S1040-8428(01)00225-6

    Article  Google Scholar 

  169. Betoulle S, Etienne JC, Vernet G (2002) Acute immunotoxicity of gallium to carp (Cyprinus carpio L.). Bull Environ Contam Toxicol 68:817–823. https://doi.org/10.1007/s00128-002-0028-3

    Article  CAS  PubMed  Google Scholar 

  170. Yang JL, Chen LH (2018) Toxicity of antimony, gallium, and indium toward a teleost model and a native fish species of semiconductor manufacturing districts of Taiwan. J Elementol 23:1. https://doi.org/10.5601/jelem.2017.22.3.1470

    Article  Google Scholar 

  171. Yang JL (2014) Comparative acute toxicity of gallium(III), antimony(III), indium(III), cadmium(II), and copper (II) on freshwater swamp shrimp (Macrobrachium nipponense). Biol Res 47(1):1–4. https://doi.org/10.1186/0717-6287-47-13

    Article  CAS  Google Scholar 

  172. Zeng C, Gonzalez-Alvarez A, Orenstein E, Field JA, Shadman F, Sierra-Alvarez R (2017) Ecotoxicity assessment of ionic As(III), As(V), In(III) and Ga(III) species potentially released from novel III-V semiconductor materials. Ecotoxicol Environ Saf 140:30–36. https://doi.org/10.1016/j.ecoenv.2017.02.029

    Article  CAS  PubMed  Google Scholar 

  173. Onikura N, Nakamura A, Kishi K (2005) Acute toxicity of gallium and effects of salinity on gallium toxicity to brackish and marine organisms. Bull Environ Contam Toxicol 75(2):356–360. https://doi.org/10.1007/s00128-005-0761-5

    Article  CAS  PubMed  Google Scholar 

  174. van Dam JW, Trenfield MA, Streten C, Harford AJ, Parry D, van Dam RA (2018) Assessing chronic toxicity of aluminium, gallium and molybdenum in tropical marine waters using a novel bioassay for larvae of the hermit crab Coenobita variabilis. Ecotoxicol Environ Saf 165:349–356. https://doi.org/10.1016/j.ecoenv.2018.09.025

    Article  CAS  PubMed  Google Scholar 

  175. Wood SA, Samson IM (2006) The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev 28(1):57–102. https://doi.org/10.1016/j.oregeorev.2003.06.002

    Article  Google Scholar 

  176. Fowler, B. A., & Maples-Reynolds, N. (2015). Indium. In Handbook on the Toxicology of Metals (pp. 845–853). Academic Press.

  177. Onikura, N, Nakamura, A, Kishi, K (2008) Acute toxicity of thallium and indium toward brackish-water and marine organisms. J Faculty Agriculture, Kyushu Univ 467–469. https://doi.org/10.5109/12859

  178. Blaise C, Gagné F, Ferard JF, Eullaffroy P (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol: An Int J 23(5):591–598

    Article  ADS  CAS  Google Scholar 

  179. Onikura N, Nakamura A, Kishi K (2008) Acute Toxicity of Thallium and Indium toward Brackish-Water and Marine Organisms. J Faculty of Agriculture, Kyushu Univ 53(2):467–469

    Article  CAS  Google Scholar 

  180. Baudrimont M, Andrei J, Mornet S, Gonzalez P, Mesmer-Dudons N, Gourves PY, Jaffal A, Dedourge-Geffard O, Geffard A, Geffard O, Garric J, Feurtet-Mazel A (2018) Trophic transfer and effects of gold nanoparticles (AuNPs) in Gammarus fossarum from contaminated periphytic biofilm. Environ Sci Pollut Res 25:11181–11191. https://doi.org/10.1007/s11356-017-8400-3

    Article  CAS  Google Scholar 

  181. Makama S, Piella J, Undas A, Dimmers WJ, Peters R, Puntes VF, van den Brink NW (2016) Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil. Environ Pollut 218:870–878. https://doi.org/10.1016/j.envpol.2016.08.016

    Article  CAS  PubMed  Google Scholar 

  182. Auffan M, Rose J, Wiesner MR, Bottero JY (2009) Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. In Environmental Pollution 157(4):1127–1133. https://doi.org/10.1016/j.envpol.2008.10.002

    Article  CAS  Google Scholar 

  183. Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18):2067–2076. https://doi.org/10.1002/smll.200900466

    Article  CAS  PubMed  Google Scholar 

  184. Panessa-Warren BJ, Warren JB, Maye MM, Van Der Lelie D, Gang O, Wong SS, Ghebrehiwet B, Tortora GT, Misewich JA (2008) Human epithelial cell processing of carbon and gold nanoparticles. Int J Nanotechnol 5(1):55–91. https://doi.org/10.1504/IJNT.2008.016549

    Article  CAS  Google Scholar 

  185. Kang, JS, Yum, YN, Kim, JH, Song, H, Jeong, J, Lim, YT, Chung, BH, Park, SN (2009) Induction of DNA damage in L5178Y cells treated with gold nanoparticle. Biomole Therapeutics 55376538. https://doi.org/10.4062/biomolther.2009.17.1.92

  186. Park S, Woodhall J, Ma G, Veinot JGC, Boxall ABA (2015) Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates? Environ Toxicol Chem 34(4):850–859. https://doi.org/10.1002/etc.2868

    Article  CAS  PubMed  Google Scholar 

  187. Wray AT, Klaine SJ (2015) Modeling the influence of physicochemical properties on gold nanoparticle uptake and elimination by Daphnia magna. Environ Toxicol Chem 34(4):860–872. https://doi.org/10.1002/etc.2881

    Article  CAS  PubMed  Google Scholar 

  188. Xu S, Lin C, Qiu P, Song Y, Yang W, Xu G, Feng X, Yang Q, Yang X, Niu A (2015) Tungsten- and cobalt-dominated heavy metal contamination of mangrove sediments in Shenzhen. China Marine Pollution Bulletin 100(1):562–566. https://doi.org/10.1016/j.marpolbul.2015.08.031

    Article  CAS  PubMed  Google Scholar 

  189. Norwood WP, Borgmann U, Dixon DG (2007) Chronic toxicity of arsenic, cobalt, chromium and manganese to Hyalella azteca in relation to exposure and bioaccumulation. Environ Pollut 147(1):262–272. https://doi.org/10.1016/j.envpol.2006.07.017

    Article  CAS  PubMed  Google Scholar 

  190. Zeeshan M, Murugadas A, Ghaskadbi S, Ramaswamy BR, Akbarsha MA (2017) Ecotoxicological assessment of cobalt using Hydra model: ROS, oxidative stress, DNA damage, cell cycle arrest, and apoptosis as mechanisms of toxicity. Environ Pollut 224:54–69. https://doi.org/10.1016/j.envpol.2016.12.042

    Article  CAS  PubMed  Google Scholar 

  191. Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L (2017) Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology 387:43–56. https://doi.org/10.1016/j.tox.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  192. Karthikeyan P, Marigoudar SR, Nagarjuna A, Sharma KV (2019) Toxicity assessment of cobalt and selenium on marine diatoms and copepods. Environ Chem Ecotoxicol 1:36–42. https://doi.org/10.1016/j.enceco.2019.06.001

    Article  Google Scholar 

  193. Chen C, Xu C, Qian D, Yu Q, Huang M, Zhou L, Qin JG, Chen L, Li E (2020) Growth and health status of Pacific white shrimp, Litopenaeus vannamei, exposed to chronic water born cobalt. Fish Shellfish Immunol 100:137–145. https://doi.org/10.1016/j.fsi.2020.03.011

    Article  CAS  PubMed  Google Scholar 

  194. Leone, FA, Fabri, LM, Costa, MI, Moraes, CM, Garcon, DP, McNamara, JC (2022) Differential effects of cobalt ions in vitro on gill (Na+, K+)-ATPase kinetics in the blue crab Callinectes danae (Decapoda, Brachyura). BioRxiv, 2011–2022

  195. Stalin, A, Suganthi, P, Mathivani, S, Broos, KV, Gokula, V, HE, SM, ... Venu-Babu, P (2019) Effect of cobalt-60 gamma radiation on reproductive disturbance in freshwater prawn Macrobrachium rosenbergii (De Man, 1879). Toxicol Rep 6, 1143-1147https://doi.org/10.1016/j.toxrep.2019.10.021

  196. Stalin A, Broos KV, Bukhari AS, Mohamed HS, Singhal RK, Venu-Babu P (2013) Morphological and histological studies on freshwater prawn Macrobrachium rosenbergii (de man) irradiated with 60Co gamma radiation. Aquat Toxicol 144:36–49

    Article  PubMed  Google Scholar 

  197. Stalin A, Suganthi P, Mathivani S, Broos KV, Gokula V, Sadiq Bukhari A, Syed Mohamed HE, Singhal RK, Venu-Babu P (2019) Effect of cobalt-60 gamma radiation on total hemocyte content and biochemical parameters in Macrobrachium rosenbergii (De Man, 1879). Int J Radiat Biol 95(6):753–763

    Article  CAS  PubMed  Google Scholar 

  198. Arumugam S, Palani S, Subramanian M, Varadharajan G (2021) Ultrastructural alteration in Gill and Hepatopancrease of freshwater prawn Macrobrachium rosenbergii exposed to 60Co gamma radiation. Environ Sci Pollut Res 28(9):11348–11356

    Article  CAS  Google Scholar 

  199. Guy S, Gaw S, Beaven S, Pearson AJ (2022) Dose assessment for polonium-210 (Po-210) in New Zealand shellfish. J Environ Radioact 242:106788. https://doi.org/10.1016/j.jenvrad.2021.106788

    Article  CAS  PubMed  Google Scholar 

  200. Cherry RD, Heyraud M (1981) Polonium-210 content of marine shrimp: variation with biological and environmental factors. Mar Biol 65:165–175

    Article  CAS  Google Scholar 

  201. Carvalho FP (2011) Polonium (210Po) and lead (210Pb) in marine organisms and their transfer in marine food chains. J Environ Radioact 102(5):462–472

    Article  CAS  PubMed  Google Scholar 

  202. Stewart GM, Fisher NS (2003) Bioaccumulation of polonium-210 in marine copepods. Limnol Oceanogr 48(5):2011–2019

    Article  ADS  CAS  Google Scholar 

  203. Alam L, Mohamed CAR (2011) A mini review on bioaccumulation of 210Po by marine organisms. Int Food Res J 18:1–10

  204. Connan O, Germain P, Solier L, Gouret G (2007) Variations of 210Po and 210Pb in various marine organisms from Western English Channel: contribution of 210Po to the radiation dose. J Environ Radioact 97(2–3):168–188

    Article  CAS  PubMed  Google Scholar 

  205. Chang WL, Mun JK, Lee W, Geun SC, Young HC, Hee RK, Kun HC (2009) Assessment of210Po in foodstuffs consumed in Korea. J Radioanal Nucl Chem 279:519–522. https://doi.org/10.1007/s10967-007-7336-y

    Article  CAS  Google Scholar 

  206. Pearson AJ, Gaw S, Hermanspahn N, Glover CN (2016) Activity concentrations of 137Caesium and 210Polonium in seafood from fishing regions of New Zealand and the dose assessment for seafood consumers. J Environ Radioact 151:542–550. https://doi.org/10.1016/j.jenvrad.2015.07.026

    Article  CAS  PubMed  Google Scholar 

  207. Turner A, Turner D, Braungardt C (2013) Biomonitoring of thallium availability in two estuaries of southwest England. Mar Pollut Bull 69(1–2):172–177. https://doi.org/10.1016/j.marpolbul.2013.01.030

    Article  CAS  PubMed  Google Scholar 

  208. Tatsi K, Turner A, Handy RD, Shaw BJ (2015) The acute toxicity of thallium to freshwater organisms: implications for risk assessment. Sci Total Environ 536:382–390

    Article  ADS  CAS  PubMed  Google Scholar 

  209. Rickwood CJ, King M, Huntsman-Mapila P (2015) Assessing the fate and toxicity of thallium I and thallium III to three aquatic organisms. Ecotoxicol Environ Saf 115:300–308

    Article  CAS  PubMed  Google Scholar 

  210. Angulo AF, Jacobs MV, van Damme EHA, Akkermans AM, de Kruijff-Kroesen I, Brugman J (2003) Colistin sulfate as a suitable substitute of thallium acetate in culture media intended for mycoplasma detection and culture. Biologicals 31(3):161–163. https://doi.org/10.1016/S1045-1056(03)00031-9

    Article  CAS  PubMed  Google Scholar 

  211. Zhuang W, Song J (2021) Thallium in aquatic environments and the factors controlling Tl behavior. Environ Sci Pollut Res 28(27):35472–35487. https://doi.org/10.1007/s11356-021-14388-2

    Article  CAS  Google Scholar 

  212. Nagel AH, Cuss CW, Goss GG, Shotyk W, Glover CN (2021) Chronic toxicity of waterborne thallium to Daphnia magna. Environ Pollut 268:115776. https://doi.org/10.1016/j.envpol.2020.115776

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Mahdi Banaee] and [Amir Zeidi]. The first draft of the manuscript was written by [Mahdi Banaee], [Amir Zeidi] and [Nikola Mikušková]. The manuscript was revised by [Caterina Faggio]. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahdi Banaee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Competing Interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banaee, M., Zeidi, A., Mikušková, N. et al. Assessing Metal Toxicity on Crustaceans in Aquatic Ecosystems: A Comprehensive Review. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04122-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04122-7

Keywords

Navigation