Skip to main content

Advertisement

Log in

Systemic Administration of Lithium Improves Distracted Bone Regeneration in Rats

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Lithium, popular in psychology field, has been recognized as an activator component of the canonical Wnt signaling pathway. The effect of lithium on osteogenesis or on the human fracture risk has been widely reported. However, little is known on its role in distraction osteogenesis to date. In this study, the effect of systematic administrated lithium on distraction osteogenesis in a rat model was investigated. The osteotomy was performed on the right tibia in 40 adult male Sprague-Dawley rats. Then they were randomly assigned into two equal groups (n = 20/group), which underwent Lithium or saline treatment through gastric gavage until the day they were killed. One week after the osteotomy, the tibias were distracted for 14 days (rate 0.6 mm/day). Following 8 weeks consolidation period, the distracted tibias in both groups were harvested and examined by X-ray plain radiography, histology, dual-energy X-ray absorptiometry, Micro-CT, and biomechanical tests. The results showed that lithium group possessed higher bone mineral density, more mature new bone tissue, and better regenerated bone mass continuity in the distraction gaps without any local or systemic adverse effects was encountered. This study suggested lithium could increase bony callus ossification volume and accelerate distracted tissue mineralization to facilitate bone regeneration in distraction gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amir LR, Everts V, Bronckers A (2009) Bone regeneration during distraction osteogenesis. Odontology 97:63–75

    Article  CAS  PubMed  Google Scholar 

  2. Davies J, Turner S, Sandy JR (1998) Distraction osteogenesis—a review. Br Dent J 185:462–467

    Article  CAS  PubMed  Google Scholar 

  3. Aronson J, Rock L (1997) Limb-lengthening, skeletal reconstruction, and bone transport with the Ilizarov method. J Bone Joint Surg Am 79A:1243–1258

    Google Scholar 

  4. Aronson J (1994) Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop 301:124–131

    PubMed  Google Scholar 

  5. Hu J, Qi MC, Zou SJ, Li JH, Luo E (2007) Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res 25:241–251

    Article  CAS  PubMed  Google Scholar 

  6. Li G, Bouxsein ML, Luppen C, Li XJ, Wood M, Seeherman HJ, Wozney JM, Simpson H (2002) Bone consolidation is enhanced by rhBMP-2 in a rabbit model of distraction osteogenesis. J Orthop Res 20:779–788

    Article  CAS  PubMed  Google Scholar 

  7. Li G, Ryaby JT, Carney DH, Wang H (2005) Bone formation is enhanced by thrombin-related peptide TP508 during distraction osteogenesis. J Orthop Res 23:196–202

    Article  CAS  PubMed  Google Scholar 

  8. Seebach C, Skripitz R, Andreassen TT, Aspenberg P (2004) Intermittent parathyroid hormone (1-34) enhances mechanical strength and density of new bone after distraction osteogenesis in rats. J Orthop Res 22:472–478

    Article  CAS  PubMed  Google Scholar 

  9. Carney SM, Goodwin GM (2005) Lithium—a continuing story in the treatment of bipolar disorder. Acta Psychiat Scand 111:7–12

    Article  Google Scholar 

  10. Young AH, Newham JI (2006) Lithium in maintenance therapy for bipolar disorder. J Psychopharmacol 20:17–22

    Article  CAS  PubMed  Google Scholar 

  11. Vestergaard P, Rejnmark L, Mosekilde L (2005) Reduced relative risk of fractures among users of lithium. Calcified Tissue Int 77:1–8

    Article  CAS  Google Scholar 

  12. Wilting I, de Vries F, Thio B, Cooper C, Heerdink ER, Leutkens HGM, Nolen WA, Egberts ACG, van Staa TP (2007) Lithium use and the risk of fractures. Bone 40:1252–1258

    Article  CAS  PubMed  Google Scholar 

  13. Clement-Lacroix P, Ai MR, Morvan F, Roman-Roman S, Vayssiere B, Belleville C, Estrera K, Warman ML, Baron R, Rawadi G (2005) Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA 102:17406–17411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Warden SJ, Hassett SM, Bond JL, Rydberg J, Grogg JD, Hilles EL, Bogenschutz ED, Smith HD, Fuchs RK, Bliziotes MM, Turner CH (2010) Psychotropic drugs have contrasting skeletal effects that are independent of their effects on physical activity levels. Bone 46:985–992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Zamani A, Omrani GR, Nasab MM (2009) Lithium’s effect on bone mineral density. Bone 44:331–334

    Article  CAS  PubMed  Google Scholar 

  16. Bain G, Muller T, Wang X, Papkoff J (2003) Activated beta-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction. Biochem Biophys Res Commun 301:84–91

    Article  CAS  PubMed  Google Scholar 

  17. Kugimiya F, Kawaguchi H, Ohba S, Kawamura N, Hirata M, Chikuda H, Azuma Y, Woodgett JR, Nakamura K, Chung U (2007) GSK-3 beta controls osteogenesis through regulating Runx2 activity. PLoS One 9:e837

    Article  Google Scholar 

  18. Chappard D, Baslé MF, Legrand E, Audran M (2011) New laboratory tools in the assessment of bone quality. Osteoporos Int 22:2225–2240

    Article  CAS  PubMed  Google Scholar 

  19. Wang JF, Chen B, Young LT (1999) Identification of a novel lithium regulated gene in rat brain. Mol Brain Res 70:66–73

    Article  CAS  PubMed  Google Scholar 

  20. Gundberg CM, Clough ME, Carpenter TO (1992) Development and validation of a radioimmunoassay for mouse osteocalcin—paradoxical response in the hyp mouse. Endocrinology 130:1909–1915

    CAS  PubMed  Google Scholar 

  21. Hahn M, Vogel M, Delling G (1991) Undecalcified preparation of bone tissue—report of technical experience and development of new methods. Virchows Arch 418:1–7

    Article  CAS  Google Scholar 

  22. Choi IH, Chung CY, Cho TJ, Yoo WJ (2002) Angiogenesis and mineralization during distraction osteogenesis. J Korean Med Sci 17:435–447

    Article  PubMed Central  PubMed  Google Scholar 

  23. Al-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA (2008) Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 87:107–118

    Article  Google Scholar 

  24. Wang H, Sun W, Ma JQ, Pan YC, Wang L, Zhang WB (2014) Polycystin-1 mediates mechanical strain-induced osteoblastic mechanoresponses via potentiation of intracellular calcium and Akt/β-catenin pathway. PLoS One 9:e91730

    Article  PubMed Central  PubMed  Google Scholar 

  25. Tang GH, Xu J, Chen RJ, Qian YF, Shen G (2011) Lithium delivery enhances bone growth during midpalatal expression. J Dent Res 90:1246–1252

    Article  PubMed  Google Scholar 

  26. Aronson J, Shen XC, Skinner RA, Hogue WR, Badger TM, Lumpkin CK (1997) Rat model of distraction osteogenesis. J Orthop Res 15:221–226

    Article  CAS  PubMed  Google Scholar 

  27. Choi IH, Ahn JH, Chung CY, Cho TJ (2000) Vascular proliferation and blood supply during distraction osteogenesis: a scanning electron microscopic observation. J Orthop Res 18:698–705

    Article  CAS  PubMed  Google Scholar 

  28. Grandjean EM, Aubry JM (2009) Lithium: updated human knowledge using an evidence-based approach. CNS Drugs 23:397–418

    Article  CAS  PubMed  Google Scholar 

  29. Boton R, Gaviria M, Batlle DC (1987) Prevalence, pathogenesis, and treatment of renal dysfunction associated with chronic lithium-therapy. Am J Kidney Dis 10:329–345

    Article  CAS  PubMed  Google Scholar 

  30. Baran DT, Schwartz MP, Bergfeld MA (1978) Lithium inhibition of bone mineralization and osteoid formation. J Clin Invest 61:1691–1696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Chen Y, Whetstone HC, Lin AC, Nadesan P, Wei QX, Poon R, Alman BA (2007) Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLOS Med 4:1216–1229

    Article  CAS  Google Scholar 

  32. Cohen Y, Chetrit A, Cohen Y, Sirota P, Modan B (1998) Cancer morbidity in psychiatric patients: influence of lithium carbonate treatment. Med Oncol 15:32–36

    Article  CAS  PubMed  Google Scholar 

  33. Heo JS, Lee SY, Lee JC (2010) Wnt/beta-catenin signaling enhances osteoblastogenic differentiation from human periodontal ligament fibroblasts. Mol Cell 30:449–454

    Article  CAS  Google Scholar 

  34. Kirton JP, Crofts NJ, George SJ, Brennan K, Canfield AE (2007) Wnt/beta-catenin signaling stimulates chondrogenic and inhibits adipogenic differentiation of pericytes—potential relevance to vascular disease? Circ Res 101:581–589

    Article  CAS  PubMed  Google Scholar 

  35. Akesson K, Vergnaud Ph, Delmas PD, Obrant KJ (1995) Serum osteocalcin increases during fracture healing in elderly women with hip farcture. Bone 16:427–430

    CAS  PubMed  Google Scholar 

  36. Hoang MV, Smith LEH, Senger DR (2010) Moderate GSK-3 beta inhibition improves neovascular architecture, reduces vascular leakage, and reduces retinal hypoxia in a model of ischemic retinopathy. Angio 13:269–277

    CAS  Google Scholar 

  37. Zerlin M, Julius MA, Kitajewski J (2008) Wnt/frizzled signaling in angiogenesis. Angio 11:63–69

    CAS  Google Scholar 

  38. Masckauchan THN, Kitajewski J (2006) Wnt/Frizzled signaling in the vasculature: new angiogenic factors in sight. Physiology 21:181–188

    Article  PubMed  Google Scholar 

  39. Guo SZ, Arai K, Stins MF, Chuang DM, Lo EH (2009) Lithium upregulates vascular endothelial growth factor in brain endothelial cells and astrocytes. Stroke 40:652–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Silva R, Martins L, Longatto-Filho A, Almeida OFX, Sousa N (2007) Lithium prevents stress-induced reduction of vascular endothelium growth factor levels. Neurosci Lett 429:33–38

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.81271106).

Conflict of interest

Xuemei Wang, Songsong Zhu, Xiaowen Jiang, Donghui Song, Yunfeng Li, and Jing Hu have declared that no conflict of interest exists.

Human and Animal Rights and Informed Consent

All procedures followed were in accordance with the ethical standards of Sichuan University Animal Care and Use Committee guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhu, S., Jiang, X. et al. Systemic Administration of Lithium Improves Distracted Bone Regeneration in Rats. Calcif Tissue Int 96, 534–540 (2015). https://doi.org/10.1007/s00223-015-0004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-015-0004-7

Keywords

Navigation