Skip to main content

Advertisement

Log in

Hair and Serum Trace Element and Mineral Levels Profiles in Women with Premenopausal and Postmenopausal Osteoporosis

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of the present study was to evaluate serum and hair trace element and mineral levels in women with osteoporosis, as well as to estimate the impact of menopausal status on the profile of trace element and mineral status in women with osteoporosis. 207 women with diagnosed osteoporosis 22–85 years-of-age, and 197 healthy women of the respective age participated in the present study. Analysis of the levels of mineral and trace element in hair and serum samples was performed by inductively-coupled plasma mass-spectrometry (ICP-MS). Women with osteoporosis were characterized by significantly lower hair Ca, Mg, Co, I, Li, and Mn levels, as well as serum Ca, Mg, Co, Fe, V, and Zn concentrations compared to women in the control group. After additional grouping according to menopausal status, the lowest hair Ca and Mg content was observed in postmenopausal osteoporotic women, whereas serum Ca and Mg concentrations were the lowest in premenopausal osteoporotic women. Hair Co, Mn, and Zn levels in postmenopausal osteoporotic women were lower than in healthy postmenopausal women. The lowest circulating Zn levels were observed in osteoporotic postmenopausal women. Taken together, decreased hair and serum levels in osteoporotic women are indicative of increased risk of Ca, Mg, Co, and Zn deficiency in women with osteoporosis. In turn, alterations in hair trace element and mineral levels in osteoporosis are more profound in postmenopausal women. Hypothetically, improvement in trace element and mineral metabolism especially in postmenopausal women may be considered as a potential strategy for mitigating osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akkawi I, Zmerly H (2018) Osteoporosis: current concepts. Joints 6(2):122–127. https://doi.org/10.1055/s-0038-1660790

    Article  PubMed  PubMed Central  Google Scholar 

  2. Salari N, Ghasemi H, Mohammadi L, Behzadi MH, Rabieenia E, Shohaimi S, Mohammadi M (2021) The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res 16(1):609. https://doi.org/10.1186/s13018-021-02772-0

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang J, Dennison E, Prieto-Alhambra D (2020) Osteoporosis epidemiology using international cohorts. Curr Opin Rheumatol 32(4):387–393. https://doi.org/10.1097/BOR.0000000000000722

    Article  PubMed  Google Scholar 

  4. Cawthon PM (2011) Gender differences in osteoporosis and fractures. Clin Orthop Relat Res 469(7):1900–1905. https://doi.org/10.1007/s11999-011-1780-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bonnick SL (2006) Osteoporosis in men and women. Clin Cornerstone 8(1):28–39. https://doi.org/10.1016/s1098-3597(06)80063-3

    Article  PubMed  Google Scholar 

  6. Nieves JW (2017) Sex-differences in skeletal growth and aging. Curr Osteoporos Rep 270–75. https://doi.org/10.1007/s11914-017-0349-0

  7. Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115(12):3318–3325. https://doi.org/10.1172/JCI27071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Noh JW, Park H, Kim M, Kwon YD (2018) Gender Differences and Socioeconomic Factors Related to osteoporosis: a cross-sectional analysis of nationally Representative Data. J Womens Health (Larchmt) 27(2):196–202. https://doi.org/10.1089/jwh.2016.6244

    Article  PubMed  Google Scholar 

  9. Ilesanmi-Oyelere BL, Kruger MC (2020) Nutrient and dietary patterns in relation to the pathogenesis of postmenopausal Osteoporosis-A literature review. Life (Basel) 10(10):220. https://doi.org/10.3390/life10100220

    Article  CAS  PubMed  Google Scholar 

  10. Nieves JW (2005) Osteoporosis: the role of micronutrients. Am J Clin Nutr 81(5):1232S–1239S. https://doi.org/10.1093/ajcn/81.5.1232

    Article  CAS  PubMed  Google Scholar 

  11. Wang N, Chen Y, Ji J, Chang J, Yu S, Yu B (2020) The relationship between serum vitamin D and fracture risk in the elderly: a meta-analysis. J Orthop Surg Res 15(1):81. https://doi.org/10.1186/s13018-020-01603-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ratajczak AE, Rychter AM, Zawada A, Dobrowolska A, Krela-Kaźmierczak I (2021) Do only calcium and Vitamin D Matter? Micronutrients in the Diet of Inflammatory Bowel Diseases patients and the risk of osteoporosis. Nutrients 13(2):525. https://doi.org/10.3390/nu13020525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Skalny AV, Aschner M, Silina EV, Stupin VA, Zaitsev ON, Sotnikova TI, Tazina SI, Zhang F, Guo X, Tinkov AA (2023) The role of Trace Elements and Minerals in osteoporosis: a review of Epidemiological and Laboratory findings. Biomolecules 13(6):1006. https://doi.org/10.3390/biom13061006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng J, Mao X, Ling J, He Q, Quan J (2014a) Low serum levels of zinc, copper, and iron as risk factors for osteoporosis: a meta-analysis. Biol Trace Elem Res 160(1):15–23. https://doi.org/10.1007/s12011-014-0031-7

    Article  CAS  PubMed  Google Scholar 

  15. Zheng J, Mao X, Ling J, He Q, Quan J, Jiang H (2014b) Association between serum level of magnesium and postmenopausal osteoporosis: a meta-analysis. Biol Trace Elem Res 159(1–3):8–14. https://doi.org/10.1007/s12011-014-9961-3

    Article  CAS  PubMed  Google Scholar 

  16. Tang L, Chen Y, Pei F, Zhang H (2015) Lithium chloride modulates adipogenesis and Osteogenesis of human bone marrow-derived mesenchymal stem cells. Cell Physiol Biochem 37(1):143–152. https://doi.org/10.1159/000430340

    Article  CAS  PubMed  Google Scholar 

  17. Hreha J, Wey A, Cunningham C, Krell ES, Brietbart EA, Paglia DN, Montemurro NJ, Nguyen DA, Lee YJ, Komlos D, Lim E, Benevenia J, O’Connor JP, Lin SS (2015) Local manganese chloride treatment accelerates fracture healing in a rat model. J Orthop Res 33(1):122–130. https://doi.org/10.1002/jor.22733

    Article  CAS  PubMed  Google Scholar 

  18. Allain P, Leblondel G (1992) Endocrine regulation of trace element homeostasis in the rat. Biol Trace Elem Res 32:187–199. https://doi.org/10.1007/BF02784603

    Article  CAS  PubMed  Google Scholar 

  19. Manafa PO, Nna CD, Chukwuma GO, Onyenekwe CC, Ihim AC, Iloghalu EU, Okor LO, Akulue JC (2015) Cobalt, copper, selenium and zinc levels in pre-menopausal and post-menopausal women in Nnewi, South-East Nigeria. Orient J Med 27(3–4):93–98

    Google Scholar 

  20. Gupta N, Arora KS (2011) The status of trace elements after menopause: a comparative study. J Clin Diagnostic Res 5(4):795–797

    Google Scholar 

  21. Bureau I, Anderson RA, Arnaud J, Raysiguier Y, Favier AE, Roussel AM (2002) Trace mineral status in post menopausal women: impact of hormonal replacement therapy. J Trace Elem Med Biol 16(1):9–13. https://doi.org/10.1016/S0946-672X(02)80003-7

    Article  CAS  PubMed  Google Scholar 

  22. Shahida S, Rehman S, Ilyas N, Khan MI, Hameed U, Hafeez M, Iqbal S, Elboughdiri N, Ghernaout D, Salih AA, Matouq M (2021) Determination of blood calcium and lead concentrations in osteoporotic and osteopenic patients in Pakistan. ACS Omega 6(42):28373–28378. https://doi.org/10.1021/acsomega.1c04565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun JY, Zhang H, Zhang Y, Wang L, Sun BL, Gao F, Liu G (2021) Impact of serum calcium levels on total body bone mineral density: a mendelian randomization study in five age strata. Clin Nutr May 40(5):2726–2733. https://doi.org/10.1016/j.clnu.2021.03.012

    Article  CAS  Google Scholar 

  24. Pan K, Tu R, Yao X, Zhu Z (2021) Associations between serum calcium, 25 (OH) D level and bone mineral density in adolescents. Adv Rheumatol 61:16

    Article  PubMed  Google Scholar 

  25. Miekeley N, de Fortes Carvalho LM, Porto da Silveira CL, Lima MB (2001) Elemental anomalies in hair as indicators of endocrinologic pathologies and deficiencies in calcium and bone metabolism. J Trace Elem Med Biol 15(1):46–55. https://doi.org/10.1016/s0946-672x(01)80026-2

    Article  CAS  PubMed  Google Scholar 

  26. Deyama A, Deyama Y, Matsumoto A, Yoshimura Y, Nishikata M, Suzuki K, Totsuka Y (1999) A low calcium environment enhances AP-1 transcription factor-mediated gene expression in the development of osteoblastic MC3T3-E1 cells. Miner Electrolyte Metab 25(3):147–160

    Article  CAS  PubMed  Google Scholar 

  27. Gao X, Ma W, Dong H, Yong Z, Su R (2014) Establishing a rapid animal model of osteoporosis with ovariectomy plus low calcium diet in rats. Int J Clin Exp Pathol 7(8):5123–5128

    PubMed  PubMed Central  Google Scholar 

  28. Kunutsor SK, Whitehouse MR, Blom AW, Laukkanen JA (2017) Low serum magnesium levels are associated with increased risk of fractures: a long-term prospective cohort study. Eur J Epidemiol 32(7):593–603. https://doi.org/10.1007/s10654-017-0242-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song CH, Barrett-Connor E, Chung JH, Kim SH, Kim KS (2007) Associations of calcium and magnesium in serum and hair with bone mineral density in premenopausal women. Biol Trace Elem Res 118(1):1–9. https://doi.org/10.1007/s12011-007-0011-2

    Article  CAS  PubMed  Google Scholar 

  30. Qi T, Weng J, Yu F, Zhang W, Li G, Qin H, Tan Z, Zeng H (2021) Insights into the role of Magnesium ions in affecting osteogenic differentiation of mesenchymal stem cells. Biol Trace Elem Res 199(2):559–567. https://doi.org/10.1007/s12011-020-02183-y

    Article  PubMed  Google Scholar 

  31. Guo Y, Ren L, Liu C, Yuan Y, Lin X, Tan L, Chen S, Yang K, Mei X (2013) Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats. Mater Sci Eng C Mater Biol Appl 33(7):4470–4474. https://doi.org/10.1016/j.msec.2013.05.042

    Article  CAS  PubMed  Google Scholar 

  32. Galli S, Stocchero M, Andersson M, Karlsson J, He W, Lilin T, Wennerberg A, Jimbo R (2017) The effect of magnesium on early osseointegration in osteoporotic bone: a histological and gene expression investigation. Osteoporos Int 28(7):2195–2205. https://doi.org/10.1007/s00198-017-4004-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu J, Hu P, Zhang X, Chen J, Wang J, Zhang J, Chen Z, Yu MK, Chung YW, Wang Y, Zhang X, Zhang Y, Zheng N, Yao H, Yue J, Chan HC, Qin L, Ruan YC (2021) Magnesium implantation or supplementation ameliorates bone disorder in CFTR-mutant mice through an ATF4-dependent Wnt/β-catenin signaling. Bioact Mater 8:95–108. https://doi.org/10.1016/j.bioactmat.2021.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu L, Feyerabend F, Schilling AF, Willumeit-Römer R, Luthringer BJC (2015) Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture. Acta Biomater 27:294–304. https://doi.org/10.1016/j.actbio.2015.08.042

    Article  CAS  PubMed  Google Scholar 

  35. Avinash SS, Sreekantha, Goud BM (2013) Magnesium Metabolism in Menopause. In: Hollins Martin C, Watson R, Preedy V (eds) Nutrition and Diet in Menopause. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-373-2_16

    Chapter  Google Scholar 

  36. Patntirapong S, Habibovic P, Hauschka PV (2009) Effects of soluble cobalt and cobalt incorporated into calcium phosphate layers on osteoclast differentiation and activation. Biomaterials 30(4):548–555. https://doi.org/10.1016/j.biomaterials.2008.09.062

    Article  CAS  PubMed  Google Scholar 

  37. Pu Y, Sun H, Liu J, Amantai D, Yao W, Han X, He H (2023) Cobalt chloride promotes osteogenesis of rat bone marrow mesenchymal stem cells in Vitro and in vivo. Indian J Pharm Sci 85:1–0

    CAS  Google Scholar 

  38. Herrmann M, Peter Schmidt J, Umanskaya N, Wagner A, Taban-Shomal O, Widmann T, Colaianni G, Wildemann B, Herrmann W (2007) The role of hyperhomocysteinemia as well as folate, vitamin B(6) and B(12) deficiencies in osteoporosis: a systematic review. Clin Chem Lab Med 45(12):1621–1632. https://doi.org/10.1515/CCLM.2007.362

    Article  CAS  PubMed  Google Scholar 

  39. Yadav VK (2018) Vitamin B 12 as a regulator of bone health. Curr Sci Apr 25:1632–1638

    Article  Google Scholar 

  40. Kim GS, Kim CH, Park JY, Lee KU, Park CS (1996) Effects of vitamin B12 on cell proliferation and cellular alkaline phosphatase activity in human bone marrow stromal osteoprogenitor cells and UMR106 osteoblastic cells. Metabolism 45(12):1443–1446. https://doi.org/10.1016/s0026-0495(96)90171-7

    Article  CAS  PubMed  Google Scholar 

  41. Vaes BL, Lute C, Blom HJ, Bravenboer N, de Vries TJ, Everts V, Dhonukshe-Rutten RA, Müller M, de Groot LC, Steegenga WT (2009) Vitamin B(12) deficiency stimulates osteoclastogenesis via increased homocysteine and methylmalonic acid. Calcif Tissue Int 84(5):413–422. https://doi.org/10.1007/s00223-009-9244-8

    Article  CAS  PubMed  Google Scholar 

  42. Ceylan MN, Akdas S, Yazihan N (2021) Is zinc an important Trace element on bone-related Diseases and Complications? A Meta-analysis and systematic review from serum level, Dietary Intake, and supplementation aspects. Biol Trace Elem Res 199(2):535–549. https://doi.org/10.1007/s12011-020-02193-w

    Article  CAS  PubMed  Google Scholar 

  43. Wang WJ, Huang MN, Wang CK, Yang AM, Lin CY (2021) Zinc status is independently related to the bone mineral density, fracture risk assessment tool result, and bone fracture history: results from a U.S. nationally representative survey. J Trace Elem Med Biol 67:126765. https://doi.org/10.1016/j.jtemb.2021.126765

    Article  CAS  PubMed  Google Scholar 

  44. Kwun IS, Cho YE, Lomeda RA, Shin HI, Choi JY, Kang YH, Beattie JH (2010) Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through runx 2 modulation. Bone 46(3):732–741. https://doi.org/10.1016/j.bone.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  45. Park JH, Park SA, Kang YH, Hwa SM, Koh EB, Hwang SC, Oh SH, Byun JH (2021) Zinc sulfate stimulates osteogenic phenotypes in Periosteum-Derived cells and co-cultures of Periosteum-Derived cells and THP-1 cells. Life (Basel) 11(5):410. https://doi.org/10.3390/life11050410

    Article  CAS  PubMed  Google Scholar 

  46. Seo HJ, Cho YE, Kim T, Shin HI, Kwun IS (2010) Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract 4(5):356–361. https://doi.org/10.4162/nrp.2010.4.5.356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yusa K, Yamamoto O, Iino M, Takano H, Fukuda M, Qiao Z, Sugiyama T (2016) Eluted zinc ions stimulate osteoblast differentiation and mineralization in human dental pulp stem cells for bone tissue engineering. Arch Oral Biol 71:162–169. https://doi.org/10.1016/j.archoralbio.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  48. Alcantara EH, Lomeda RA, Feldmann J, Nixon GF, Beattie JH, Kwun IS (2011) Zinc deprivation inhibits extracellular matrix calcification through decreased synthesis of matrix proteins in osteoblasts. Mol Nutr Food Res 55(10):1552–1560. https://doi.org/10.1002/mnfr.201000659

    Article  CAS  PubMed  Google Scholar 

  49. Vázquez-Lorente H, Molina-López J, Herrera-Quintana L, Gamarra-Morales Y, Quintero-Osso B, López-González B, Planells E (2022) Erythrocyte Zn concentration and antioxidant response after supplementation with Zn in a postmenopausal population. A double-blind randomized trial. Exp Gerontol 162:111766. https://doi.org/10.1016/j.exger.2022.111766

    Article  CAS  PubMed  Google Scholar 

  50. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281(34):24085–24089. https://doi.org/10.1074/jbc.R600011200

    Article  CAS  PubMed  Google Scholar 

  51. Herzberg M, Foldes J, Steinberg R, Menczel J (1990) Zinc excretion in osteoporotic women. J Bone Miner Res 5(3):251-7. https://doi.org/10.1002/jbmr.5650050308. PMID: 2333784

  52. Rondanelli M, Faliva MA, Peroni G, Infantino V, Gasparri C, Iannello G, Perna S, Riva A, Petrangolini G, Tartara A (2021) Essentiality of manganese for bone health: an overview and update. Nat Prod Commun 16(5):1934578X211016649

    CAS  Google Scholar 

  53. Lin S, Yang F, Ling M, Fan Y (2022) Association between bone trace elements and osteoporosis in older adults: a cross-sectional study. Ther Adv Musculoskelet Dis 14:1759720X221125984. https://doi.org/10.1177/1759720X221125984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bae YJ, Kim MH (2008) Manganese supplementation improves mineral density of the spine and femur and serum osteocalcin in rats. Biol Trace Elem Res 124(1):28–34. https://doi.org/10.1007/s12011-008-8119-6

    Article  CAS  PubMed  Google Scholar 

  55. Li J, Deng C, Liang W, Kang F, Bai Y, Ma B, Wu C, Dong S (2021) Mn-containing bioceramics inhibit osteoclastogenesis and promote osteoporotic bone regeneration via scavenging ROS. Bioact Mater 6(11):3839–3850. https://doi.org/10.1016/j.bioactmat.2021.03.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang C, Zhu Y, Long H, Ou M, Zhao S (2022) Relationship between blood manganese and bone mineral density and bone mineral content in adults: a population-based cross-sectional study. PLoS ONE 17(10):e0276551. https://doi.org/10.1371/journal.pone.0276551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lüthen F, Bulnheim U, Müller PD, Rychly J, Jesswein H, Nebe JG (2007) Influence of manganese ions on cellular behavior of human osteoblasts in vitro. Biomol Eng 24(5):531–536. https://doi.org/10.1016/j.bioeng.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  58. Lee BK, Kim Y (2012) Effects of menopause on blood manganese levels in women: analysis of 2008–2009 Korean National Health and Nutrition Examination Survey data. Neurotoxicology 33(3):401–405. https://doi.org/10.1016/j.neuro.2012.04.015

    Article  CAS  PubMed  Google Scholar 

  59. Ulas M, Cay M (2011) Effects of 17β-estradiol and vitamin E treatments on blood trace element and antioxidant enzyme levels in ovariectomized rats. Biol Trace Elem Res 139(3):347–355. https://doi.org/10.1007/s12011-010-8669-2

    Article  CAS  PubMed  Google Scholar 

  60. Arslanca T, Korkmaz V, Arslanca SB, Karadag B, Ergün Y (2018) Body iodine status in women with postmenopausal osteoporosis. Menopause 25(3):320–323. https://doi.org/10.1097/GME.0000000000000987

    Article  PubMed  Google Scholar 

  61. Lademann F, Tsourdi E, Hofbauer LC, Rauner M (2020) Thyroid hormone actions and bone remodeling - the role of the wnt signaling pathway. Exp Clin Endocrinol Diabetes 128(6–07):450–454. https://doi.org/10.1055/a-1088-1215

    Article  CAS  PubMed  Google Scholar 

  62. Wojcicka A, Bassett JH, Williams GR (2013) Mechanisms of action of thyroid hormones in the skeleton. Biochim Biophys Acta 1830(7):3979–3986. https://doi.org/10.1016/j.bbagen.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  63. Acar B, Ozay AC, Ozay OE, Okyay E, Sisman AR, Ozaksoy D (2016) Evaluation of thyroid function status among postmenopausal women with and without osteoporosis. Int J Gynaecol Obstet 134(1):53–57. https://doi.org/10.1016/j.ijgo.2015.11.025

    Article  CAS  PubMed  Google Scholar 

  64. Lee K, Lim S, Park H, Woo HY, Chang Y, Sung E, Jung HS, Yun KE, Kim CW, Ryu S, Kwon MJ (2020) Subclinical thyroid dysfunction, bone mineral density, and osteoporosis in a middle-aged Korean population. Osteoporos Int 31(3):547–555. https://doi.org/10.1007/s00198-019-05205-1

    Article  CAS  PubMed  Google Scholar 

  65. Gietka-Czernel M (2017) The thyroid gland in postmenopausal women: physiology and Diseases. Menopause Review/PrzeglÄ d Menopauzalny 16(2):33–37

    Google Scholar 

  66. Liu B, Wu Q, Zhang S, Del Rosario A (2019) Lithium use and risk of fracture: a systematic review and meta-analysis of observational studies. Osteoporos Int 30(2):257–266. https://doi.org/10.1007/s00198-018-4745-9

    Article  CAS  PubMed  Google Scholar 

  67. Huang L, Yin X, Chen J, Liu R, Xiao X, Hu Z, He Y, Zou S (2021) Lithium chloride promotes osteogenesis and suppresses apoptosis during orthodontic tooth movement in osteoporotic model via regulating autophagy. Bioact Mater 6(10):3074–3084. https://doi.org/10.1016/j.bioactmat.2021.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vachhani K, Whyne C, Wang Y, Burns DM, Nam D (2018) Low-dose lithium regimen enhances endochondral fracture healing in osteoporotic rodent bone. J Orthop Res 36(6):1783–1789. https://doi.org/10.1002/jor.23799

    Article  CAS  PubMed  Google Scholar 

  69. Kurgan N, Bott KN, Helmeczi WE, Roy BD, Brindle ID, Klentrou P, Fajardo VA (2019) Low dose lithium supplementation activates Wnt/β-catenin signalling and increases bone OPG/RANKL ratio in mice. Biochem Biophys Res Commun 511(2):394–397. https://doi.org/10.1016/j.bbrc.2019.02.066

    Article  CAS  PubMed  Google Scholar 

  70. Wang X, Zhu S, Jiang X, Li Y, Song D, Hu J (2015) Systemic administration of lithium improves distracted bone regeneration in rats. Calcif Tissue Int 96(6):534–540. https://doi.org/10.1007/s00223-015-0004-7

    Article  CAS  PubMed  Google Scholar 

  71. Pan ML, Chen LR, Tsao HM, Chen KH (2017) Iron Deficiency Anemia as a risk factor for osteoporosis in Taiwan: a Nationwide Population-based study. Nutrients 9(6):616. https://doi.org/10.3390/nu9060616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Che J, Yang J, Zhao B, Zhang G, Wang L, Peng S, Shang P (2020) The effect of abnormal Iron metabolism on osteoporosis. Biol Trace Elem Res 195(2):353–365. https://doi.org/10.1007/s12011-019-01867-4

    Article  CAS  PubMed  Google Scholar 

  73. Yang Q, Jian J, Abramson SB, Huang X (2011) Inhibitory effects of iron on bone morphogenetic protein 2-induced osteoblastogenesis. J Bone Miner Res 26(6):1188–1196. https://doi.org/10.1002/jbmr.337

    Article  CAS  PubMed  Google Scholar 

  74. Zhao GY, Zhao LP, He YF, Li GF, Gao C, Li K, Xu YJ (2012) A comparison of the biological activities of human osteoblast hFOB1.19 between iron excess and iron Deficiency. Biol Trace Elem Res 1–3487–495. https://doi.org/10.1007/s12011-012-9511-9

  75. Tussing-Humphreys L, Braunschweig C (2011) Anemia in postmenopausal women: dietary inadequacy or nondietary factors? J Am Diet Assoc 111(4):528–531. https://doi.org/10.1016/j.jada.2011.01.006

    Article  PubMed  Google Scholar 

  76. Qamar K, Saboor M, Qudsia F, Khosa SM, Moinuddin, Usman M (2015) Malabsorption of iron as a cause of iron Deficiency anemia in postmenopausal women. Pak J Med Sci 31(2):304–308. https://doi.org/10.12669/pjms.312.6462

    Article  PubMed  PubMed Central  Google Scholar 

  77. Korkmaz U, Korkmaz N, Yazici S, Erkan M, Baki AE, Yazici M, Ozhan H, Ataoğlu S (2012) Anemia as a risk factor for low bone mineral density in postmenopausal Turkish women. Eur J Intern Med 23(2):154–158. https://doi.org/10.1016/j.ejim.2011.11.009

    Article  PubMed  Google Scholar 

  78. Kim C, Nan B, Kong S, Harlow S (2012a) Changes in iron measures over menopause and associations with insulin resistance. J Womens Health (Larchmt) 21(8):872–877. https://doi.org/10.1089/jwh.2012.3549

    Article  PubMed  Google Scholar 

  79. Kim BJ, Ahn SH, Bae SJ, Kim EH, Lee SH, Kim HK, Choe JW, Koh JM, Kim GS (2012b) Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: a 3-year retrospective longitudinal study. J Bone Miner Res 27(11):2279–2290. https://doi.org/10.1002/jbmr.1692

    Article  CAS  PubMed  Google Scholar 

  80. Bane T, Siegel L, Bertels J, Ratz K, Rubessa M, Wheeler M (2019) The effect of copper on the differentiation of adipose-derived stem cells into osteoblasts. Reprod Fertil Dev 31(1):229–230

    Article  Google Scholar 

  81. Bernhardt A, Schamel M, Gbureck U, Gelinsky M (2017) Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2 + and Cr3 + incorporated into calcium phosphate bone cements. PLoS ONE 12(8):e0182109. https://doi.org/10.1371/journal.pone.0182109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rico H, Roca-Botran C, Hernández ER, Seco C, Paez E, Valencia MJ, Villa LF (2000) The effect of supplemental copper on osteopenia induced by ovariectomy in rats. Menopause 7(6):413–416. https://doi.org/10.1097/00042192-200011000-00007

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was performed with support of the Russian Ministry of Science and Higher Education, Project No. FENZ-2023-0004.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. AVS, MA —supervision; TVK, MMBP, LR, AAS, ALM, AAT —data acquisition and analysis; TVK, MMBP, LR, AAS, ALM, AAT —manuscript draft preparation; AVS, MA —manuscript review and editing. All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Anatoly V. Skalny.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skalny, A.V., Korobeinikova, T.V., Aschner, M. et al. Hair and Serum Trace Element and Mineral Levels Profiles in Women with Premenopausal and Postmenopausal Osteoporosis. Biol Trace Elem Res (2023). https://doi.org/10.1007/s12011-023-03970-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-023-03970-z

Keywords

Navigation